Merge pull request #24 from gheskett/better-reverb

More reverb improvements
This commit is contained in:
Reonu
2021-08-05 11:27:25 +01:00
committed by GitHub
4 changed files with 165 additions and 140 deletions

View File

@@ -1240,9 +1240,9 @@ void audio_reset_session(void) {
gReverbDownsampleRate = preset->reverbDownsampleRate;
#ifdef BETTER_REVERB
if (gIsConsole)
reverbConsole = betterReverbConsoleDownsample; // Console!
reverbConsole = betterReverbDownsampleConsole; // Console!
else
reverbConsole = betterReverbEmulatorDownsample; // Setting this to 1 is REALLY slow, please use sparingly!
reverbConsole = betterReverbDownsampleEmulator; // Setting this to 1 is REALLY slow, please use sparingly!
if (reverbConsole <= 0) {
reverbConsole = 1;
@@ -1457,15 +1457,16 @@ void audio_reset_session(void) {
// However, reseting this allows for proper clearing of the reverb buffers, as well as dynamic customization of the delays array.
#ifdef BETTER_REVERB
if (toggleBetterReverb) {
for (i = 0; i < NUM_ALLPASS; ++i)
delays[i] = delaysBaseline[i] / gReverbDownsampleRate;
delayBufs = (s32***) soundAlloc(&gAudioSessionPool, 2 * sizeof(s32**));
delayBufs[0] = (s32**) soundAlloc(&gAudioSessionPool, NUM_ALLPASS * sizeof(s32*));
delayBufs[1] = (s32**) soundAlloc(&gAudioSessionPool, NUM_ALLPASS * sizeof(s32*));
for (i = 0; i < NUM_ALLPASS; ++i) {
delayBufs[0][i] = (s32*) soundAlloc(&gAudioSessionPool, delays[i] * sizeof(s32));
delayBufs[1][i] = (s32*) soundAlloc(&gAudioSessionPool, delays[i] * sizeof(s32));
delaysL[i] = delaysBaselineL[i] / gReverbDownsampleRate;
delaysR[i] = delaysBaselineR[i] / gReverbDownsampleRate;
}
delayBufsL = (s32**) soundAlloc(&gAudioSessionPool, NUM_ALLPASS * sizeof(s32*));
delayBufsR = (s32**) soundAlloc(&gAudioSessionPool, NUM_ALLPASS * sizeof(s32*));
for (i = 0; i < NUM_ALLPASS; ++i) {
delayBufsL[i] = (s32*) soundAlloc(&gAudioSessionPool, delaysL[i] * sizeof(s32));
delayBufsR[i] = (s32*) soundAlloc(&gAudioSessionPool, delaysR[i] * sizeof(s32));
}
}
#endif

View File

@@ -8,6 +8,7 @@
#include "seqplayer.h"
#include "internal.h"
#include "external.h"
#include "game/game_init.h"
#define DMEM_ADDR_TEMP 0x0
@@ -37,6 +38,7 @@
#define AUDIO_ALIGN(val, amnt) (((val) + (1 << amnt) - 1) & ~((1 << amnt) - 1))
#ifdef BETTER_REVERB
/* ----------------------------------------------------------------------BEGIN REVERB PARAMETERS---------------------------------------------------------------------- */
@@ -47,6 +49,13 @@
* To take advantage of the reverb effect, you can change the echo parameters set in levels/level_defines.h to tailor the reverb to each specific level area.
* To adjust reverb presence with individual sound effects, apply the .set_reverb command within sound/sequences/00_sound_player.s (see examples of other sounds that use it).
* To use with M64 sequences, set the Effect parameter for each channel accordingly (CC 91 for MIDI files).
*
* Most parameter configuration is to be done here, though BETTER_REVERB_SIZE can be adjusted in audio/synthesis.h.
*
* If after changing the parameters, you hear increasing noise followed by a sudden disappearance of reverb and/or scratchy audio, this indicates an s16 overflow.
* If this happens, stop immediately and reduce the parameters at fault. This becomes a ticking time bomb, and may eventually result in very loud noise if it reaches the point of s32 overflow.
* Checks to prevent this have not been implemented to maximize performance potential, so choose your parameters wisely.
* Generally speaking, a sound that doesn't seem to be fading is a parameter red flag (also known as feedback).
*/
@@ -54,19 +63,36 @@
// You can change this value before audio_reset_session gets called if different levels can tolerate the demand better than others or just have different reverb goals.
// A higher downsample value hits the game's frequency limit sooner, which can cause the reverb sometimes to be off pitch. This is a vanilla level issue (and also counter intuitive).
// Higher downsample values also result in slightly shorter reverb decay times.
s8 betterReverbConsoleDownsample = 3;
s8 betterReverbDownsampleConsole = 3;
// Most emulators can handle a default value of 2, but 3 may be advisable in some cases if targeting older emulators (e.g. PJ64 1.6). Setting this to -1 also uses vanilla reverb.
// Using a value of 1 is not recommended except in very specific situations. If you do decide to use 1 here, you must adjust BETTER_REVERB_SIZE appropriately.
// You can change this value before audio_reset_session gets called if different levels can tolerate the demand better than others or just have different reverb goals.
// A higher downsample value hits the game's frequency limit sooner, which can cause the reverb sometimes to be off pitch. This is a vanilla level issue (and also counter intuitive).
// Higher downsample values also result in slightly shorter reverb decay times.
s8 betterReverbEmulatorDownsample = 2;
s8 betterReverbDownsampleEmulator = 2;
s32 gReverbRevIndex = 0x5F; // Affects decay time mostly (large values can cause terrible feedback!); can be messed with at any time
s32 gReverbGainIndex = 0x9F; // Affects signal immediately retransmitted back into buffers (mid-high values yield the strongest effect); can be messed with at any time
s32 gReverbWetSignal = 0xE7; // Amount of reverb specific output in final signal (also affects decay); can be messed with at any time, also very easy to control
s32 gReverbDrySignal = 0x00; // Amount of original input in final signal (large values can cause terrible feedback!); can be messed with at any time
// This value represents the number of filters to use with the reverb. This can be decreased to improve performance, but at the cost of a lesser presence of reverb in the final audio.
// Filter count should always be a multiple of 3. Never ever set this value to be greater than NUM_ALLPASS.
// Setting it to anything less 3 will disable reverb outright.
// This can be changed at any time, but is best set when calling audio_reset_session.
u32 reverbFilterCountConsole = NUM_ALLPASS - 3;
// This value represents the number of filters to use with the reverb. This can be decreased to improve performance, but at the cost of a lesser presence of reverb in the final audio.
// Filter count should always be a multiple of 3. Never ever set this value to be greater than NUM_ALLPASS.
// Setting it to anything less 3 will disable reverb outright.
// This can be changed at any time, but is best set when calling audio_reset_session.
u32 reverbFilterCountEmulator = NUM_ALLPASS;
// Set this to TRUE to use mono over stereo for reverb. This should increase performance, but at the cost of a less fullfilling reverb experience.
// If performance is desirable, it is recommended to change reverbFilterCountConsole or betterReverbDownsampleConsole first.
// This can be changed at any time, but is best set when calling audio_reset_session.
u8 monoReverbConsole = FALSE;
// Set this to TRUE to use mono over stereo for reverb. This should increase performance, but at the cost of a less fullfilling reverb experience.
// If performance is desirable, it is recommended to change reverbFilterCountEmulator or betterReverbDownsampleEmulator first.
// This can be changed at any time, but is best set when calling audio_reset_session.
u8 monoReverbEmulator = FALSE;
// This value controls the size of the reverb buffer. It affects the global reverb delay time. This variable is one of the easiest to control.
// It is not recommended setting this to values greater than 0x1000 * 2^(downsample factor - 1), as you run the risk of running into a memory issue (though this is far from a guarantee).
@@ -75,50 +101,69 @@ s32 gReverbDrySignal = 0x00; // Amount of original input in final signal (large
// Set to -1 to use a default preset instead. Higher values represent more audio delay (usually better for echoey spaces).
s32 betterReverbWindowsSize = -1;
s32 gReverbRevIndex = 0x5F; // Affects decay time mostly (large values can cause terrible feedback!); can be messed with at any time
s32 gReverbGainIndex = 0x9F; // Affects signal immediately retransmitted back into buffers (mid-high values yield the strongest effect); can be messed with at any time
s32 gReverbWetSignal = 0xE7; // Amount of reverb specific output in final signal (also affects decay); can be messed with at any time, also very easy to control
// s32 gReverbDrySignal = 0x00; // Amount of original input in final signal (large values can cause terrible feedback!); declaration and uses commented out by default to improve compiler optimization
/* ---------------------------------------------------------------------ADVANCED REVERB PARAMETERS-------------------------------------------------------------------- */
// These values affect filter delays. Bigger values will result in fatter echo (and more memory); must be cumulatively smaller than BETTER_REVERB_SIZE/4.
// If setting a reverb downsample value to 1, this must be smaller than BETTER_REVERB_SIZE/8.
// These values affect filter delays. Bigger values will result in fatter echo (and more memory); must be cumulatively smaller than BETTER_REVERB_SIZE/2.
// If setting a reverb downsample value to 1, these must be cumulatively smaller than BETTER_REVERB_SIZE/4.
// These values should never be changed unless in this declaration or during a call to audio_reset_session, as it could otherwise lead to a major memory leak or garbage audio.
// None of the delay values should ever be smaller than 1 either; these are s32s purely to avoid typecasts.
// These values are currently set by using delaysBaseline in the audio_reset_session function, so its behavior must be overridden to use dynamically (or at all).
s32 delays[NUM_ALLPASS] = {
s32 delaysL[NUM_ALLPASS] = {
1080, 1352, 1200,
1384, 1048, 1352,
1200, 1232, 1432,
1384, 1048, 1352,
928, 1504, 1512
};
s32 delaysR[NUM_ALLPASS] = {
1384, 1352, 1048,
928, 1512, 1504,
1080, 1200, 1352,
1200, 1432, 1232
};
// Like the delays array, but represents default max values that don't change (also probably somewhat redundant)
// Change this array rather than the delays array to customize reverb delay times globally.
// Similarly to delays, these should be kept within the memory constraints defined by BETTER_REVERB_SIZE.
const s32 delaysBaseline[NUM_ALLPASS] = {
// Similarly to delaysL/R, these should be kept within the memory constraints defined by BETTER_REVERB_SIZE.
const s32 delaysBaselineL[NUM_ALLPASS] = {
1080, 1352, 1200,
1384, 1048, 1352,
1200, 1232, 1432,
1384, 1048, 1352,
928, 1504, 1512
};
const s32 delaysBaselineR[NUM_ALLPASS] = {
1384, 1352, 1048,
928, 1512, 1504,
1080, 1200, 1352,
1200, 1432, 1232
};
// These values affect reverb decay depending on the filter index; can be messed with at any time
const s32 reverbMults[2][NUM_ALLPASS / 3] = {
{0xD2, 0x6E, 0x36, 0x1F}, // Left Channel
{0x38, 0x26, 0xCF, 0x71} // Right Channel
};
s32 reverbMultsL[NUM_ALLPASS / 3] = {0xD7, 0x6F, 0x36, 0x22};
s32 reverbMultsR[NUM_ALLPASS / 3] = {0xCF, 0x73, 0x38, 0x1F};
/* -----------------------------------------------------------------------END REVERB PARAMETERS----------------------------------------------------------------------- */
// Do not touch these values.
// Do not touch these values manually, unless you want potential for problems.
u32 reverbFilterCount = NUM_ALLPASS;
u32 reverbFilterCountm1 = NUM_ALLPASS - 1;
u8 monoReverb = FALSE;
u8 toggleBetterReverb = TRUE;
s32 allpassIdx[2][NUM_ALLPASS] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
s32 allpassIdxL[NUM_ALLPASS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
s32 allpassIdxR[NUM_ALLPASS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
s32 tmpBufL[NUM_ALLPASS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
s32 tmpBufR[NUM_ALLPASS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
s32 ***delayBufs;
s32 **delayBufsL;
s32 **delayBufsR;
#endif
struct VolumeChange {
@@ -154,7 +199,8 @@ struct SynthesisReverb gSynthesisReverb;
u8 sAudioSynthesisPad[0x20];
#endif
inline s16 clamp16(s32 x) {
#ifdef BETTER_REVERB
static inline s16 clamp16(s32 x) {
if (x >= 32767)
return 32767;
if (x <= -32768)
@@ -163,113 +209,76 @@ inline s16 clamp16(s32 x) {
return (s16) x;
}
inline void reverb_samples(s16 *outSampleL, s16 *outSampleR, s32 inSampleL, s32 inSampleR) {
static inline void reverb_samples(s16 *outSampleL, s16 *outSampleR, s32 inSampleL, s32 inSampleR) {
u32 i = 0;
s32 j = 0;
u8 k = 0;
s32 outTmpL = 0;
s32 outTmpR = 0;
s32 tmpCarryoverL = ((tmpBufL[NUM_ALLPASS-1] * gReverbRevIndex) / 256) + inSampleL; // Unique to left channel
s32 tmpCarryoverR = ((tmpBufR[NUM_ALLPASS-1] * gReverbRevIndex) / 256);
s32 tmpCarryoverL = ((tmpBufL[reverbFilterCountm1] * gReverbRevIndex) / 256) + inSampleL;
s32 tmpCarryoverR = ((tmpBufR[reverbFilterCountm1] * gReverbRevIndex) / 256) + inSampleR;
for (; i < NUM_ALLPASS; ++i, ++j) {
tmpBufL[i] = delayBufs[0][i][allpassIdx[0][i]];
tmpBufR[i] = delayBufs[1][i][allpassIdx[1][i]];
for (; i < reverbFilterCount; ++i, ++j) {
tmpBufL[i] = delayBufsL[i][allpassIdxL[i]];
tmpBufR[i] = delayBufsR[i][allpassIdxR[i]];
if (j == 2) {
j = -1;
outTmpL += (tmpBufL[i] * reverbMults[0][k]) / 256;
outTmpR += (tmpBufR[i] * reverbMults[1][k++]) / 256;
delayBufs[0][i][allpassIdx[0][i]] = tmpCarryoverL;
delayBufs[1][i][allpassIdx[1][i]] = tmpCarryoverR;
if (i != NUM_ALLPASS - 1) {
outTmpL += (tmpBufL[i] * reverbMultsL[k]) / 256;
outTmpR += (tmpBufR[i] * reverbMultsR[k++]) / 256;
delayBufsL[i][allpassIdxL[i]] = tmpCarryoverL;
delayBufsR[i][allpassIdxR[i]] = tmpCarryoverR;
if (i != reverbFilterCountm1) {
tmpCarryoverL = (tmpBufL[i] * gReverbRevIndex) / 256;
tmpCarryoverR = (tmpBufR[i] * gReverbRevIndex) / 256;
}
}
else {
delayBufs[0][i][allpassIdx[0][i]] = (tmpBufL[i] * (-gReverbGainIndex)) / 256 + tmpCarryoverL;
delayBufs[1][i][allpassIdx[1][i]] = (tmpBufR[i] * (-gReverbGainIndex)) / 256 + tmpCarryoverR;
if (i == 6)
delayBufs[1][i][allpassIdx[1][i]] += inSampleR; // Unique to right channel
tmpCarryoverL = (delayBufs[0][i][allpassIdx[0][i]] * gReverbGainIndex) / 256 + tmpBufL[i];
tmpCarryoverR = (delayBufs[1][i][allpassIdx[1][i]] * gReverbGainIndex) / 256 + tmpBufR[i];
delayBufsL[i][allpassIdxL[i]] = (tmpBufL[i] * (-gReverbGainIndex)) / 256 + tmpCarryoverL;
delayBufsR[i][allpassIdxR[i]] = (tmpBufR[i] * (-gReverbGainIndex)) / 256 + tmpCarryoverR;
tmpCarryoverL = (delayBufsL[i][allpassIdxL[i]] * gReverbGainIndex) / 256 + tmpBufL[i];
tmpCarryoverR = (delayBufsR[i][allpassIdxR[i]] * gReverbGainIndex) / 256 + tmpBufR[i];
}
if (++allpassIdx[0][i] == delays[i]) {
allpassIdx[0][i] = 0;
allpassIdx[1][i] = -1; // To avoid an else branch
}
++allpassIdx[1][i];
if (++allpassIdxL[i] == delaysL[i])
allpassIdxL[i] = 0;
if (++allpassIdxR[i] == delaysR[i])
allpassIdxR[i] = 0;
}
*outSampleL = clamp16((outTmpL * gReverbWetSignal + inSampleL * gReverbDrySignal) / 256);
*outSampleR = clamp16((outTmpR * gReverbWetSignal + inSampleR * gReverbDrySignal) / 256);
*outSampleL = clamp16((outTmpL * gReverbWetSignal/* + inSampleL * gReverbDrySignal*/) / 256);
*outSampleR = clamp16((outTmpR * gReverbWetSignal/* + inSampleR * gReverbDrySignal*/) / 256);
}
inline s16 reverb_sample_left(s32 inSample) {
static inline void reverb_mono_sample(s16 *outSample, s32 inSample) {
u32 i = 0;
s32 j = 0;
u8 k = 0;
s32 outTmp = 0;
s32 tmpCarryover = ((tmpBufL[NUM_ALLPASS-1] * gReverbRevIndex) / 256) + inSample;
s32 tmpCarryover = ((tmpBufL[reverbFilterCountm1] * gReverbRevIndex) / 256) + inSample;
for (; i < NUM_ALLPASS; ++i, ++j) {
tmpBufL[i] = delayBufs[0][i][allpassIdx[0][i]];
for (; i < reverbFilterCount; ++i, ++j) {
tmpBufL[i] = delayBufsL[i][allpassIdxL[i]];
if (j == 2) {
j = -1;
outTmp += (tmpBufL[i] * reverbMults[0][k++]) / 256;
delayBufs[0][i][allpassIdx[0][i]] = tmpCarryover;
if (i != NUM_ALLPASS - 1)
outTmp += (tmpBufL[i] * reverbMultsL[k++]) / 256;
delayBufsL[i][allpassIdxL[i]] = tmpCarryover;
if (i != reverbFilterCountm1)
tmpCarryover = (tmpBufL[i] * gReverbRevIndex) / 256;
}
else {
delayBufs[0][i][allpassIdx[0][i]] = (tmpBufL[i] * (-gReverbGainIndex)) / 256 + tmpCarryover;
tmpCarryover = (delayBufs[0][i][allpassIdx[0][i]] * gReverbGainIndex) / 256 + tmpBufL[i];
delayBufsL[i][allpassIdxL[i]] = (tmpBufL[i] * (-gReverbGainIndex)) / 256 + tmpCarryover;
tmpCarryover = (delayBufsL[i][allpassIdxL[i]] * gReverbGainIndex) / 256 + tmpBufL[i];
}
if (++allpassIdx[0][i] == delays[i])
allpassIdx[0][i] = 0;
if (++allpassIdxL[i] == delaysL[i])
allpassIdxL[i] = 0;
}
return clamp16((outTmp * gReverbWetSignal + inSample * gReverbDrySignal) / 256);
}
inline s16 reverb_sample_right(s32 inSample) {
u32 i = 0;
s32 j = 0;
u8 k = 0;
s32 outTmp = 0;
s32 tmpCarryover = ((tmpBufR[NUM_ALLPASS-1] * gReverbRevIndex) / 256);
for (; i < NUM_ALLPASS; ++i, ++j) {
tmpBufR[i] = delayBufs[1][i][allpassIdx[1][i]];
if (j == 2) {
j = -1;
outTmp += (tmpBufR[i] * reverbMults[1][k++]) / 256;
delayBufs[1][i][allpassIdx[1][i]] = tmpCarryover;
if (i != NUM_ALLPASS - 1)
tmpCarryover = (tmpBufR[i] * gReverbRevIndex) / 256;
}
else {
delayBufs[1][i][allpassIdx[1][i]] = (tmpBufR[i] * (-gReverbGainIndex)) / 256 + tmpCarryover;
if (i == 6)
delayBufs[1][i][allpassIdx[1][i]] += inSample;
tmpCarryover = (delayBufs[1][i][allpassIdx[1][i]] * gReverbGainIndex) / 256 + tmpBufR[i];
}
if (++allpassIdx[1][i] == delays[i])
allpassIdx[1][i] = 0;
}
return clamp16((outTmp * gReverbWetSignal + inSample * gReverbDrySignal) / 256);
*outSample = clamp16((outTmp * gReverbWetSignal/* + inSample * gReverbDrySignal*/) / 256);
}
#endif
#ifdef VERSION_EU
s16 gVolume;
@@ -380,25 +389,25 @@ void prepare_reverb_ring_buffer(s32 chunkLen, u32 updateIndex) {
#ifdef BETTER_REVERB
else if (toggleBetterReverb) {
item = &gSynthesisReverb.items[gSynthesisReverb.curFrame][updateIndex];
if (gSoundMode == SOUND_MODE_MONO) {
if (gSoundMode == SOUND_MODE_MONO || monoReverb) {
if (gReverbDownsampleRate != 1) {
osInvalDCache(item->toDownsampleLeft, DEFAULT_LEN_2CH);
for (srcPos = 0, dstPos = item->startPos; dstPos < item->lengthA / 2 + item->startPos; srcPos += gReverbDownsampleRate, dstPos++) {
gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(((s32) item->toDownsampleLeft[srcPos] + (s32) item->toDownsampleRight[srcPos]) / 2);
reverb_mono_sample(&gSynthesisReverb.ringBuffer.left[dstPos], ((s32) item->toDownsampleLeft[srcPos] + (s32) item->toDownsampleRight[srcPos]) / 2);
gSynthesisReverb.ringBuffer.right[dstPos] = gSynthesisReverb.ringBuffer.left[dstPos];
}
for (dstPos = 0; dstPos < item->lengthB / 2; srcPos += gReverbDownsampleRate, dstPos++) {
gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(((s32) item->toDownsampleLeft[srcPos] + (s32) item->toDownsampleRight[srcPos]) / 2);
reverb_mono_sample(&gSynthesisReverb.ringBuffer.left[dstPos], ((s32) item->toDownsampleLeft[srcPos] + (s32) item->toDownsampleRight[srcPos]) / 2);
gSynthesisReverb.ringBuffer.right[dstPos] = gSynthesisReverb.ringBuffer.left[dstPos];
}
}
else { // Too slow for practical use, not recommended most of the time.
for (dstPos = item->startPos; dstPos < item->lengthA / 2 + item->startPos; dstPos++) {
gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(((s32) gSynthesisReverb.ringBuffer.left[dstPos] + (s32) gSynthesisReverb.ringBuffer.right[dstPos]) / 2);
reverb_mono_sample(&gSynthesisReverb.ringBuffer.left[dstPos], ((s32) gSynthesisReverb.ringBuffer.left[dstPos] + (s32) gSynthesisReverb.ringBuffer.right[dstPos]) / 2);
gSynthesisReverb.ringBuffer.right[dstPos] = gSynthesisReverb.ringBuffer.left[dstPos];
}
for (dstPos = 0; dstPos < item->lengthB / 2; dstPos++) {
gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(((s32) gSynthesisReverb.ringBuffer.left[dstPos] + (s32) gSynthesisReverb.ringBuffer.right[dstPos]) / 2);
reverb_mono_sample(&gSynthesisReverb.ringBuffer.left[dstPos], ((s32) gSynthesisReverb.ringBuffer.left[dstPos] + (s32) gSynthesisReverb.ringBuffer.right[dstPos]) / 2);
gSynthesisReverb.ringBuffer.right[dstPos] = gSynthesisReverb.ringBuffer.left[dstPos];
}
}
@@ -410,31 +419,12 @@ void prepare_reverb_ring_buffer(s32 chunkLen, u32 updateIndex) {
reverb_samples(&gSynthesisReverb.ringBuffer.left[dstPos], &gSynthesisReverb.ringBuffer.right[dstPos], item->toDownsampleLeft[srcPos], item->toDownsampleRight[srcPos]);
for (dstPos = 0; dstPos < item->lengthB / 2; srcPos += gReverbDownsampleRate, dstPos++)
reverb_samples(&gSynthesisReverb.ringBuffer.left[dstPos], &gSynthesisReverb.ringBuffer.right[dstPos], item->toDownsampleLeft[srcPos], item->toDownsampleRight[srcPos]);
// for (srcPos = 0, dstPos = item->startPos; dstPos < item->lengthA / 2 + item->startPos;
// srcPos += gReverbDownsampleRate, dstPos++) {
// gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(item->toDownsampleLeft[srcPos]);
// gSynthesisReverb.ringBuffer.right[dstPos] = reverb_sample_right(item->toDownsampleRight[srcPos]);
// }
// for (dstPos = 0; dstPos < item->lengthB / 2; srcPos += gReverbDownsampleRate, dstPos++) {
// gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(item->toDownsampleLeft[srcPos]);
// gSynthesisReverb.ringBuffer.right[dstPos] = reverb_sample_right(item->toDownsampleRight[srcPos]);
// }
}
else { // Too slow for practical use, not recommended most of the time.
for (dstPos = item->startPos; dstPos < item->lengthA / 2 + item->startPos; dstPos++)
reverb_samples(&gSynthesisReverb.ringBuffer.left[dstPos], &gSynthesisReverb.ringBuffer.right[dstPos], gSynthesisReverb.ringBuffer.left[dstPos], gSynthesisReverb.ringBuffer.right[dstPos]);
for (dstPos = 0; dstPos < item->lengthB / 2; dstPos++)
reverb_samples(&gSynthesisReverb.ringBuffer.left[dstPos], &gSynthesisReverb.ringBuffer.right[dstPos], gSynthesisReverb.ringBuffer.left[dstPos], gSynthesisReverb.ringBuffer.right[dstPos]);
// for (dstPos = item->startPos; dstPos < item->lengthA / 2 + item->startPos; dstPos++) {
// gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(gSynthesisReverb.ringBuffer.left[dstPos]);
// gSynthesisReverb.ringBuffer.right[dstPos] = reverb_sample_right(gSynthesisReverb.ringBuffer.right[dstPos]);
// }
// for (dstPos = 0; dstPos < item->lengthB / 2; srcPos += gReverbDownsampleRate, dstPos++) {
// gSynthesisReverb.ringBuffer.left[dstPos] = reverb_sample_left(gSynthesisReverb.ringBuffer.left[dstPos]);
// gSynthesisReverb.ringBuffer.right[dstPos] = reverb_sample_right(gSynthesisReverb.ringBuffer.right[dstPos]);
// }
}
}
}
@@ -597,6 +587,22 @@ u64 *synthesis_execute(u64 *cmdBuf, s32 *writtenCmds, s16 *aiBuf, s32 bufLen) {
aSegment(cmdBuf, 0, 0);
#ifdef BETTER_REVERB
if (gIsConsole) {
reverbFilterCount = reverbFilterCountConsole;
monoReverb = monoReverbConsole;
}
else {
reverbFilterCount = reverbFilterCountEmulator;
monoReverb = monoReverbEmulator;
}
if (reverbFilterCount > NUM_ALLPASS)
reverbFilterCount = NUM_ALLPASS;
reverbFilterCountm1 = reverbFilterCount - 1;
if (reverbFilterCount < 3)
reverbFilterCountm1 = 0;
#endif
for (i = gAudioUpdatesPerFrame; i > 0; i--) {
if (i == 1) {
// 'bufLen' will automatically be divisible by 8, no need to round

View File

@@ -18,22 +18,40 @@
#endif
#ifdef BETTER_REVERB
#define BETTER_REVERB_SIZE 0xF200 // Size determined by ((all delaysBaseline values * 16) / (2 ^ Minimum Downsample Factor)) + array pointers; can be increased if needed
// #define BETTER_REVERB_SIZE 0x1E200 // For use with a downsampling value of 1 (i.e. no downsampling at all)
#else
#define BETTER_REVERB_SIZE 0
#endif
// Size determined by ((all delaysBaselineL/R values * 8) / (2 ^ Minimum Downsample Factor)) + array pointers.
// The default value can be increased or decreased in conjunction with the values in delaysBaselineL/R
#define BETTER_REVERB_SIZE 0xF200
// #define BETTER_REVERB_SIZE 0x7A00 // Default for use only with a downsampling value of 3 (i.e. double the emulator default)
// #define BETTER_REVERB_SIZE 0x1E200 // Default for use with a downsampling value of 1 (i.e. no downsampling at all)
#define NUM_ALLPASS 12 // Number of delay filters to use with better reverb; do not change this value if you don't know what you're doing.
extern s8 betterReverbDownsampleConsole;
extern s8 betterReverbDownsampleEmulator;
extern u32 reverbFilterCountConsole;
extern u32 reverbFilterCountEmulator;
extern u8 monoReverbConsole;
extern u8 monoReverbEmulator;
extern s32 betterReverbWindowsSize;
extern const s32 delaysBaseline[NUM_ALLPASS];
extern s32 delays[NUM_ALLPASS];
extern s32 ***delayBufs;
extern s32 gReverbRevIndex;
extern s32 gReverbGainIndex;
extern s32 gReverbWetSigna;
// extern s32 gReverbDrySignal;
extern const s32 delaysBaselineL[NUM_ALLPASS];
extern const s32 delaysBaselineR[NUM_ALLPASS];
extern s32 delaysL[NUM_ALLPASS];
extern s32 delaysR[NUM_ALLPASS];
extern s32 reverbMultsL[NUM_ALLPASS / 3];
extern s32 reverbMultsR[NUM_ALLPASS / 3];
extern s32 **delayBufsL;
extern s32 **delayBufsR;
extern u8 toggleBetterReverb;
extern s8 betterReverbConsoleDownsample;
extern s8 betterReverbEmulatorDownsample;
#else
#define BETTER_REVERB_SIZE 0
#endif
struct ReverbRingBufferItem
{

View File

@@ -33,7 +33,7 @@ void bhv_snow_mound_spawn_loop(void) {
if (o->oTimer == 64 || o->oTimer == 128 || o->oTimer == 192 || o->oTimer == 224 || o->oTimer == 256)
sp1C = spawn_object(o, MODEL_SL_SNOW_TRIANGLE, bhvSlidingSnowMound);
if (o->oTimer == 256) {
if (sp1C && o->oTimer == 256) {
sp1C->header.gfx.scale[0] = 2.0f;
sp1C->header.gfx.scale[1] = 2.0f;
}