vkd3d/libs/vkd3d-shader/hlsl_codegen.c

1976 lines
65 KiB
C
Raw Normal View History

/*
* HLSL optimization and code generation
*
* Copyright 2019-2020 Zebediah Figura for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "hlsl.h"
#include <stdio.h>
#include "vkd3d_d3dx9shader.h"
/* Split uniforms into two variables representing the constant and temp
* registers, and copy the former to the latter, so that writes to uniforms
* work. */
static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp)
{
struct vkd3d_string_buffer *name;
struct hlsl_ir_var *uniform;
struct hlsl_ir_store *store;
struct hlsl_ir_load *load;
/* Use the synthetic name for the temp, rather than the uniform, so that we
* can write the uniform name into the shader reflection data. */
if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type, temp->loc, NULL, 0, temp->reg_reservation)))
return;
list_add_before(&temp->scope_entry, &uniform->scope_entry);
list_add_tail(&ctx->extern_vars, &uniform->extern_entry);
uniform->is_uniform = 1;
uniform->is_param = temp->is_param;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<temp-%s>", temp->name);
temp->name = hlsl_strdup(ctx, name->buffer);
hlsl_release_string_buffer(ctx, name);
if (!(load = hlsl_new_var_load(ctx, uniform, temp->loc)))
return;
list_add_head(instrs, &load->node.entry);
if (!(store = hlsl_new_simple_store(ctx, temp, &load->node)))
return;
list_add_after(&load->node.entry, &store->node.entry);
}
static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset, const struct hlsl_semantic *semantic)
{
struct vkd3d_string_buffer *name;
struct hlsl_semantic new_semantic;
struct hlsl_ir_constant *offset;
struct hlsl_ir_store *store;
struct hlsl_ir_load *load;
struct hlsl_ir_var *input;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<input-%s%u>", semantic->name, semantic->index);
if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name)))
{
hlsl_release_string_buffer(ctx, name);
return;
}
new_semantic.index = semantic->index;
if (!(input = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, var->loc, &new_semantic, 0, NULL)))
{
hlsl_release_string_buffer(ctx, name);
vkd3d_free((void *)new_semantic.name);
return;
}
hlsl_release_string_buffer(ctx, name);
input->is_input_semantic = 1;
input->is_param = var->is_param;
list_add_before(&var->scope_entry, &input->scope_entry);
list_add_tail(&ctx->extern_vars, &input->extern_entry);
if (!(load = hlsl_new_var_load(ctx, input, var->loc)))
return;
list_add_head(instrs, &load->node.entry);
if (!(offset = hlsl_new_uint_constant(ctx, field_offset * 4, var->loc)))
return;
list_add_after(&load->node.entry, &offset->node.entry);
if (!(store = hlsl_new_store(ctx, var, &offset->node, &load->node, 0, var->loc)))
return;
list_add_after(&offset->node.entry, &store->node.entry);
}
static void prepend_input_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset)
{
struct hlsl_struct_field *field;
LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry)
{
if (field->type->type == HLSL_CLASS_STRUCT)
prepend_input_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset);
else if (field->semantic.name)
prepend_input_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, &field->semantic);
else
hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Field '%s' is missing a semantic.", field->name);
}
}
/* Split inputs into two variables representing the semantic and temp registers,
* and copy the former to the latter, so that writes to input variables work. */
static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var)
{
if (var->data_type->type == HLSL_CLASS_STRUCT)
prepend_input_struct_copy(ctx, instrs, var, var->data_type, 0);
else if (var->semantic.name)
prepend_input_copy(ctx, instrs, var, var->data_type, 0, &var->semantic);
}
static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset, const struct hlsl_semantic *semantic)
{
struct vkd3d_string_buffer *name;
struct hlsl_semantic new_semantic;
struct hlsl_ir_constant *offset;
struct hlsl_ir_store *store;
struct hlsl_ir_var *output;
struct hlsl_ir_load *load;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<output-%s%u>", semantic->name, semantic->index);
if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name)))
{
hlsl_release_string_buffer(ctx, name);
return;
}
new_semantic.index = semantic->index;
if (!(output = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, var->loc, &new_semantic, 0, NULL)))
{
vkd3d_free((void *)new_semantic.name);
hlsl_release_string_buffer(ctx, name);
return;
}
hlsl_release_string_buffer(ctx, name);
output->is_output_semantic = 1;
output->is_param = var->is_param;
list_add_before(&var->scope_entry, &output->scope_entry);
list_add_tail(&ctx->extern_vars, &output->extern_entry);
if (!(offset = hlsl_new_uint_constant(ctx, field_offset * 4, var->loc)))
return;
list_add_tail(instrs, &offset->node.entry);
if (!(load = hlsl_new_load(ctx, var, &offset->node, type, var->loc)))
return;
list_add_after(&offset->node.entry, &load->node.entry);
if (!(store = hlsl_new_store(ctx, output, NULL, &load->node, 0, var->loc)))
return;
list_add_after(&load->node.entry, &store->node.entry);
}
static void append_output_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int field_offset)
{
struct hlsl_struct_field *field;
LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry)
{
if (field->type->type == HLSL_CLASS_STRUCT)
append_output_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset);
else if (field->semantic.name)
append_output_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, &field->semantic);
else
hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Field '%s' is missing a semantic.", field->name);
}
}
/* Split outputs into two variables representing the temp and semantic
* registers, and copy the former to the latter, so that reads from output
* variables work. */
static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var)
{
if (var->data_type->type == HLSL_CLASS_STRUCT)
append_output_struct_copy(ctx, instrs, var, var->data_type, 0);
else if (var->semantic.name)
append_output_copy(ctx, instrs, var, var->data_type, 0, &var->semantic);
}
static bool transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *),
struct list *instrs, void *context)
{
struct hlsl_ir_node *instr, *next;
bool progress = 0;
LIST_FOR_EACH_ENTRY_SAFE(instr, next, instrs, struct hlsl_ir_node, entry)
{
if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
progress |= transform_ir(ctx, func, &iff->then_instrs, context);
progress |= transform_ir(ctx, func, &iff->else_instrs, context);
}
else if (instr->type == HLSL_IR_LOOP)
progress |= transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context);
progress |= func(ctx, instr, context);
}
return progress;
}
static void replace_node(struct hlsl_ir_node *old, struct hlsl_ir_node *new)
{
struct hlsl_src *src, *next;
LIST_FOR_EACH_ENTRY_SAFE(src, next, &old->uses, struct hlsl_src, entry)
{
hlsl_src_remove(src);
hlsl_src_from_node(src, new);
}
list_remove(&old->entry);
hlsl_free_instr(old);
}
static bool is_vec1(const struct hlsl_type *type)
{
return (type->type == HLSL_CLASS_SCALAR) || (type->type == HLSL_CLASS_VECTOR && type->dimx == 1);
}
static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
if (instr->type == HLSL_IR_EXPR)
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
const struct hlsl_type *src_type = expr->operands[0].node->data_type;
const struct hlsl_type *dst_type = expr->node.data_type;
if (expr->op != HLSL_IR_UNOP_CAST)
return false;
if (hlsl_types_are_equal(src_type, dst_type)
|| (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type)))
{
replace_node(&expr->node, expr->operands[0].node);
return true;
}
}
return false;
}
static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_struct_field *field;
const struct hlsl_ir_load *rhs_load;
const struct hlsl_ir_node *rhs;
const struct hlsl_type *type;
struct hlsl_ir_store *store;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->type != HLSL_CLASS_STRUCT)
return false;
rhs_load = hlsl_ir_load(rhs);
LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry)
{
struct hlsl_ir_store *field_store;
struct hlsl_ir_node *offset, *add;
struct hlsl_ir_load *field_load;
struct hlsl_ir_constant *c;
if (!(c = hlsl_new_uint_constant(ctx, field->reg_offset * 4, instr->loc)))
return false;
list_add_before(&instr->entry, &c->node.entry);
offset = &c->node;
if (rhs_load->src.offset.node)
{
if (!(add = hlsl_new_binary_expr(ctx, HLSL_IR_BINOP_ADD, rhs_load->src.offset.node, &c->node)))
return false;
list_add_before(&instr->entry, &add->entry);
offset = add;
}
if (!(field_load = hlsl_new_load(ctx, rhs_load->src.var, offset, field->type, instr->loc)))
return false;
list_add_before(&instr->entry, &field_load->node.entry);
offset = &c->node;
if (store->lhs.offset.node)
{
if (!(add = hlsl_new_binary_expr(ctx, HLSL_IR_BINOP_ADD, store->lhs.offset.node, &c->node)))
return false;
list_add_before(&instr->entry, &add->entry);
offset = add;
}
if (!(field_store = hlsl_new_store(ctx, store->lhs.var, offset, &field_load->node, 0, instr->loc)))
return false;
list_add_before(&instr->entry, &field_store->node.entry);
}
/* Remove the store instruction, so that we can split structs which contain
* other structs. Although assignments produce a value, we don't allow
* HLSL_IR_STORE to be used as a source. */
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static bool fold_constants(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_constant *arg1, *arg2 = NULL, *res;
struct hlsl_ir_expr *expr;
unsigned int i;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
for (i = 0; i < ARRAY_SIZE(expr->operands); ++i)
{
if (expr->operands[i].node && expr->operands[i].node->type != HLSL_IR_CONSTANT)
return false;
}
arg1 = hlsl_ir_constant(expr->operands[0].node);
if (expr->operands[1].node)
arg2 = hlsl_ir_constant(expr->operands[1].node);
if (!(res = hlsl_alloc(ctx, sizeof(*res))))
return false;
init_node(&res->node, HLSL_IR_CONSTANT, instr->data_type, instr->loc);
switch (instr->data_type->base_type)
{
case HLSL_TYPE_UINT:
{
unsigned int i;
switch (expr->op)
{
case HLSL_IR_BINOP_ADD:
for (i = 0; i < instr->data_type->dimx; ++i)
res->value.u[i] = arg1->value.u[i] + arg2->value.u[i];
break;
case HLSL_IR_BINOP_MUL:
for (i = 0; i < instr->data_type->dimx; ++i)
res->value.u[i] = arg1->value.u[i] * arg2->value.u[i];
break;
default:
FIXME("Fold uint op %#x.\n", expr->op);
vkd3d_free(res);
return false;
}
break;
}
default:
FIXME("Fold type %#x op %#x.\n", instr->data_type->base_type, expr->op);
vkd3d_free(res);
return false;
}
list_add_before(&expr->node.entry, &res->node.entry);
replace_node(&expr->node, &res->node);
return true;
}
static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
switch (instr->type)
{
case HLSL_IR_CONSTANT:
case HLSL_IR_EXPR:
case HLSL_IR_LOAD:
case HLSL_IR_SWIZZLE:
if (list_empty(&instr->uses))
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
return true;
}
break;
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
struct hlsl_ir_var *var = store->lhs.var;
if (var->last_read < instr->index)
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
return true;
}
break;
}
case HLSL_IR_IF:
case HLSL_IR_JUMP:
case HLSL_IR_LOOP:
break;
}
return false;
}
/* Allocate a unique, ordered index to each instruction, which will be used for
* computing liveness ranges. */
static unsigned int index_instructions(struct list *instrs, unsigned int index)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry)
{
instr->index = index++;
if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
index = index_instructions(&iff->then_instrs, index);
index = index_instructions(&iff->else_instrs, index);
}
else if (instr->type == HLSL_IR_LOOP)
{
index = index_instructions(&hlsl_ir_loop(instr)->body, index);
hlsl_ir_loop(instr)->next_index = index;
}
}
return index;
}
static void dump_function_decl(struct rb_entry *entry, void *context)
{
struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry);
if (func->body)
hlsl_dump_function(func);
}
static void dump_function(struct rb_entry *entry, void *context)
{
struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry);
rb_for_each_entry(&func->overloads, dump_function_decl, NULL);
}
/* Compute the earliest and latest liveness for each variable. In the case that
* a variable is accessed inside of a loop, we promote its liveness to extend
* to at least the range of the entire loop. Note that we don't need to do this
* for anonymous nodes, since there's currently no way to use a node which was
* calculated in an earlier iteration of the loop. */
static void compute_liveness_recurse(struct list *instrs, unsigned int loop_first, unsigned int loop_last)
{
struct hlsl_ir_node *instr;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
var = store->lhs.var;
if (!var->first_write)
var->first_write = loop_first ? min(instr->index, loop_first) : instr->index;
store->rhs.node->last_read = instr->index;
if (store->lhs.offset.node)
store->lhs.offset.node->last_read = instr->index;
break;
}
case HLSL_IR_EXPR:
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i)
expr->operands[i].node->last_read = instr->index;
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
compute_liveness_recurse(&iff->then_instrs, loop_first, loop_last);
compute_liveness_recurse(&iff->else_instrs, loop_first, loop_last);
iff->condition.node->last_read = instr->index;
break;
}
case HLSL_IR_LOAD:
{
struct hlsl_ir_load *load = hlsl_ir_load(instr);
var = load->src.var;
var->last_read = max(var->last_read, loop_last ? max(instr->index, loop_last) : instr->index);
if (load->src.offset.node)
load->src.offset.node->last_read = instr->index;
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index,
loop_last ? loop_last : loop->next_index);
break;
}
case HLSL_IR_SWIZZLE:
{
struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr);
swizzle->val.node->last_read = instr->index;
break;
}
case HLSL_IR_CONSTANT:
case HLSL_IR_JUMP:
break;
}
}
}
static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct hlsl_scope *scope;
struct hlsl_ir_var *var;
/* Index 0 means unused; index 1 means function entry, so start at 2. */
index_instructions(entry_func->body, 2);
LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry)
{
LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry)
var->first_write = var->last_read = 0;
}
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform || var->is_input_semantic)
var->first_write = 1;
else if (var->is_output_semantic)
var->last_read = UINT_MAX;
}
if (entry_func->return_var)
entry_func->return_var->last_read = UINT_MAX;
compute_liveness_recurse(entry_func->body, 0, 0);
}
struct liveness
{
size_t size;
struct
{
/* 0 if not live yet. */
unsigned int last_read;
} *regs;
};
static unsigned int get_available_writemask(struct liveness *liveness,
unsigned int first_write, unsigned int component_idx, unsigned int component_count)
{
unsigned int i, writemask = 0, count = 0;
for (i = 0; i < 4; ++i)
{
if (liveness->regs[component_idx + i].last_read <= first_write)
{
writemask |= 1u << i;
if (++count == component_count)
return writemask;
}
}
return 0;
}
static bool resize_liveness(struct hlsl_ctx *ctx, struct liveness *liveness, size_t new_count)
{
size_t old_capacity = liveness->size;
if (!hlsl_array_reserve(ctx, (void **)&liveness->regs, &liveness->size, new_count, sizeof(*liveness->regs)))
return false;
if (liveness->size > old_capacity)
memset(liveness->regs + old_capacity, 0, (liveness->size - old_capacity) * sizeof(*liveness->regs));
return true;
}
static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct liveness *liveness,
unsigned int first_write, unsigned int last_read, unsigned int component_count)
{
unsigned int component_idx, writemask, i;
struct hlsl_reg ret = {0};
for (component_idx = 0; component_idx < liveness->size; component_idx += 4)
{
if ((writemask = get_available_writemask(liveness, first_write, component_idx, component_count)))
break;
}
if (component_idx == liveness->size)
{
if (!resize_liveness(ctx, liveness, component_idx + 4))
return ret;
writemask = (1u << component_count) - 1;
}
for (i = 0; i < 4; ++i)
{
if (writemask & (1u << i))
liveness->regs[component_idx + i].last_read = last_read;
}
ret.id = component_idx / 4;
ret.writemask = writemask;
ret.allocated = true;
return ret;
}
static bool is_range_available(struct liveness *liveness, unsigned int first_write,
unsigned int component_idx, unsigned int component_count)
{
unsigned int i;
for (i = 0; i < component_count; i += 4)
{
if (!get_available_writemask(liveness, first_write, component_idx + i, 4))
return false;
}
return true;
}
static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct liveness *liveness,
unsigned int first_write, unsigned int last_read, unsigned int reg_count)
{
const unsigned int component_count = reg_count * 4;
unsigned int i, component_idx;
struct hlsl_reg ret = {0};
for (component_idx = 0; component_idx < liveness->size; component_idx += 4)
{
if (is_range_available(liveness, first_write, component_idx,
min(component_count, liveness->size - component_idx)))
break;
}
if (!resize_liveness(ctx, liveness, component_idx + component_count))
return ret;
for (i = 0; i < component_count; ++i)
liveness->regs[component_idx + i].last_read = last_read;
ret.id = component_idx / 4;
ret.allocated = true;
return ret;
}
static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type)
{
if (type->reg_size > 1)
return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class,
reg.id + type->reg_size - 1);
return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask));
}
static void allocate_variable_temp_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, struct liveness *liveness)
{
if (var->is_input_semantic || var->is_output_semantic || var->is_uniform)
return;
if (!var->reg.allocated && var->last_read)
{
if (var->data_type->reg_size > 1)
var->reg = allocate_range(ctx, liveness, var->first_write,
var->last_read, var->data_type->reg_size);
else
var->reg = allocate_register(ctx, liveness, var->first_write,
var->last_read, var->data_type->dimx);
TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name,
debug_register('r', var->reg, var->data_type), var->first_write, var->last_read);
}
}
static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct liveness *liveness)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry)
{
if (!instr->reg.allocated && instr->last_read)
{
if (instr->data_type->reg_size > 1)
instr->reg = allocate_range(ctx, liveness, instr->index,
instr->last_read, instr->data_type->reg_size);
else
instr->reg = allocate_register(ctx, liveness, instr->index,
instr->last_read, instr->data_type->dimx);
TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index,
debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read);
}
switch (instr->type)
{
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
allocate_temp_registers_recurse(ctx, &iff->then_instrs, liveness);
allocate_temp_registers_recurse(ctx, &iff->else_instrs, liveness);
break;
}
case HLSL_IR_LOAD:
{
struct hlsl_ir_load *load = hlsl_ir_load(instr);
/* We need to at least allocate a variable for undefs.
* FIXME: We should probably find a way to remove them instead. */
allocate_variable_temp_register(ctx, load->src.var, liveness);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
allocate_temp_registers_recurse(ctx, &loop->body, liveness);
break;
}
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
allocate_variable_temp_register(ctx, store->lhs.var, liveness);
break;
}
default:
break;
}
}
}
static void allocate_const_registers_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct liveness *liveness)
{
struct hlsl_constant_defs *defs = &ctx->constant_defs;
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_CONSTANT:
{
struct hlsl_ir_constant *constant = hlsl_ir_constant(instr);
const struct hlsl_type *type = instr->data_type;
unsigned int reg_size = type->reg_size;
unsigned int x, y, i, writemask;
if (reg_size > 1)
constant->reg = allocate_range(ctx, liveness, 1, UINT_MAX, reg_size);
else
constant->reg = allocate_register(ctx, liveness, 1, UINT_MAX, type->dimx);
TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type));
if (!hlsl_array_reserve(ctx, (void **)&defs->values, &defs->size,
constant->reg.id + reg_size, sizeof(*defs->values)))
return;
defs->count = max(defs->count, constant->reg.id + reg_size);
assert(type->type <= HLSL_CLASS_LAST_NUMERIC);
if (!(writemask = constant->reg.writemask))
writemask = (1u << type->dimx) - 1;
for (y = 0; y < type->dimy; ++y)
{
for (x = 0, i = 0; x < 4; ++x)
{
float f;
if (!(writemask & (1u << x)))
continue;
switch (type->base_type)
{
case HLSL_TYPE_BOOL:
f = constant->value.b[i++];
break;
case HLSL_TYPE_FLOAT:
case HLSL_TYPE_HALF:
f = constant->value.f[i++];
break;
case HLSL_TYPE_INT:
f = constant->value.i[i++];
break;
case HLSL_TYPE_UINT:
f = constant->value.u[i++];
break;
case HLSL_TYPE_DOUBLE:
FIXME("Double constant.\n");
return;
default:
assert(0);
return;
}
defs->values[constant->reg.id + y].f[x] = f;
}
}
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
allocate_const_registers_recurse(ctx, &iff->then_instrs, liveness);
allocate_const_registers_recurse(ctx, &iff->else_instrs, liveness);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
allocate_const_registers_recurse(ctx, &loop->body, liveness);
break;
}
default:
break;
}
}
}
static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct liveness liveness = {0};
struct hlsl_ir_var *var;
allocate_const_registers_recurse(ctx, entry_func->body, &liveness);
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform && var->last_read)
{
if (var->data_type->reg_size > 1)
var->reg = allocate_range(ctx, &liveness, 1, UINT_MAX, var->data_type->reg_size);
else
{
var->reg = allocate_register(ctx, &liveness, 1, UINT_MAX, 4);
var->reg.writemask = (1u << var->data_type->dimx) - 1;
}
TRACE("Allocated %s to %s.\n", var->name, debug_register('c', var->reg, var->data_type));
}
}
}
/* Simple greedy temporary register allocation pass that just assigns a unique
* index to all (simultaneously live) variables or intermediate values. Agnostic
* as to how many registers are actually available for the current backend, and
* does not handle constants. */
static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct liveness liveness = {0};
allocate_temp_registers_recurse(ctx, entry_func->body, &liveness);
}
static bool sm1_register_from_semantic(struct hlsl_ctx *ctx, const struct hlsl_semantic *semantic, bool output,
D3DSHADER_PARAM_REGISTER_TYPE *type, unsigned int *reg)
{
unsigned int i;
static const struct
{
const char *semantic;
bool output;
enum vkd3d_shader_type shader_type;
unsigned int major_version;
D3DSHADER_PARAM_REGISTER_TYPE type;
DWORD offset;
}
register_table[] =
{
{"color", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_COLOROUT},
{"depth", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_DEPTHOUT},
{"sv_depth", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_DEPTHOUT},
{"sv_target", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_COLOROUT},
{"color", false, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_INPUT},
{"texcoord", false, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_TEXTURE},
{"color", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_COLOROUT},
{"depth", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_DEPTHOUT},
{"sv_depth", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_DEPTHOUT},
{"sv_target", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_COLOROUT},
{"sv_position", false, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_MISCTYPE, D3DSMO_POSITION},
{"vface", false, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_MISCTYPE, D3DSMO_FACE},
{"vpos", false, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_MISCTYPE, D3DSMO_POSITION},
{"color", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_ATTROUT},
{"fog", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_FOG},
{"position", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_POSITION},
{"psize", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_POINT_SIZE},
{"sv_position", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_POSITION},
{"texcoord", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_TEXCRDOUT},
{"color", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_ATTROUT},
{"fog", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_FOG},
{"position", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_POSITION},
{"psize", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_POINT_SIZE},
{"sv_position", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_POSITION},
{"texcoord", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_TEXCRDOUT},
};
for (i = 0; i < ARRAY_SIZE(register_table); ++i)
{
if (!ascii_strcasecmp(semantic->name, register_table[i].semantic)
&& output == register_table[i].output
&& ctx->profile->type == register_table[i].shader_type
&& ctx->profile->major_version == register_table[i].major_version)
{
*type = register_table[i].type;
if (register_table[i].type == D3DSPR_MISCTYPE || register_table[i].type == D3DSPR_RASTOUT)
*reg = register_table[i].offset;
else
*reg = semantic->index;
return true;
}
}
return false;
}
static bool sm1_usage_from_semantic(const struct hlsl_semantic *semantic, D3DDECLUSAGE *usage, uint32_t *usage_idx)
{
static const struct
{
const char *name;
D3DDECLUSAGE usage;
}
semantics[] =
{
{"binormal", D3DDECLUSAGE_BINORMAL},
{"blendindices", D3DDECLUSAGE_BLENDINDICES},
{"blendweight", D3DDECLUSAGE_BLENDWEIGHT},
{"color", D3DDECLUSAGE_COLOR},
{"depth", D3DDECLUSAGE_DEPTH},
{"fog", D3DDECLUSAGE_FOG},
{"normal", D3DDECLUSAGE_NORMAL},
{"position", D3DDECLUSAGE_POSITION},
{"positiont", D3DDECLUSAGE_POSITIONT},
{"psize", D3DDECLUSAGE_PSIZE},
{"sample", D3DDECLUSAGE_SAMPLE},
{"sv_depth", D3DDECLUSAGE_DEPTH},
{"sv_position", D3DDECLUSAGE_POSITION},
{"sv_target", D3DDECLUSAGE_COLOR},
{"tangent", D3DDECLUSAGE_TANGENT},
{"tessfactor", D3DDECLUSAGE_TESSFACTOR},
{"texcoord", D3DDECLUSAGE_TEXCOORD},
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(semantics); ++i)
{
if (!ascii_strcasecmp(semantic->name, semantics[i].name))
{
*usage = semantics[i].usage;
*usage_idx = semantic->index;
return true;
}
}
return false;
}
static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output)
{
assert(var->semantic.name);
if (ctx->profile->major_version < 4)
{
D3DSHADER_PARAM_REGISTER_TYPE type;
uint32_t reg, usage_idx;
D3DDECLUSAGE usage;
if (!sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx))
{
hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Invalid semantic '%s'.", var->semantic.name);
return;
}
if (sm1_register_from_semantic(ctx, &var->semantic, output, &type, &reg))
{
TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n",
ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL ? "Pixel" : "Vertex", output ? "output" : "input",
var->semantic.name, var->semantic.index, type, reg);
}
else
{
var->reg.allocated = true;
var->reg.id = (*counter)++;
var->reg.writemask = (1 << var->data_type->dimx) - 1;
TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v', var->reg, var->data_type));
}
}
}
static void allocate_semantic_registers(struct hlsl_ctx *ctx)
{
unsigned int input_counter = 0, output_counter = 0;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_input_semantic && var->last_read)
allocate_semantic_register(ctx, var, &input_counter, false);
if (var->is_output_semantic && var->first_write)
allocate_semantic_register(ctx, var, &output_counter, true);
}
}
static unsigned int map_swizzle(unsigned int swizzle, unsigned int writemask)
{
unsigned int i, ret = 0;
for (i = 0; i < 4; ++i)
{
if (writemask & (1 << i))
{
ret |= (swizzle & 3) << (i * 2);
swizzle >>= 2;
}
}
return ret;
}
static unsigned int swizzle_from_writemask(unsigned int writemask)
{
static const unsigned int swizzles[16] =
{
0,
HLSL_SWIZZLE(X, X, X, X),
HLSL_SWIZZLE(Y, Y, Y, Y),
HLSL_SWIZZLE(X, Y, X, X),
HLSL_SWIZZLE(Z, Z, Z, Z),
HLSL_SWIZZLE(X, Z, X, X),
HLSL_SWIZZLE(Y, Z, X, X),
HLSL_SWIZZLE(X, Y, Z, X),
HLSL_SWIZZLE(W, W, W, W),
HLSL_SWIZZLE(X, W, X, X),
HLSL_SWIZZLE(Y, W, X, X),
HLSL_SWIZZLE(X, Y, W, X),
HLSL_SWIZZLE(Z, W, X, X),
HLSL_SWIZZLE(X, Z, W, X),
HLSL_SWIZZLE(Y, Z, W, X),
HLSL_SWIZZLE(X, Y, Z, W),
};
return swizzles[writemask & 0xf];
}
static unsigned int combine_writemasks(unsigned int first, unsigned int second)
{
unsigned int ret = 0, i, j = 0;
for (i = 0; i < 4; ++i)
{
if (first & (1 << i))
{
if (second & (1 << j++))
ret |= (1 << i);
}
}
return ret;
}
static unsigned int combine_swizzles(unsigned int first, unsigned int second, unsigned int dim)
{
unsigned int ret = 0, i;
for (i = 0; i < dim; ++i)
{
unsigned int s = (second >> (i * 2)) & 3;
ret |= ((first >> (s * 2)) & 3) << (i * 2);
}
return ret;
}
static bool type_is_single_reg(const struct hlsl_type *type)
{
return type->type == HLSL_CLASS_SCALAR || type->type == HLSL_CLASS_VECTOR;
}
static struct hlsl_reg hlsl_reg_from_deref(const struct hlsl_deref *deref, const struct hlsl_type *type)
{
struct hlsl_ir_node *offset_node = deref->offset.node;
const struct hlsl_ir_var *var = deref->var;
struct hlsl_reg ret = {0};
unsigned int offset = 0;
/* We should always have generated a cast to UINT. */
if (offset_node)
assert(offset_node->data_type->type == HLSL_CLASS_SCALAR
&& offset_node->data_type->base_type == HLSL_TYPE_UINT);
if (offset_node && offset_node->type != HLSL_IR_CONSTANT)
{
FIXME("Dereference with non-constant offset of type %s.\n", hlsl_node_type_to_string(offset_node->type));
return ret;
}
ret = var->reg;
ret.allocated = var->reg.allocated;
ret.id = var->reg.id;
if (offset_node)
offset = hlsl_ir_constant(offset_node)->value.u[0];
ret.id += offset / 4;
if (type_is_single_reg(var->data_type))
{
assert(!offset);
ret.writemask = var->reg.writemask;
}
else
{
assert(type_is_single_reg(type));
ret.writemask = ((1 << type->dimx) - 1) << (offset & 3);
}
return ret;
}
struct bytecode_buffer
{
struct hlsl_ctx *ctx;
uint32_t *data;
size_t count, size;
int status;
};
/* Returns the token index. */
static unsigned int put_dword(struct bytecode_buffer *buffer, uint32_t value)
{
unsigned int index = buffer->count;
if (buffer->status)
return index;
if (!hlsl_array_reserve(buffer->ctx, (void **)&buffer->data, &buffer->size,
buffer->count + 1, sizeof(*buffer->data)))
{
buffer->status = VKD3D_ERROR_OUT_OF_MEMORY;
return index;
}
buffer->data[buffer->count++] = value;
return index;
}
/* Returns the token index. */
static unsigned int put_float(struct bytecode_buffer *buffer, float value)
{
union
{
float f;
uint32_t u;
} u;
u.f = value;
return put_dword(buffer, u.u);
}
static void set_dword(struct bytecode_buffer *buffer, unsigned int index, uint32_t value)
{
if (buffer->status)
return;
assert(index < buffer->count);
buffer->data[index] = value;
}
/* Returns the token index. */
static unsigned int put_string(struct bytecode_buffer *buffer, const char *str)
{
unsigned int index = buffer->count;
size_t len = strlen(str) + 1;
unsigned int token_count = (len + 3) / sizeof(*buffer->data);
if (buffer->status)
return index;
if (!hlsl_array_reserve(buffer->ctx, (void **)&buffer->data, &buffer->size,
buffer->count + token_count, sizeof(*buffer->data)))
{
buffer->status = E_OUTOFMEMORY;
return index;
}
buffer->data[buffer->count + token_count - 1] = 0xabababab;
memcpy(buffer->data + buffer->count, str, len);
buffer->count += token_count;
return index;
}
static uint32_t sm1_version(enum vkd3d_shader_type type, unsigned int major, unsigned int minor)
{
if (type == VKD3D_SHADER_TYPE_VERTEX)
return D3DVS_VERSION(major, minor);
else
return D3DPS_VERSION(major, minor);
}
static D3DXPARAMETER_CLASS sm1_class(const struct hlsl_type *type)
{
switch (type->type)
{
case HLSL_CLASS_ARRAY:
return sm1_class(type->e.array.type);
case HLSL_CLASS_MATRIX:
assert(type->modifiers & HLSL_MODIFIERS_MAJORITY_MASK);
if (type->modifiers & HLSL_MODIFIER_COLUMN_MAJOR)
return D3DXPC_MATRIX_COLUMNS;
else
return D3DXPC_MATRIX_ROWS;
case HLSL_CLASS_OBJECT:
return D3DXPC_OBJECT;
case HLSL_CLASS_SCALAR:
return D3DXPC_SCALAR;
case HLSL_CLASS_STRUCT:
return D3DXPC_STRUCT;
case HLSL_CLASS_VECTOR:
return D3DXPC_VECTOR;
default:
ERR("Invalid class %#x.\n", type->type);
assert(0);
return 0;
}
}
static D3DXPARAMETER_TYPE sm1_base_type(const struct hlsl_type *type)
{
switch (type->base_type)
{
case HLSL_TYPE_BOOL:
return D3DXPT_BOOL;
case HLSL_TYPE_FLOAT:
case HLSL_TYPE_HALF:
return D3DXPT_FLOAT;
case HLSL_TYPE_INT:
case HLSL_TYPE_UINT:
return D3DXPT_INT;
case HLSL_TYPE_PIXELSHADER:
return D3DXPT_PIXELSHADER;
case HLSL_TYPE_SAMPLER:
switch (type->sampler_dim)
{
case HLSL_SAMPLER_DIM_1D:
return D3DXPT_SAMPLER1D;
case HLSL_SAMPLER_DIM_2D:
return D3DXPT_SAMPLER2D;
case HLSL_SAMPLER_DIM_3D:
return D3DXPT_SAMPLER3D;
case HLSL_SAMPLER_DIM_CUBE:
return D3DXPT_SAMPLERCUBE;
case HLSL_SAMPLER_DIM_GENERIC:
return D3DXPT_SAMPLER;
default:
ERR("Invalid dimension %#x.\n", type->sampler_dim);
}
break;
case HLSL_TYPE_STRING:
return D3DXPT_STRING;
case HLSL_TYPE_TEXTURE:
switch (type->sampler_dim)
{
case HLSL_SAMPLER_DIM_1D:
return D3DXPT_TEXTURE1D;
case HLSL_SAMPLER_DIM_2D:
return D3DXPT_TEXTURE2D;
case HLSL_SAMPLER_DIM_3D:
return D3DXPT_TEXTURE3D;
case HLSL_SAMPLER_DIM_CUBE:
return D3DXPT_TEXTURECUBE;
case HLSL_SAMPLER_DIM_GENERIC:
return D3DXPT_TEXTURE;
default:
ERR("Invalid dimension %#x.\n", type->sampler_dim);
}
break;
case HLSL_TYPE_VERTEXSHADER:
return D3DXPT_VERTEXSHADER;
case HLSL_TYPE_VOID:
return D3DXPT_VOID;
default:
assert(0);
}
assert(0);
return 0;
}
static const struct hlsl_type *get_array_type(const struct hlsl_type *type)
{
if (type->type == HLSL_CLASS_ARRAY)
return get_array_type(type->e.array.type);
return type;
}
static unsigned int get_array_size(const struct hlsl_type *type)
{
if (type->type == HLSL_CLASS_ARRAY)
return get_array_size(type->e.array.type) * type->e.array.elements_count;
return 1;
}
static void write_sm1_type(struct bytecode_buffer *buffer, struct hlsl_type *type, unsigned int ctab_start)
{
const struct hlsl_type *array_type = get_array_type(type);
unsigned int fields_offset = 0, field_count = 0;
unsigned int array_size = get_array_size(type);
struct hlsl_struct_field *field;
if (type->bytecode_offset)
return;
if (array_type->type == HLSL_CLASS_STRUCT)
{
LIST_FOR_EACH_ENTRY(field, array_type->e.elements, struct hlsl_struct_field, entry)
{
field->name_bytecode_offset = put_string(buffer, field->name);
write_sm1_type(buffer, field->type, ctab_start);
}
fields_offset = (buffer->count - ctab_start) * sizeof(*buffer->data);
LIST_FOR_EACH_ENTRY(field, array_type->e.elements, struct hlsl_struct_field, entry)
{
put_dword(buffer, (field->name_bytecode_offset - ctab_start) * sizeof(*buffer->data));
put_dword(buffer, (field->type->bytecode_offset - ctab_start) * sizeof(*buffer->data));
++field_count;
}
}
type->bytecode_offset = put_dword(buffer, sm1_class(type) | (sm1_base_type(type) << 16));
put_dword(buffer, type->dimy | (type->dimx << 16));
put_dword(buffer, array_size | (field_count << 16));
put_dword(buffer, fields_offset);
}
static void sm1_sort_extern(struct list *sorted, struct hlsl_ir_var *to_sort)
{
struct hlsl_ir_var *var;
list_remove(&to_sort->extern_entry);
LIST_FOR_EACH_ENTRY(var, sorted, struct hlsl_ir_var, extern_entry)
{
if (strcmp(to_sort->name, var->name) < 0)
{
list_add_before(&var->extern_entry, &to_sort->extern_entry);
return;
}
}
list_add_tail(sorted, &to_sort->extern_entry);
}
static void sm1_sort_externs(struct hlsl_ctx *ctx)
{
struct list sorted = LIST_INIT(sorted);
struct hlsl_ir_var *var, *next;
LIST_FOR_EACH_ENTRY_SAFE(var, next, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
sm1_sort_extern(&sorted, var);
list_move_tail(&ctx->extern_vars, &sorted);
}
static void write_sm1_uniforms(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer,
struct hlsl_ir_function_decl *entry_func)
{
unsigned int ctab_start, vars_start, size_offset, creator_offset, offset;
unsigned int uniform_count = 0;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (!var->semantic.name && var->reg.allocated)
{
++uniform_count;
if (var->is_param && var->is_uniform)
{
struct vkd3d_string_buffer *name;
if (!(name = hlsl_get_string_buffer(ctx)))
{
buffer->status = VKD3D_ERROR_OUT_OF_MEMORY;
return;
}
vkd3d_string_buffer_printf(name, "$%s", var->name);
vkd3d_free((char *)var->name);
var->name = hlsl_strdup(ctx, name->buffer);
hlsl_release_string_buffer(ctx, name);
}
}
}
sm1_sort_externs(ctx);
size_offset = put_dword(buffer, 0);
put_dword(buffer, MAKEFOURCC('C','T','A','B'));
ctab_start = put_dword(buffer, sizeof(D3DXSHADER_CONSTANTTABLE));
creator_offset = put_dword(buffer, 0);
put_dword(buffer, sm1_version(ctx->profile->type, ctx->profile->major_version, ctx->profile->minor_version));
put_dword(buffer, uniform_count);
put_dword(buffer, sizeof(D3DXSHADER_CONSTANTTABLE)); /* offset of constants */
put_dword(buffer, 0); /* FIXME: flags */
put_dword(buffer, 0); /* FIXME: target string */
vars_start = buffer->count;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (!var->semantic.name && var->reg.allocated)
{
put_dword(buffer, 0); /* name */
put_dword(buffer, D3DXRS_FLOAT4 | (var->reg.id << 16));
put_dword(buffer, var->data_type->reg_size);
put_dword(buffer, 0); /* type */
put_dword(buffer, 0); /* FIXME: default value */
}
}
uniform_count = 0;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (!var->semantic.name && var->reg.allocated)
{
set_dword(buffer, vars_start + (uniform_count * 5), (buffer->count - ctab_start) * sizeof(*buffer->data));
put_string(buffer, var->name);
write_sm1_type(buffer, var->data_type, ctab_start);
set_dword(buffer, vars_start + (uniform_count * 5) + 3,
(var->data_type->bytecode_offset - ctab_start) * sizeof(*buffer->data));
++uniform_count;
}
}
offset = put_string(buffer, vkd3d_shader_get_version(NULL, NULL));
set_dword(buffer, creator_offset, (offset - ctab_start) * sizeof(*buffer->data));
set_dword(buffer, size_offset, D3DSIO_COMMENT | ((buffer->count - (ctab_start - 1)) << 16));
}
static uint32_t sm1_encode_register_type(D3DSHADER_PARAM_REGISTER_TYPE type)
{
return ((type << D3DSP_REGTYPE_SHIFT) & D3DSP_REGTYPE_MASK)
| ((type << D3DSP_REGTYPE_SHIFT2) & D3DSP_REGTYPE_MASK2);
}
struct sm1_instruction
{
D3DSHADER_INSTRUCTION_OPCODE_TYPE opcode;
struct sm1_dst_register
{
D3DSHADER_PARAM_REGISTER_TYPE type;
D3DSHADER_PARAM_DSTMOD_TYPE mod;
unsigned int writemask;
uint32_t reg;
} dst;
struct sm1_src_register
{
D3DSHADER_PARAM_REGISTER_TYPE type;
D3DSHADER_PARAM_SRCMOD_TYPE mod;
unsigned int swizzle;
uint32_t reg;
} srcs[2];
unsigned int src_count;
unsigned int has_dst;
};
static void write_sm1_dst_register(struct bytecode_buffer *buffer, const struct sm1_dst_register *reg)
{
assert(reg->writemask);
put_dword(buffer, (1u << 31) | sm1_encode_register_type(reg->type) | reg->mod | (reg->writemask << 16) | reg->reg);
}
static void write_sm1_src_register(struct bytecode_buffer *buffer,
const struct sm1_src_register *reg, unsigned int dst_writemask)
{
unsigned int swizzle = map_swizzle(reg->swizzle, dst_writemask);
put_dword(buffer, (1u << 31) | sm1_encode_register_type(reg->type) | reg->mod | (swizzle << 16) | reg->reg);
}
static void write_sm1_instruction(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer,
const struct sm1_instruction *instr)
{
uint32_t token = instr->opcode;
unsigned int i;
if (ctx->profile->major_version > 1)
token |= (instr->has_dst + instr->src_count) << D3DSI_INSTLENGTH_SHIFT;
put_dword(buffer, token);
if (instr->has_dst)
write_sm1_dst_register(buffer, &instr->dst);
for (i = 0; i < instr->src_count; ++i)
write_sm1_src_register(buffer, &instr->srcs[i], instr->dst.writemask);
};
static void write_sm1_binary_op(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer,
D3DSHADER_INSTRUCTION_OPCODE_TYPE opcode, const struct hlsl_reg *dst,
const struct hlsl_reg *src1, const struct hlsl_reg *src2)
{
const struct sm1_instruction instr =
{
.opcode = opcode,
.dst.type = D3DSPR_TEMP,
.dst.writemask = dst->writemask,
.dst.reg = dst->id,
.has_dst = 1,
.srcs[0].type = D3DSPR_TEMP,
.srcs[0].swizzle = swizzle_from_writemask(src1->writemask),
.srcs[0].reg = src1->id,
.srcs[1].type = D3DSPR_TEMP,
.srcs[1].swizzle = swizzle_from_writemask(src2->writemask),
.srcs[1].reg = src2->id,
.src_count = 2,
};
write_sm1_instruction(ctx, buffer, &instr);
}
static void write_sm1_unary_op(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer,
D3DSHADER_INSTRUCTION_OPCODE_TYPE opcode, const struct hlsl_reg *dst,
const struct hlsl_reg *src, D3DSHADER_PARAM_SRCMOD_TYPE src_mod)
{
const struct sm1_instruction instr =
{
.opcode = opcode,
.dst.type = D3DSPR_TEMP,
.dst.writemask = dst->writemask,
.dst.reg = dst->id,
.has_dst = 1,
.srcs[0].type = D3DSPR_TEMP,
.srcs[0].swizzle = swizzle_from_writemask(src->writemask),
.srcs[0].reg = src->id,
.srcs[0].mod = src_mod,
.src_count = 1,
};
write_sm1_instruction(ctx, buffer, &instr);
}
static void write_sm1_constant_defs(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer)
{
unsigned int i, x;
for (i = 0; i < ctx->constant_defs.count; ++i)
{
uint32_t token = D3DSIO_DEF;
const struct sm1_dst_register reg =
{
.type = D3DSPR_CONST,
.writemask = VKD3DSP_WRITEMASK_ALL,
.reg = i,
};
if (ctx->profile->major_version > 1)
token |= 5 << D3DSI_INSTLENGTH_SHIFT;
put_dword(buffer, token);
write_sm1_dst_register(buffer, &reg);
for (x = 0; x < 4; ++x)
put_float(buffer, ctx->constant_defs.values[i].f[x]);
}
}
static void write_sm1_semantic_dcl(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer,
const struct hlsl_ir_var *var, bool output)
{
struct sm1_dst_register reg = {0};
uint32_t token, usage_idx;
D3DDECLUSAGE usage;
bool ret;
if (sm1_register_from_semantic(ctx, &var->semantic, output, &reg.type, &reg.reg))
{
usage = 0;
usage_idx = 0;
}
else
{
ret = sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx);
assert(ret);
reg.type = output ? D3DSPR_OUTPUT : D3DSPR_INPUT;
reg.reg = var->reg.id;
}
token = D3DSIO_DCL;
if (ctx->profile->major_version > 1)
token |= 2 << D3DSI_INSTLENGTH_SHIFT;
put_dword(buffer, token);
token = (1u << 31);
token |= usage << D3DSP_DCL_USAGE_SHIFT;
token |= usage_idx << D3DSP_DCL_USAGEINDEX_SHIFT;
put_dword(buffer, token);
reg.writemask = (1 << var->data_type->dimx) - 1;
write_sm1_dst_register(buffer, &reg);
}
static void write_sm1_semantic_dcls(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer)
{
bool write_in = false, write_out = false;
struct hlsl_ir_var *var;
if (ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
write_in = true;
else if (ctx->profile->type == VKD3D_SHADER_TYPE_VERTEX && ctx->profile->major_version == 3)
write_in = write_out = true;
else if (ctx->profile->type == VKD3D_SHADER_TYPE_VERTEX && ctx->profile->major_version < 3)
write_in = true;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (write_in && var->is_input_semantic)
write_sm1_semantic_dcl(ctx, buffer, var, false);
if (write_out && var->is_output_semantic)
write_sm1_semantic_dcl(ctx, buffer, var, true);
}
}
static void write_sm1_constant(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr)
{
const struct hlsl_ir_constant *constant = hlsl_ir_constant(instr);
struct sm1_instruction sm1_instr =
{
.opcode = D3DSIO_MOV,
.dst.type = D3DSPR_TEMP,
.dst.reg = instr->reg.id,
.dst.writemask = instr->reg.writemask,
.has_dst = 1,
.srcs[0].type = D3DSPR_CONST,
.srcs[0].reg = constant->reg.id,
.srcs[0].swizzle = swizzle_from_writemask(constant->reg.writemask),
.src_count = 1,
};
assert(instr->reg.allocated);
assert(constant->reg.allocated);
write_sm1_instruction(ctx, buffer, &sm1_instr);
}
static void write_sm1_expr(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr)
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
struct hlsl_ir_node *arg1 = expr->operands[0].node;
struct hlsl_ir_node *arg2 = expr->operands[1].node;
assert(instr->reg.allocated);
if (instr->data_type->base_type != HLSL_TYPE_FLOAT)
{
FIXME("Non-float operations need to be lowered.\n");
return;
}
switch (expr->op)
{
case HLSL_IR_BINOP_ADD:
write_sm1_binary_op(ctx, buffer, D3DSIO_ADD, &instr->reg, &arg1->reg, &arg2->reg);
break;
case HLSL_IR_BINOP_MUL:
write_sm1_binary_op(ctx, buffer, D3DSIO_MUL, &instr->reg, &arg1->reg, &arg2->reg);
break;
case HLSL_IR_UNOP_NEG:
write_sm1_unary_op(ctx, buffer, D3DSIO_MOV, &instr->reg, &arg1->reg, D3DSPSM_NEG);
break;
default:
FIXME("Unhandled op %u.\n", expr->op);
break;
}
}
static void write_sm1_load(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr)
{
const struct hlsl_ir_load *load = hlsl_ir_load(instr);
const struct hlsl_reg reg = hlsl_reg_from_deref(&load->src, instr->data_type);
struct sm1_instruction sm1_instr =
{
.opcode = D3DSIO_MOV,
.dst.type = D3DSPR_TEMP,
.dst.reg = instr->reg.id,
.dst.writemask = instr->reg.writemask,
.has_dst = 1,
.srcs[0].type = D3DSPR_TEMP,
.srcs[0].reg = reg.id,
.srcs[0].swizzle = swizzle_from_writemask(reg.writemask),
.src_count = 1,
};
assert(instr->reg.allocated);
if (load->src.var->is_uniform)
{
assert(reg.allocated);
sm1_instr.srcs[0].type = D3DSPR_CONST;
}
else if (load->src.var->is_input_semantic)
{
if (!sm1_register_from_semantic(ctx, &load->src.var->semantic,
false, &sm1_instr.srcs[0].type, &sm1_instr.srcs[0].reg))
{
assert(reg.allocated);
sm1_instr.srcs[0].type = D3DSPR_INPUT;
sm1_instr.srcs[0].reg = reg.id;
}
else
sm1_instr.srcs[0].swizzle = swizzle_from_writemask((1 << load->src.var->data_type->dimx) - 1);
}
write_sm1_instruction(ctx, buffer, &sm1_instr);
}
static void write_sm1_store(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr)
{
const struct hlsl_ir_store *store = hlsl_ir_store(instr);
const struct hlsl_ir_node *rhs = store->rhs.node;
const struct hlsl_reg reg = hlsl_reg_from_deref(&store->lhs, rhs->data_type);
struct sm1_instruction sm1_instr =
{
.opcode = D3DSIO_MOV,
.dst.type = D3DSPR_TEMP,
.dst.reg = reg.id,
.dst.writemask = combine_writemasks(reg.writemask, store->writemask),
.has_dst = 1,
.srcs[0].type = D3DSPR_TEMP,
.srcs[0].reg = rhs->reg.id,
.srcs[0].swizzle = swizzle_from_writemask(rhs->reg.writemask),
.src_count = 1,
};
if (store->lhs.var->data_type->type == HLSL_CLASS_MATRIX)
{
FIXME("Matrix writemasks need to be lowered.\n");
return;
}
if (store->lhs.var->is_output_semantic)
{
if (!sm1_register_from_semantic(ctx, &store->lhs.var->semantic, true, &sm1_instr.dst.type, &sm1_instr.dst.reg))
{
assert(reg.allocated);
sm1_instr.dst.type = D3DSPR_OUTPUT;
sm1_instr.dst.reg = reg.id;
}
else
sm1_instr.dst.writemask = (1u << store->lhs.var->data_type->dimx) - 1;
}
else
assert(reg.allocated);
write_sm1_instruction(ctx, buffer, &sm1_instr);
}
static void write_sm1_swizzle(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr)
{
const struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr);
const struct hlsl_ir_node *val = swizzle->val.node;
struct sm1_instruction sm1_instr =
{
.opcode = D3DSIO_MOV,
.dst.type = D3DSPR_TEMP,
.dst.reg = instr->reg.id,
.dst.writemask = instr->reg.writemask,
.has_dst = 1,
.srcs[0].type = D3DSPR_TEMP,
.srcs[0].reg = val->reg.id,
.srcs[0].swizzle = combine_swizzles(swizzle_from_writemask(val->reg.writemask),
swizzle->swizzle, instr->data_type->dimx),
.src_count = 1,
};
assert(instr->reg.allocated);
assert(val->reg.allocated);
write_sm1_instruction(ctx, buffer, &sm1_instr);
}
static void write_sm1_instructions(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer,
const struct hlsl_ir_function_decl *entry_func)
{
const struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, entry_func->body, struct hlsl_ir_node, entry)
{
if (instr->data_type)
{
if (instr->data_type->type == HLSL_CLASS_MATRIX)
{
FIXME("Matrix operations need to be lowered.\n");
break;
}
assert(instr->data_type->type == HLSL_CLASS_SCALAR || instr->data_type->type == HLSL_CLASS_VECTOR);
}
switch (instr->type)
{
case HLSL_IR_CONSTANT:
write_sm1_constant(ctx, buffer, instr);
break;
case HLSL_IR_EXPR:
write_sm1_expr(ctx, buffer, instr);
break;
case HLSL_IR_LOAD:
write_sm1_load(ctx, buffer, instr);
break;
case HLSL_IR_STORE:
write_sm1_store(ctx, buffer, instr);
break;
case HLSL_IR_SWIZZLE:
write_sm1_swizzle(ctx, buffer, instr);
break;
default:
FIXME("Unhandled instruction type %s.\n", hlsl_node_type_to_string(instr->type));
}
}
}
static int write_sm1_shader(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func,
struct vkd3d_shader_code *out)
{
struct bytecode_buffer buffer = {.ctx = ctx};
int ret;
put_dword(&buffer, sm1_version(ctx->profile->type, ctx->profile->major_version, ctx->profile->minor_version));
write_sm1_uniforms(ctx, &buffer, entry_func);
write_sm1_constant_defs(ctx, &buffer);
write_sm1_semantic_dcls(ctx, &buffer);
write_sm1_instructions(ctx, &buffer, entry_func);
put_dword(&buffer, D3DSIO_END);
if (!(ret = buffer.status))
{
out->code = buffer.data;
out->size = buffer.count * sizeof(*buffer.data);
}
return ret;
}
int hlsl_emit_dxbc(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, struct vkd3d_shader_code *out)
{
struct hlsl_ir_var *var;
list_move_head(entry_func->body, &ctx->static_initializers);
LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry)
{
if (var->data_type->type == HLSL_CLASS_OBJECT)
list_add_tail(&ctx->extern_vars, &var->extern_entry);
else if (var->modifiers & HLSL_STORAGE_UNIFORM)
prepend_uniform_copy(ctx, entry_func->body, var);
}
LIST_FOR_EACH_ENTRY(var, entry_func->parameters, struct hlsl_ir_var, param_entry)
{
if (var->data_type->type == HLSL_CLASS_OBJECT)
{
list_add_tail(&ctx->extern_vars, &var->extern_entry);
}
else
{
if (var->modifiers & HLSL_STORAGE_UNIFORM)
{
prepend_uniform_copy(ctx, entry_func->body, var);
}
else
{
if (var->data_type->type != HLSL_CLASS_STRUCT && !var->semantic.name)
hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Parameter \"%s\" is missing a semantic.", var->name);
if (var->modifiers & HLSL_STORAGE_IN)
prepend_input_var_copy(ctx, entry_func->body, var);
if (var->modifiers & HLSL_STORAGE_OUT)
append_output_var_copy(ctx, entry_func->body, var);
}
}
}
if (entry_func->return_var)
{
if (entry_func->return_var->data_type->type != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name)
hlsl_error(ctx, entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Entry point \"%s\" is missing a return value semantic.", entry_func->func->name);
append_output_var_copy(ctx, entry_func->body, entry_func->return_var);
}
while (transform_ir(ctx, fold_redundant_casts, entry_func->body, NULL));
while (transform_ir(ctx, split_struct_copies, entry_func->body, NULL));
while (transform_ir(ctx, fold_constants, entry_func->body, NULL));
do
compute_liveness(ctx, entry_func);
while (transform_ir(ctx, dce, entry_func->body, NULL));
compute_liveness(ctx, entry_func);
if (TRACE_ON())
rb_for_each_entry(&ctx->functions, dump_function, NULL);
allocate_temp_registers(ctx, entry_func);
if (ctx->profile->major_version < 4)
allocate_const_registers(ctx, entry_func);
allocate_semantic_registers(ctx);
if (ctx->failed)
return VKD3D_ERROR_INVALID_SHADER;
if (ctx->profile->major_version < 4)
return write_sm1_shader(ctx, entry_func, out);
else
return VKD3D_ERROR_NOT_IMPLEMENTED;
}