The semantic variables from a patch parameter are split as usual, with
the difference being that the semantic variable being added is a patch
variable itself, with the type being the split variable type, and its
number of control points being equal to the original patch variable's
number of control points. It is then stored in the original patch
variable as follows:
for (i = 0; i < n; ++i)
patch[i][f] := <inputpatch-sem-var>[i]
where n is the number of control points of "patch", and f is the field
index in patch corresponding to "<inputpatch-sem-var>".
We use special prefixes, "inputpatch-" or "outputpatch-", when adding
the semantic patch variables, in order to distinguish them from
non-patch semantic variables of the same name.
In anticipation of the need for is_patch_constant_func in
sm4_generate_vsir_reg_from_deref(), in order to generate vsir
registers from InputPatch/OutputPatch dereferences.
If the parameter is HLSL_STORAGE_IN, we add a cast from the arg to the
param type so that it can enter the function, however this cast should
not be considered part of the lhs on the implicit assignment that happens
if the var is also HLSL_STORAGE_OUT.
While so far it has been posible to do this at parse time, this must
happen after knowing if the complex cast is on the lhs or not.
The modified tests show that before this patch we are currently
miscompiling when this happens, because a complex lhs cast is transformed
into a load, and add_assigment() just stores to the generated "cast"
temp.
For example, given two arguments, half3 and float, and two functions,
func(float, float) and func(float3, float3), fxc/d3dcompiler prefers to
widen both arguments to float3.
When the client acquires the Vulkan queue it has to ensure that
it is not submitting work before other work it depends on already
submitted through the Direct3D 12 API but currently in the internal
vkd3d queue. Currently we suggest to enqueue signalling a fence and
than wait for it before acquiring the Vulkan queue, which is
correct but excessive: it will wait not just for the work currently
in the queue to be submitted, but for it to be executed too,
introducing useless dependencies.
By adding a way to enqueue signalling a fence on the CPU side we
allow the client to wait for the currently outstanding work to
be submitted to Vulkan, but nothing more.