Non-constant vector indexing is not solved with relative addressing
in the register indexes because this indexation cannot be at the level
of register-components.
Mathematical operations must be used instead.
Currently, the compiler requires that dereferences be HLSL_IR_CONSTANT, so that
it can compute the offset at compile time. However, scenarios such as this test
will produce a dereference with HLSL_IR_EXPR, which will generate an error.
Passing this test in particular will require adding support for SM4 relative
addressing, as well as support for non-constant indexing in general.
Signed-off-by: Ethan Lee <flibitijibibo@gmail.com>
In Shader Model 6 each signature element can span a range of register
indices, or 'rows', and system values do not share a register index with
non-system values. Inputs and outputs are referenced by element index
instead of register index. This patch merges multiple signature elements
into a single element under the following conditions:
- The register index in a load or store is specified dynamically by
including a relative address parameter with a base register index. The
dcl_index_range instruction is used to identify these.
- A register declaration is split across multiple elements which declare
different components of the register.
- A patch constant function writes tessellation factors. These are an
array in SPIR-V, but in SM 5.x each factor is declared as a separate
register, and these are dynamically indexed by the fork/join instance
id. Elimination of multiple fork/join phases converts the indices to
constants, but merging the signature elements into a single arrayed
element matches the SPIR-V output.
All references to input/output register indices are converted to element
indices. If a relative address is present, the element index is moved up
a slot so it cannot be confused with a constant offset. Existing code
only handles register index relative addressing for tessellation factors.
This patch adds generic support for it.