vkd3d/libs/vkd3d-shader/hlsl_codegen.c

1800 lines
60 KiB
C
Raw Normal View History

/*
* HLSL optimization and code generation
*
* Copyright 2019-2020 Zebediah Figura for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "hlsl.h"
#include <stdio.h>
/* Split uniforms into two variables representing the constant and temp
* registers, and copy the former to the latter, so that writes to uniforms
* work. */
static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp)
{
struct vkd3d_string_buffer *name;
struct hlsl_ir_var *uniform;
struct hlsl_ir_store *store;
struct hlsl_ir_load *load;
/* Use the synthetic name for the temp, rather than the uniform, so that we
* can write the uniform name into the shader reflection data. */
if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type,
temp->loc, NULL, temp->modifiers, &temp->reg_reservation)))
return;
list_add_before(&temp->scope_entry, &uniform->scope_entry);
list_add_tail(&ctx->extern_vars, &uniform->extern_entry);
uniform->is_uniform = 1;
uniform->is_param = temp->is_param;
uniform->buffer = temp->buffer;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<temp-%s>", temp->name);
temp->name = hlsl_strdup(ctx, name->buffer);
hlsl_release_string_buffer(ctx, name);
if (!(load = hlsl_new_var_load(ctx, uniform, temp->loc)))
return;
list_add_head(instrs, &load->node.entry);
if (!(store = hlsl_new_simple_store(ctx, temp, &load->node)))
return;
list_add_after(&load->node.entry, &store->node.entry);
}
static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset, unsigned int modifiers, const struct hlsl_semantic *semantic)
{
struct vkd3d_string_buffer *name;
struct hlsl_semantic new_semantic;
struct hlsl_ir_constant *offset;
struct hlsl_ir_store *store;
struct hlsl_ir_load *load;
struct hlsl_ir_var *input;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<input-%s%u>", semantic->name, semantic->index);
if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name)))
{
hlsl_release_string_buffer(ctx, name);
return;
}
new_semantic.index = semantic->index;
if (!(input = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer),
type, var->loc, &new_semantic, modifiers, NULL)))
{
hlsl_release_string_buffer(ctx, name);
vkd3d_free((void *)new_semantic.name);
return;
}
hlsl_release_string_buffer(ctx, name);
input->is_input_semantic = 1;
input->is_param = var->is_param;
list_add_before(&var->scope_entry, &input->scope_entry);
list_add_tail(&ctx->extern_vars, &input->extern_entry);
if (!(load = hlsl_new_var_load(ctx, input, var->loc)))
return;
list_add_head(instrs, &load->node.entry);
if (!(offset = hlsl_new_uint_constant(ctx, field_offset, &var->loc)))
return;
list_add_after(&load->node.entry, &offset->node.entry);
if (!(store = hlsl_new_store(ctx, var, &offset->node, &load->node, 0, var->loc)))
return;
list_add_after(&offset->node.entry, &store->node.entry);
}
static void prepend_input_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset)
{
struct hlsl_struct_field *field;
LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry)
{
if (field->type->type == HLSL_CLASS_STRUCT)
prepend_input_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset);
else if (field->semantic.name)
prepend_input_copy(ctx, instrs, var, field->type,
field_offset + field->reg_offset, field->modifiers, &field->semantic);
else
hlsl_error(ctx, &field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Field '%s' is missing a semantic.", field->name);
}
}
/* Split inputs into two variables representing the semantic and temp registers,
* and copy the former to the latter, so that writes to input variables work. */
static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var)
{
if (var->data_type->type == HLSL_CLASS_STRUCT)
prepend_input_struct_copy(ctx, instrs, var, var->data_type, 0);
else if (var->semantic.name)
prepend_input_copy(ctx, instrs, var, var->data_type, 0, var->modifiers, &var->semantic);
}
static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset, unsigned int modifiers, const struct hlsl_semantic *semantic)
{
struct vkd3d_string_buffer *name;
struct hlsl_semantic new_semantic;
struct hlsl_ir_constant *offset;
struct hlsl_ir_store *store;
struct hlsl_ir_var *output;
struct hlsl_ir_load *load;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<output-%s%u>", semantic->name, semantic->index);
if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name)))
{
hlsl_release_string_buffer(ctx, name);
return;
}
new_semantic.index = semantic->index;
if (!(output = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer),
type, var->loc, &new_semantic, modifiers, NULL)))
{
vkd3d_free((void *)new_semantic.name);
hlsl_release_string_buffer(ctx, name);
return;
}
hlsl_release_string_buffer(ctx, name);
output->is_output_semantic = 1;
output->is_param = var->is_param;
list_add_before(&var->scope_entry, &output->scope_entry);
list_add_tail(&ctx->extern_vars, &output->extern_entry);
if (!(offset = hlsl_new_uint_constant(ctx, field_offset, &var->loc)))
return;
list_add_tail(instrs, &offset->node.entry);
if (!(load = hlsl_new_load(ctx, var, &offset->node, type, var->loc)))
return;
list_add_after(&offset->node.entry, &load->node.entry);
if (!(store = hlsl_new_store(ctx, output, NULL, &load->node, 0, var->loc)))
return;
list_add_after(&load->node.entry, &store->node.entry);
}
static void append_output_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset)
{
struct hlsl_struct_field *field;
LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry)
{
if (field->type->type == HLSL_CLASS_STRUCT)
append_output_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset);
else if (field->semantic.name)
append_output_copy(ctx, instrs, var, field->type,
field_offset + field->reg_offset, field->modifiers, &field->semantic);
else
hlsl_error(ctx, &field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Field '%s' is missing a semantic.", field->name);
}
}
/* Split outputs into two variables representing the temp and semantic
* registers, and copy the former to the latter, so that reads from output
* variables work. */
static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var)
{
if (var->data_type->type == HLSL_CLASS_STRUCT)
append_output_struct_copy(ctx, instrs, var, var->data_type, 0);
else if (var->semantic.name)
append_output_copy(ctx, instrs, var, var->data_type, 0, var->modifiers, &var->semantic);
}
static bool transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *),
struct hlsl_block *block, void *context)
{
struct hlsl_ir_node *instr, *next;
bool progress = false;
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
{
if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
progress |= transform_ir(ctx, func, &iff->then_instrs, context);
progress |= transform_ir(ctx, func, &iff->else_instrs, context);
}
else if (instr->type == HLSL_IR_LOOP)
progress |= transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context);
progress |= func(ctx, instr, context);
}
return progress;
}
/* Lower casts from vec1 to vecN to swizzles. */
static bool lower_broadcasts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_type *src_type, *dst_type;
struct hlsl_type *dst_scalar_type;
struct hlsl_ir_expr *cast;
if (instr->type != HLSL_IR_EXPR)
return false;
cast = hlsl_ir_expr(instr);
src_type = cast->operands[0].node->data_type;
dst_type = cast->node.data_type;
if (cast->op == HLSL_OP1_CAST
&& src_type->type <= HLSL_CLASS_VECTOR && dst_type->type <= HLSL_CLASS_VECTOR
&& src_type->dimx == 1)
{
struct hlsl_ir_node *replacement;
struct hlsl_ir_swizzle *swizzle;
struct hlsl_ir_expr *new_cast;
dst_scalar_type = hlsl_get_scalar_type(ctx, dst_type->base_type);
/* We need to preserve the cast since it might be doing more than just
* turning the scalar into a vector. */
if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_scalar_type, &cast->node.loc)))
return false;
list_add_after(&cast->node.entry, &new_cast->node.entry);
replacement = &new_cast->node;
if (dst_type->dimx != 1)
{
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), dst_type->dimx, replacement, &cast->node.loc)))
return false;
list_add_after(&new_cast->node.entry, &swizzle->node.entry);
replacement = &swizzle->node;
}
hlsl_replace_node(&cast->node, replacement);
return true;
}
return false;
}
struct copy_propagation_value
{
struct hlsl_ir_node *node;
unsigned int component;
};
struct copy_propagation_var_def
{
struct rb_entry entry;
struct hlsl_ir_var *var;
struct copy_propagation_value values[];
};
struct copy_propagation_state
{
struct rb_tree var_defs;
};
static int copy_propagation_var_def_compare(const void *key, const struct rb_entry *entry)
{
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
uintptr_t key_int = (uintptr_t)key, entry_int = (uintptr_t)var_def->var;
return (key_int > entry_int) - (key_int < entry_int);
}
static void copy_propagation_var_def_destroy(struct rb_entry *entry, void *context)
{
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
vkd3d_free(var_def);
}
static struct copy_propagation_var_def *copy_propagation_get_var_def(const struct copy_propagation_state *state,
const struct hlsl_ir_var *var)
{
struct rb_entry *entry = rb_get(&state->var_defs, var);
if (entry)
return RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
else
return NULL;
}
static struct copy_propagation_var_def *copy_propagation_create_var_def(struct hlsl_ctx *ctx,
struct copy_propagation_state *state, struct hlsl_ir_var *var)
{
struct rb_entry *entry = rb_get(&state->var_defs, var);
struct copy_propagation_var_def *var_def;
int res;
if (entry)
return RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
if (!(var_def = hlsl_alloc(ctx, offsetof(struct copy_propagation_var_def, values[var->data_type->reg_size]))))
return NULL;
var_def->var = var;
res = rb_put(&state->var_defs, var, &var_def->entry);
assert(!res);
return var_def;
}
static void copy_propagation_invalidate_whole_variable(struct copy_propagation_var_def *var_def)
{
TRACE("Invalidate variable %s.\n", var_def->var->name);
memset(var_def->values, 0, sizeof(*var_def->values) * var_def->var->data_type->reg_size);
}
static void copy_propagation_set_value(struct copy_propagation_var_def *var_def, unsigned int offset,
unsigned char writemask, struct hlsl_ir_node *node)
{
unsigned int i, j = 0;
for (i = 0; i < 4; ++i)
{
if (writemask & (1u << i))
{
TRACE("Variable %s[%u] is written by instruction %p%s.\n",
var_def->var->name, offset + i, node, debug_hlsl_writemask(1u << i));
var_def->values[offset + i].node = node;
var_def->values[offset + i].component = j++;
}
}
}
static struct hlsl_ir_node *copy_propagation_compute_replacement(struct hlsl_ctx *ctx,
const struct copy_propagation_state *state, const struct hlsl_deref *deref,
unsigned int count, unsigned int *swizzle)
{
const struct hlsl_ir_var *var = deref->var;
struct copy_propagation_var_def *var_def;
struct hlsl_ir_node *node = NULL;
unsigned int offset, i;
if (!hlsl_offset_from_deref(ctx, deref, &offset))
return NULL;
if (!(var_def = copy_propagation_get_var_def(state, var)))
return NULL;
assert(offset + count <= var_def->var->data_type->reg_size);
*swizzle = 0;
for (i = 0; i < count; ++i)
{
if (!node)
{
node = var_def->values[offset + i].node;
}
else if (node != var_def->values[offset + i].node)
{
TRACE("No single source for propagating load from %s[%u-%u].\n", var->name, offset, offset + count);
return NULL;
}
*swizzle |= var_def->values[offset + i].component << i * 2;
}
TRACE("Load from %s[%u-%u] propagated as instruction %p%s.\n",
var->name, offset, offset + count, node, debug_hlsl_swizzle(*swizzle, count));
return node;
}
static bool copy_propagation_transform_load(struct hlsl_ctx *ctx,
struct hlsl_ir_load *load, struct copy_propagation_state *state)
{
struct hlsl_ir_node *node = &load->node, *new_node;
struct hlsl_type *type = node->data_type;
struct hlsl_ir_swizzle *swizzle_node;
unsigned int dimx = 0;
unsigned int swizzle;
switch (type->type)
{
case HLSL_CLASS_SCALAR:
case HLSL_CLASS_VECTOR:
dimx = type->dimx;
break;
case HLSL_CLASS_OBJECT:
dimx = 1;
break;
case HLSL_CLASS_MATRIX:
case HLSL_CLASS_ARRAY:
case HLSL_CLASS_STRUCT:
/* FIXME: Actually we shouldn't even get here, but we don't split
* matrices yet. */
return false;
}
if (!(new_node = copy_propagation_compute_replacement(ctx, state, &load->src, dimx, &swizzle)))
return false;
if (type->type != HLSL_CLASS_OBJECT)
{
if (!(swizzle_node = hlsl_new_swizzle(ctx, swizzle, dimx, new_node, &node->loc)))
return false;
list_add_before(&node->entry, &swizzle_node->node.entry);
new_node = &swizzle_node->node;
}
hlsl_replace_node(node, new_node);
return true;
}
static bool copy_propagation_transform_object_load(struct hlsl_ctx *ctx,
struct hlsl_deref *deref, struct copy_propagation_state *state)
{
struct hlsl_ir_load *load;
struct hlsl_ir_node *node;
unsigned int swizzle;
if (!(node = copy_propagation_compute_replacement(ctx, state, deref, 1, &swizzle)))
return false;
/* Only HLSL_IR_LOAD can produce an object. */
load = hlsl_ir_load(node);
deref->var = load->src.var;
hlsl_src_remove(&deref->offset);
hlsl_src_from_node(&deref->offset, load->src.offset.node);
return true;
}
static bool copy_propagation_transform_resource_load(struct hlsl_ctx *ctx,
struct hlsl_ir_resource_load *load, struct copy_propagation_state *state)
{
bool progress = false;
progress |= copy_propagation_transform_object_load(ctx, &load->resource, state);
if (load->sampler.var)
progress |= copy_propagation_transform_object_load(ctx, &load->sampler, state);
return progress;
}
static void copy_propagation_record_store(struct hlsl_ctx *ctx, struct hlsl_ir_store *store,
struct copy_propagation_state *state)
{
struct copy_propagation_var_def *var_def;
struct hlsl_deref *lhs = &store->lhs;
struct hlsl_ir_var *var = lhs->var;
unsigned int offset;
if (!(var_def = copy_propagation_create_var_def(ctx, state, var)))
return;
if (hlsl_offset_from_deref(ctx, lhs, &offset))
{
unsigned int writemask = store->writemask;
if (store->rhs.node->data_type->type == HLSL_CLASS_OBJECT)
writemask = VKD3DSP_WRITEMASK_0;
copy_propagation_set_value(var_def, offset, writemask, store->rhs.node);
}
else
{
copy_propagation_invalidate_whole_variable(var_def);
}
}
static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block,
struct copy_propagation_state *state)
{
struct hlsl_ir_node *instr, *next;
bool progress = false;
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_LOAD:
progress |= copy_propagation_transform_load(ctx, hlsl_ir_load(instr), state);
break;
case HLSL_IR_RESOURCE_LOAD:
progress |= copy_propagation_transform_resource_load(ctx, hlsl_ir_resource_load(instr), state);
break;
case HLSL_IR_STORE:
copy_propagation_record_store(ctx, hlsl_ir_store(instr), state);
break;
case HLSL_IR_IF:
FIXME("Copy propagation doesn't support conditionals yet, leaving.\n");
return progress;
case HLSL_IR_LOOP:
FIXME("Copy propagation doesn't support loops yet, leaving.\n");
return progress;
default:
break;
}
}
return progress;
}
static bool copy_propagation_execute(struct hlsl_ctx *ctx, struct hlsl_block *block)
{
struct copy_propagation_state state;
bool progress;
rb_init(&state.var_defs, copy_propagation_var_def_compare);
progress = copy_propagation_transform_block(ctx, block, &state);
rb_destroy(&state.var_defs, copy_propagation_var_def_destroy, NULL);
return progress;
}
static bool is_vec1(const struct hlsl_type *type)
{
return (type->type == HLSL_CLASS_SCALAR) || (type->type == HLSL_CLASS_VECTOR && type->dimx == 1);
}
static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
if (instr->type == HLSL_IR_EXPR)
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
const struct hlsl_type *src_type = expr->operands[0].node->data_type;
const struct hlsl_type *dst_type = expr->node.data_type;
if (expr->op != HLSL_OP1_CAST)
return false;
if (hlsl_types_are_equal(src_type, dst_type)
|| (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type)))
{
hlsl_replace_node(&expr->node, expr->operands[0].node);
return true;
}
}
return false;
}
/* Copy an element of a complex variable. Helper for
* split_array_copies(), split_struct_copies() and
* split_matrix_copies(). Inserts new instructions right before
* "store". */
static bool split_copy(struct hlsl_ctx *ctx, struct hlsl_ir_store *store,
const struct hlsl_ir_load *load, const unsigned int offset, struct hlsl_type *type)
{
struct hlsl_ir_node *offset_instr, *add;
struct hlsl_ir_store *split_store;
struct hlsl_ir_load *split_load;
struct hlsl_ir_constant *c;
if (!(c = hlsl_new_uint_constant(ctx, offset, &store->node.loc)))
return false;
list_add_before(&store->node.entry, &c->node.entry);
offset_instr = &c->node;
if (load->src.offset.node)
{
if (!(add = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, load->src.offset.node, &c->node)))
return false;
list_add_before(&store->node.entry, &add->entry);
offset_instr = add;
}
if (!(split_load = hlsl_new_load(ctx, load->src.var, offset_instr, type, store->node.loc)))
return false;
list_add_before(&store->node.entry, &split_load->node.entry);
offset_instr = &c->node;
if (store->lhs.offset.node)
{
if (!(add = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, store->lhs.offset.node, &c->node)))
return false;
list_add_before(&store->node.entry, &add->entry);
offset_instr = add;
}
if (!(split_store = hlsl_new_store(ctx, store->lhs.var, offset_instr, &split_load->node, 0, store->node.loc)))
return false;
list_add_before(&store->node.entry, &split_store->node.entry);
return true;
}
static bool split_array_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_ir_node *rhs;
struct hlsl_type *element_type;
const struct hlsl_type *type;
unsigned int element_size, i;
struct hlsl_ir_store *store;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->type != HLSL_CLASS_ARRAY)
return false;
element_type = type->e.array.type;
element_size = hlsl_type_get_array_element_reg_size(element_type);
for (i = 0; i < type->e.array.elements_count; ++i)
{
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i * element_size, element_type))
return false;
}
/* Remove the store instruction, so that we can split structs which contain
* other structs. Although assignments produce a value, we don't allow
* HLSL_IR_STORE to be used as a source. */
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_struct_field *field;
const struct hlsl_ir_node *rhs;
const struct hlsl_type *type;
struct hlsl_ir_store *store;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->type != HLSL_CLASS_STRUCT)
return false;
LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry)
{
if (!split_copy(ctx, store, hlsl_ir_load(rhs), field->reg_offset, field->type))
return false;
}
/* Remove the store instruction, so that we can split structs which contain
* other structs. Although assignments produce a value, we don't allow
* HLSL_IR_STORE to be used as a source. */
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static unsigned int minor_size(const struct hlsl_type *type)
{
if (type->modifiers & HLSL_MODIFIER_ROW_MAJOR)
return type->dimx;
else
return type->dimy;
}
static unsigned int major_size(const struct hlsl_type *type)
{
if (type->modifiers & HLSL_MODIFIER_ROW_MAJOR)
return type->dimy;
else
return type->dimx;
}
static bool split_matrix_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_ir_node *rhs;
struct hlsl_type *element_type;
const struct hlsl_type *type;
unsigned int i;
struct hlsl_ir_store *store;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->type != HLSL_CLASS_MATRIX)
return false;
element_type = hlsl_get_vector_type(ctx, type->base_type, minor_size(type));
if (rhs->type != HLSL_IR_LOAD)
{
hlsl_fixme(ctx, &instr->loc, "Copying from unsupported node type.\n");
return false;
}
for (i = 0; i < major_size(type); ++i)
{
if (!split_copy(ctx, store, hlsl_ir_load(rhs), 4 * i, element_type))
return false;
}
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static bool lower_narrowing_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_type *src_type, *dst_type;
struct hlsl_type *dst_vector_type;
struct hlsl_ir_expr *cast;
if (instr->type != HLSL_IR_EXPR)
return false;
cast = hlsl_ir_expr(instr);
src_type = cast->operands[0].node->data_type;
dst_type = cast->node.data_type;
if (cast->op == HLSL_OP1_CAST
&& src_type->type <= HLSL_CLASS_VECTOR && dst_type->type <= HLSL_CLASS_VECTOR
&& dst_type->dimx < src_type->dimx)
{
struct hlsl_ir_swizzle *swizzle;
struct hlsl_ir_expr *new_cast;
dst_vector_type = hlsl_get_vector_type(ctx, dst_type->base_type, src_type->dimx);
/* We need to preserve the cast since it might be doing more than just
* narrowing the vector. */
if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_vector_type, &cast->node.loc)))
return false;
list_add_after(&cast->node.entry, &new_cast->node.entry);
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, Y, Z, W), dst_type->dimx, &new_cast->node, &cast->node.loc)))
return false;
list_add_after(&new_cast->node.entry, &swizzle->node.entry);
hlsl_replace_node(&cast->node, &swizzle->node);
return true;
}
return false;
}
static bool remove_trivial_swizzles(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_swizzle *swizzle;
unsigned int i;
if (instr->type != HLSL_IR_SWIZZLE)
return false;
swizzle = hlsl_ir_swizzle(instr);
if (instr->data_type->dimx != swizzle->val.node->data_type->dimx)
return false;
for (i = 0; i < instr->data_type->dimx; ++i)
if (((swizzle->swizzle >> (2 * i)) & 3) != i)
return false;
hlsl_replace_node(instr, swizzle->val.node);
return true;
}
/* Lower DIV to RCP + MUL. */
static bool lower_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_expr *expr;
struct hlsl_ir_node *rcp;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP2_DIV)
return false;
if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_OP1_RCP, expr->operands[1].node, instr->loc)))
return false;
list_add_before(&expr->node.entry, &rcp->entry);
expr->op = HLSL_OP2_MUL;
hlsl_src_remove(&expr->operands[1]);
hlsl_src_from_node(&expr->operands[1], rcp);
return true;
}
static bool lower_casts_to_bool(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_type *type = instr->data_type, *arg_type;
struct hlsl_ir_constant *zero;
struct hlsl_ir_expr *expr;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP1_CAST)
return false;
arg_type = expr->operands[0].node->data_type;
if (type->type > HLSL_CLASS_VECTOR || arg_type->type > HLSL_CLASS_VECTOR)
return false;
if (type->base_type != HLSL_TYPE_BOOL)
return false;
/* Narrowing casts should have already been lowered. */
assert(type->dimx == arg_type->dimx);
zero = hlsl_new_constant(ctx, arg_type, &instr->loc);
if (!zero)
return false;
list_add_before(&instr->entry, &zero->node.entry);
expr->op = HLSL_OP2_NEQUAL;
hlsl_src_from_node(&expr->operands[1], &zero->node);
return true;
}
static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
switch (instr->type)
{
case HLSL_IR_CONSTANT:
case HLSL_IR_EXPR:
case HLSL_IR_LOAD:
case HLSL_IR_RESOURCE_LOAD:
case HLSL_IR_SWIZZLE:
if (list_empty(&instr->uses))
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
return true;
}
break;
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
struct hlsl_ir_var *var = store->lhs.var;
if (var->last_read < instr->index)
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
return true;
}
break;
}
case HLSL_IR_IF:
case HLSL_IR_JUMP:
case HLSL_IR_LOOP:
break;
}
return false;
}
/* Allocate a unique, ordered index to each instruction, which will be used for
* computing liveness ranges. */
static unsigned int index_instructions(struct hlsl_block *block, unsigned int index)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
instr->index = index++;
if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
index = index_instructions(&iff->then_instrs, index);
index = index_instructions(&iff->else_instrs, index);
}
else if (instr->type == HLSL_IR_LOOP)
{
index = index_instructions(&hlsl_ir_loop(instr)->body, index);
hlsl_ir_loop(instr)->next_index = index;
}
}
return index;
}
static void dump_function_decl(struct rb_entry *entry, void *context)
{
struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry);
struct hlsl_ctx *ctx = context;
if (func->has_body)
hlsl_dump_function(ctx, func);
}
static void dump_function(struct rb_entry *entry, void *context)
{
struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry);
struct hlsl_ctx *ctx = context;
rb_for_each_entry(&func->overloads, dump_function_decl, ctx);
}
/* Compute the earliest and latest liveness for each variable. In the case that
* a variable is accessed inside of a loop, we promote its liveness to extend
* to at least the range of the entire loop. Note that we don't need to do this
* for anonymous nodes, since there's currently no way to use a node which was
* calculated in an earlier iteration of the loop. */
static void compute_liveness_recurse(struct hlsl_block *block, unsigned int loop_first, unsigned int loop_last)
{
struct hlsl_ir_node *instr;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
const unsigned int var_last_read = loop_last ? max(instr->index, loop_last) : instr->index;
switch (instr->type)
{
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
var = store->lhs.var;
if (!var->first_write)
var->first_write = loop_first ? min(instr->index, loop_first) : instr->index;
store->rhs.node->last_read = instr->index;
if (store->lhs.offset.node)
store->lhs.offset.node->last_read = instr->index;
break;
}
case HLSL_IR_EXPR:
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i)
expr->operands[i].node->last_read = instr->index;
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
compute_liveness_recurse(&iff->then_instrs, loop_first, loop_last);
compute_liveness_recurse(&iff->else_instrs, loop_first, loop_last);
iff->condition.node->last_read = instr->index;
break;
}
case HLSL_IR_LOAD:
{
struct hlsl_ir_load *load = hlsl_ir_load(instr);
var = load->src.var;
var->last_read = max(var->last_read, var_last_read);
if (load->src.offset.node)
load->src.offset.node->last_read = instr->index;
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index,
loop_last ? loop_last : loop->next_index);
break;
}
case HLSL_IR_RESOURCE_LOAD:
{
struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr);
var = load->resource.var;
var->last_read = max(var->last_read, var_last_read);
if (load->resource.offset.node)
load->resource.offset.node->last_read = instr->index;
if ((var = load->sampler.var))
{
var->last_read = max(var->last_read, var_last_read);
if (load->sampler.offset.node)
load->sampler.offset.node->last_read = instr->index;
}
load->coords.node->last_read = instr->index;
if (load->texel_offset.node)
load->texel_offset.node->last_read = instr->index;
break;
}
case HLSL_IR_SWIZZLE:
{
struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr);
swizzle->val.node->last_read = instr->index;
break;
}
case HLSL_IR_CONSTANT:
case HLSL_IR_JUMP:
break;
}
}
}
static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct hlsl_scope *scope;
struct hlsl_ir_var *var;
/* Index 0 means unused; index 1 means function entry, so start at 2. */
index_instructions(&entry_func->body, 2);
LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry)
{
LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry)
var->first_write = var->last_read = 0;
}
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform || var->is_input_semantic)
var->first_write = 1;
else if (var->is_output_semantic)
var->last_read = UINT_MAX;
}
compute_liveness_recurse(&entry_func->body, 0, 0);
}
struct liveness
{
size_t size;
uint32_t reg_count;
struct
{
/* 0 if not live yet. */
unsigned int last_read;
} *regs;
};
static unsigned int get_available_writemask(struct liveness *liveness,
unsigned int first_write, unsigned int component_idx, unsigned int component_count)
{
unsigned int i, writemask = 0, count = 0;
for (i = 0; i < 4; ++i)
{
if (liveness->regs[component_idx + i].last_read <= first_write)
{
writemask |= 1u << i;
if (++count == component_count)
return writemask;
}
}
return 0;
}
static bool resize_liveness(struct hlsl_ctx *ctx, struct liveness *liveness, size_t new_count)
{
size_t old_capacity = liveness->size;
if (!hlsl_array_reserve(ctx, (void **)&liveness->regs, &liveness->size, new_count, sizeof(*liveness->regs)))
return false;
if (liveness->size > old_capacity)
memset(liveness->regs + old_capacity, 0, (liveness->size - old_capacity) * sizeof(*liveness->regs));
return true;
}
static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct liveness *liveness,
unsigned int first_write, unsigned int last_read, unsigned int component_count)
{
unsigned int component_idx, writemask, i;
struct hlsl_reg ret = {0};
for (component_idx = 0; component_idx < liveness->size; component_idx += 4)
{
if ((writemask = get_available_writemask(liveness, first_write, component_idx, component_count)))
break;
}
if (component_idx == liveness->size)
{
if (!resize_liveness(ctx, liveness, component_idx + 4))
return ret;
writemask = (1u << component_count) - 1;
}
for (i = 0; i < 4; ++i)
{
if (writemask & (1u << i))
liveness->regs[component_idx + i].last_read = last_read;
}
ret.id = component_idx / 4;
ret.writemask = writemask;
ret.allocated = true;
liveness->reg_count = max(liveness->reg_count, ret.id + 1);
return ret;
}
static bool is_range_available(struct liveness *liveness, unsigned int first_write,
unsigned int component_idx, unsigned int component_count)
{
unsigned int i;
for (i = 0; i < component_count; i += 4)
{
if (!get_available_writemask(liveness, first_write, component_idx + i, 4))
return false;
}
return true;
}
static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct liveness *liveness,
unsigned int first_write, unsigned int last_read, unsigned int component_count)
{
unsigned int i, component_idx;
struct hlsl_reg ret = {0};
for (component_idx = 0; component_idx < liveness->size; component_idx += 4)
{
if (is_range_available(liveness, first_write, component_idx,
min(component_count, liveness->size - component_idx)))
break;
}
if (!resize_liveness(ctx, liveness, component_idx + component_count))
return ret;
for (i = 0; i < component_count; ++i)
liveness->regs[component_idx + i].last_read = last_read;
ret.id = component_idx / 4;
ret.allocated = true;
liveness->reg_count = max(liveness->reg_count, ret.id + align(component_count, 4));
return ret;
}
static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type)
{
static const char writemask_offset[] = {'w','x','y','z'};
if (type->reg_size > 4)
{
if (type->reg_size & 3)
return vkd3d_dbg_sprintf("%c%u-%c%u.%c", class, reg.id, class,
reg.id + (type->reg_size / 4), writemask_offset[type->reg_size & 3]);
return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class,
reg.id + (type->reg_size / 4) - 1);
}
return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask));
}
static void allocate_variable_temp_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, struct liveness *liveness)
{
if (var->is_input_semantic || var->is_output_semantic || var->is_uniform)
return;
if (!var->reg.allocated && var->last_read)
{
if (var->data_type->reg_size > 4)
var->reg = allocate_range(ctx, liveness, var->first_write,
var->last_read, var->data_type->reg_size);
else
var->reg = allocate_register(ctx, liveness, var->first_write,
var->last_read, var->data_type->dimx);
TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name,
debug_register('r', var->reg, var->data_type), var->first_write, var->last_read);
}
}
static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct liveness *liveness)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
if (!instr->reg.allocated && instr->last_read)
{
if (instr->data_type->reg_size > 4)
instr->reg = allocate_range(ctx, liveness, instr->index,
instr->last_read, instr->data_type->reg_size);
else
instr->reg = allocate_register(ctx, liveness, instr->index,
instr->last_read, instr->data_type->dimx);
TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index,
debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read);
}
switch (instr->type)
{
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
allocate_temp_registers_recurse(ctx, &iff->then_instrs, liveness);
allocate_temp_registers_recurse(ctx, &iff->else_instrs, liveness);
break;
}
case HLSL_IR_LOAD:
{
struct hlsl_ir_load *load = hlsl_ir_load(instr);
/* We need to at least allocate a variable for undefs.
* FIXME: We should probably find a way to remove them instead. */
allocate_variable_temp_register(ctx, load->src.var, liveness);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
allocate_temp_registers_recurse(ctx, &loop->body, liveness);
break;
}
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
allocate_variable_temp_register(ctx, store->lhs.var, liveness);
break;
}
default:
break;
}
}
}
static void allocate_const_registers_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct liveness *liveness)
{
struct hlsl_constant_defs *defs = &ctx->constant_defs;
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_CONSTANT:
{
struct hlsl_ir_constant *constant = hlsl_ir_constant(instr);
const struct hlsl_type *type = instr->data_type;
unsigned int x, y, i, writemask, end_reg;
unsigned int reg_size = type->reg_size;
if (reg_size > 4)
constant->reg = allocate_range(ctx, liveness, 1, UINT_MAX, reg_size);
else
constant->reg = allocate_register(ctx, liveness, 1, UINT_MAX, type->dimx);
TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type));
if (!hlsl_array_reserve(ctx, (void **)&defs->values, &defs->size,
constant->reg.id + reg_size / 4, sizeof(*defs->values)))
return;
end_reg = constant->reg.id + reg_size / 4;
if (end_reg > defs->count)
{
memset(&defs->values[defs->count], 0, sizeof(*defs->values) * (end_reg - defs->count));
defs->count = end_reg;
}
assert(type->type <= HLSL_CLASS_LAST_NUMERIC);
if (!(writemask = constant->reg.writemask))
writemask = (1u << type->dimx) - 1;
for (y = 0; y < type->dimy; ++y)
{
for (x = 0, i = 0; x < 4; ++x)
{
const union hlsl_constant_value *value;
float f;
if (!(writemask & (1u << x)))
continue;
value = &constant->value[i++];
switch (type->base_type)
{
case HLSL_TYPE_BOOL:
f = !!value->u;
break;
case HLSL_TYPE_FLOAT:
case HLSL_TYPE_HALF:
f = value->f;
break;
case HLSL_TYPE_INT:
f = value->i;
break;
case HLSL_TYPE_UINT:
f = value->u;
break;
case HLSL_TYPE_DOUBLE:
FIXME("Double constant.\n");
return;
default:
assert(0);
return;
}
defs->values[constant->reg.id + y].f[x] = f;
}
}
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
allocate_const_registers_recurse(ctx, &iff->then_instrs, liveness);
allocate_const_registers_recurse(ctx, &iff->else_instrs, liveness);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
allocate_const_registers_recurse(ctx, &loop->body, liveness);
break;
}
default:
break;
}
}
}
static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct liveness liveness = {0};
struct hlsl_ir_var *var;
allocate_const_registers_recurse(ctx, &entry_func->body, &liveness);
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform && var->last_read)
{
if (var->data_type->reg_size > 4)
var->reg = allocate_range(ctx, &liveness, 1, UINT_MAX, var->data_type->reg_size);
else
{
var->reg = allocate_register(ctx, &liveness, 1, UINT_MAX, 4);
var->reg.writemask = (1u << var->data_type->dimx) - 1;
}
TRACE("Allocated %s to %s.\n", var->name, debug_register('c', var->reg, var->data_type));
}
}
}
/* Simple greedy temporary register allocation pass that just assigns a unique
* index to all (simultaneously live) variables or intermediate values. Agnostic
* as to how many registers are actually available for the current backend, and
* does not handle constants. */
static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct liveness liveness = {0};
allocate_temp_registers_recurse(ctx, &entry_func->body, &liveness);
ctx->temp_count = liveness.reg_count;
vkd3d_free(liveness.regs);
}
static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output)
{
static const char *shader_names[] =
{
[VKD3D_SHADER_TYPE_PIXEL] = "Pixel",
[VKD3D_SHADER_TYPE_VERTEX] = "Vertex",
[VKD3D_SHADER_TYPE_GEOMETRY] = "Geometry",
[VKD3D_SHADER_TYPE_HULL] = "Hull",
[VKD3D_SHADER_TYPE_DOMAIN] = "Domain",
[VKD3D_SHADER_TYPE_COMPUTE] = "Compute",
};
unsigned int type;
uint32_t reg;
bool builtin;
assert(var->semantic.name);
if (ctx->profile->major_version < 4)
{
D3DDECLUSAGE usage;
uint32_t usage_idx;
if (!hlsl_sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx))
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Invalid semantic '%s'.", var->semantic.name);
return;
}
if ((!output && !var->last_read) || (output && !var->first_write))
return;
builtin = hlsl_sm1_register_from_semantic(ctx, &var->semantic, output, &type, &reg);
}
else
{
D3D_NAME usage;
bool has_idx;
if (!hlsl_sm4_usage_from_semantic(ctx, &var->semantic, output, &usage))
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Invalid semantic '%s'.", var->semantic.name);
return;
}
if ((builtin = hlsl_sm4_register_from_semantic(ctx, &var->semantic, output, &type, NULL, &has_idx)))
reg = has_idx ? var->semantic.index : 0;
}
if (builtin)
{
TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n", shader_names[ctx->profile->type],
output ? "output" : "input", var->semantic.name, var->semantic.index, type, reg);
}
else
{
var->reg.allocated = true;
var->reg.id = (*counter)++;
var->reg.writemask = (1 << var->data_type->dimx) - 1;
TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v', var->reg, var->data_type));
}
}
static void allocate_semantic_registers(struct hlsl_ctx *ctx)
{
unsigned int input_counter = 0, output_counter = 0;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_input_semantic)
allocate_semantic_register(ctx, var, &input_counter, false);
if (var->is_output_semantic)
allocate_semantic_register(ctx, var, &output_counter, true);
}
}
static const struct hlsl_buffer *get_reserved_buffer(struct hlsl_ctx *ctx, uint32_t index)
{
const struct hlsl_buffer *buffer;
LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, const struct hlsl_buffer, entry)
{
if (buffer->used_size && buffer->reservation.type == 'b' && buffer->reservation.index == index)
return buffer;
}
return NULL;
}
static void calculate_buffer_offset(struct hlsl_ir_var *var)
{
struct hlsl_buffer *buffer = var->buffer;
buffer->size = hlsl_type_get_sm4_offset(var->data_type, buffer->size);
var->buffer_offset = buffer->size;
TRACE("Allocated buffer offset %u to %s.\n", var->buffer_offset, var->name);
buffer->size += var->data_type->reg_size;
if (var->last_read)
buffer->used_size = buffer->size;
}
static void allocate_buffers(struct hlsl_ctx *ctx)
{
struct hlsl_buffer *buffer;
struct hlsl_ir_var *var;
uint32_t index = 0;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform && var->data_type->type != HLSL_CLASS_OBJECT)
{
if (var->is_param)
var->buffer = ctx->params_buffer;
calculate_buffer_offset(var);
}
}
LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, struct hlsl_buffer, entry)
{
if (!buffer->used_size)
continue;
if (buffer->type == HLSL_BUFFER_CONSTANT)
{
if (buffer->reservation.type == 'b')
{
const struct hlsl_buffer *reserved_buffer = get_reserved_buffer(ctx, buffer->reservation.index);
if (reserved_buffer && reserved_buffer != buffer)
{
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
"Multiple buffers bound to cb%u.", buffer->reservation.index);
hlsl_note(ctx, &reserved_buffer->loc, VKD3D_SHADER_LOG_ERROR,
"Buffer %s is already bound to cb%u.", reserved_buffer->name, buffer->reservation.index);
}
buffer->reg.id = buffer->reservation.index;
buffer->reg.allocated = true;
TRACE("Allocated reserved %s to cb%u.\n", buffer->name, index);
}
else if (!buffer->reservation.type)
{
while (get_reserved_buffer(ctx, index))
++index;
buffer->reg.id = index;
buffer->reg.allocated = true;
TRACE("Allocated %s to cb%u.\n", buffer->name, index);
++index;
}
else
{
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"Constant buffers must be allocated to register type 'b'.");
}
}
else
{
FIXME("Allocate registers for texture buffers.\n");
}
}
}
static const struct hlsl_ir_var *get_reserved_object(struct hlsl_ctx *ctx, char type, uint32_t index)
{
const struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, const struct hlsl_ir_var, extern_entry)
{
if (var->last_read && var->reg_reservation.type == type && var->reg_reservation.index == index)
return var;
}
return NULL;
}
static const struct object_type_info
{
enum hlsl_base_type type;
char reg_name;
}
object_types[] =
{
{ HLSL_TYPE_SAMPLER, 's' },
{ HLSL_TYPE_TEXTURE, 't' },
};
static const struct object_type_info *get_object_type_info(enum hlsl_base_type type)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(object_types); ++i)
if (type == object_types[i].type)
return &object_types[i];
WARN("No type info for object type %u.\n", type);
return NULL;
}
static void allocate_objects(struct hlsl_ctx *ctx, enum hlsl_base_type type)
{
const struct object_type_info *type_info = get_object_type_info(type);
struct hlsl_ir_var *var;
uint32_t index = 0;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (!var->last_read || var->data_type->type != HLSL_CLASS_OBJECT
|| var->data_type->base_type != type)
continue;
if (var->reg_reservation.type == type_info->reg_name)
{
const struct hlsl_ir_var *reserved_object = get_reserved_object(ctx, type_info->reg_name,
var->reg_reservation.index);
if (reserved_object && reserved_object != var)
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
"Multiple objects bound to %c%u.", type_info->reg_name,
var->reg_reservation.index);
hlsl_note(ctx, &reserved_object->loc, VKD3D_SHADER_LOG_ERROR,
"Object '%s' is already bound to %c%u.", reserved_object->name,
type_info->reg_name, var->reg_reservation.index);
}
var->reg.id = var->reg_reservation.index;
var->reg.allocated = true;
TRACE("Allocated reserved %s to %c%u.\n", var->name, type_info->reg_name, var->reg_reservation.index);
}
else if (!var->reg_reservation.type)
{
while (get_reserved_object(ctx, type_info->reg_name, index))
++index;
var->reg.id = index;
var->reg.allocated = true;
TRACE("Allocated object to %c%u.\n", type_info->reg_name, index);
++index;
}
else
{
struct vkd3d_string_buffer *type_string;
type_string = hlsl_type_to_string(ctx, var->data_type);
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"Object of type '%s' must be bound to register type '%c'.",
type_string->buffer, type_info->reg_name);
hlsl_release_string_buffer(ctx, type_string);
}
}
}
bool hlsl_offset_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref, unsigned int *offset)
{
struct hlsl_ir_node *offset_node = deref->offset.node;
if (!offset_node)
{
*offset = 0;
return true;
}
/* We should always have generated a cast to UINT. */
assert(offset_node->data_type->type == HLSL_CLASS_SCALAR
&& offset_node->data_type->base_type == HLSL_TYPE_UINT);
if (offset_node->type != HLSL_IR_CONSTANT)
return false;
*offset = hlsl_ir_constant(offset_node)->value[0].u;
if (*offset >= deref->var->data_type->reg_size)
{
hlsl_error(ctx, &deref->offset.node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
"Dereference is out of bounds.");
return false;
}
return true;
}
unsigned int hlsl_offset_from_deref_safe(struct hlsl_ctx *ctx, const struct hlsl_deref *deref)
{
unsigned int offset;
if (hlsl_offset_from_deref(ctx, deref, &offset))
return offset;
hlsl_fixme(ctx, &deref->offset.node->loc, "Dereference with non-constant offset of type %s.",
hlsl_node_type_to_string(deref->offset.node->type));
return 0;
}
struct hlsl_reg hlsl_reg_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref)
{
const struct hlsl_ir_var *var = deref->var;
struct hlsl_reg ret = var->reg;
unsigned int offset = hlsl_offset_from_deref_safe(ctx, deref);
ret.id += offset / 4;
ret.writemask = 0xf & (0xf << (offset % 4));
if (var->reg.writemask)
ret.writemask = hlsl_combine_writemasks(var->reg.writemask, ret.writemask);
return ret;
}
int hlsl_emit_bytecode(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func,
enum vkd3d_shader_target_type target_type, struct vkd3d_shader_code *out)
{
struct hlsl_block *const body = &entry_func->body;
struct hlsl_ir_var *var;
bool progress;
list_move_head(&body->instrs, &ctx->static_initializers);
LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry)
{
if (var->modifiers & HLSL_STORAGE_UNIFORM)
prepend_uniform_copy(ctx, &body->instrs, var);
}
LIST_FOR_EACH_ENTRY(var, entry_func->parameters, struct hlsl_ir_var, param_entry)
{
if (var->data_type->type == HLSL_CLASS_OBJECT || (var->modifiers & HLSL_STORAGE_UNIFORM))
{
prepend_uniform_copy(ctx, &body->instrs, var);
}
else
{
if (var->data_type->type != HLSL_CLASS_STRUCT && !var->semantic.name)
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Parameter \"%s\" is missing a semantic.", var->name);
if (var->modifiers & HLSL_STORAGE_IN)
prepend_input_var_copy(ctx, &body->instrs, var);
if (var->modifiers & HLSL_STORAGE_OUT)
append_output_var_copy(ctx, &body->instrs, var);
}
}
if (entry_func->return_var)
{
if (entry_func->return_var->data_type->type != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name)
hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Entry point \"%s\" is missing a return value semantic.", entry_func->func->name);
append_output_var_copy(ctx, &body->instrs, entry_func->return_var);
}
transform_ir(ctx, lower_broadcasts, body, NULL);
while (transform_ir(ctx, fold_redundant_casts, body, NULL));
do
{
progress = transform_ir(ctx, split_array_copies, body, NULL);
progress |= transform_ir(ctx, split_struct_copies, body, NULL);
}
while (progress);
transform_ir(ctx, split_matrix_copies, body, NULL);
transform_ir(ctx, lower_narrowing_casts, body, NULL);
transform_ir(ctx, lower_casts_to_bool, body, NULL);
do
{
progress = transform_ir(ctx, hlsl_fold_constants, body, NULL);
progress |= copy_propagation_execute(ctx, body);
progress |= transform_ir(ctx, remove_trivial_swizzles, body, NULL);
}
while (progress);
if (ctx->profile->major_version < 4)
transform_ir(ctx, lower_division, body, NULL);
do
compute_liveness(ctx, entry_func);
while (transform_ir(ctx, dce, body, NULL));
compute_liveness(ctx, entry_func);
if (TRACE_ON())
rb_for_each_entry(&ctx->functions, dump_function, ctx);
allocate_temp_registers(ctx, entry_func);
if (ctx->profile->major_version < 4)
{
allocate_const_registers(ctx, entry_func);
}
else
{
allocate_buffers(ctx);
allocate_objects(ctx, HLSL_TYPE_TEXTURE);
}
allocate_semantic_registers(ctx);
allocate_objects(ctx, HLSL_TYPE_SAMPLER);
if (ctx->result)
return ctx->result;
switch (target_type)
{
case VKD3D_SHADER_TARGET_D3D_BYTECODE:
return hlsl_sm1_write(ctx, entry_func, out);
case VKD3D_SHADER_TARGET_DXBC_TPF:
return hlsl_sm4_write(ctx, entry_func, out);
default:
ERR("Unsupported shader target type %#x.\n", target_type);
return VKD3D_ERROR_INVALID_ARGUMENT;
}
}