The relative-addressed case in shader_register_normalise_arrayed_addressing()
leaves the control point id in idx[0], while for constant register
indices it is placed in idx[1]. The latter case could be fixed instead,
but placing the control point count in the outer dimension is more
logical.
The FXC optimiser sometimes converts a local array of input values into
direct array addressing of the inputs, which can result in a
dcl_indexrange instruction spanning input elements with different masks.
Wine-Bug: https://bugs.winehq.org/show_bug.cgi?id=56162
Storing to a vector component using a non-constant index is not allowed
on profiles lower than 6.0. Unless this happens inside a loop that can be
unrolled, which we are not doing yet.
For this reason, a validate_nonconstant_vector_store_derefs pass is
added to detect these cases.
Ideally we would want to emit an hlsl_error on this pass, but before
implementing loop unrolling, we could reach this point on valid HLSL.
Also, as pointed out by Nikolay in the mentioned bug, currently
new_offset_from_path_index() fails an assertion when this happens,
because it expects an hlsl_ir_constant, so a check is added.
It also felt correct to emit an hlsl_fixme there, despite the
redundancy.
Apparently Metal doesn't support specifying a bias directly in the
sampler, and, with "nearest" mip filtering, it doesn't switch
precisely at LOD 0.5 (though still between 0.5 and 0.6).
Currently, if a probe fails, it will print the line number of the [test]
block the probe is in, not the line number of the probe itself. This
makes it somewhat difficult to debug.
This commit makes it print the line number that a test fails at.
This preempts us from replacing a swizzle incorrectly, as in the
following example:
1: A.x = 1.0
2: A
3: A.x = 2.0
4: @2.x
were @4 ends up being 2.0 instead of 1.0, because that's the value stored in
A.x at time 4, and we should be querying it at time 2.
This also helps us to avoid replacing a swizzle with itself in copy-prop
which can result in infinite loops, as with the included tests this commit.
Consider the following sequence of instructions:
1 : A
2 : B = @1
3 : B
4 : A = @3
5 : @1.x
Current copy-prop would replace 5 so it points to @3 now:
1 : A
2 : B = @1
3 : B
4 : A = @3
5 : @3.x
But in the next iteration it would make it point back to @1, keeping it
spinning infinitively.
The solution is to index the instructions and don't replace the swizzle
if the new load happens after the current load.
The included test fails because copy_propagation_transform_swizzle()
is using the value recorded for the variable when the swizzle is being
read, and not the swizzle's load.