This is simply unnecessary and wastes time.
As part of this, simply remove the "all" directive. Only for a couple of tests
is it even potentially interesting to validate all pixels (e.g.
nointerpolation.shader_test), and for those "all" is replaced with an explicit
(0, 0, 640, 480) rect.
In all other cases we just probe (0, 0).
For temporary registers, SM1-SM3 integer types are internally
represented as floating point, so, in order to perform a cast
from ints to floats we need a mere MOV.
For constant integer registers "iN" there is no operation for casting
from a floating point register to them. For address registers "aN", and
the loop counting register "aL", vertex shaders have the "mova" operation
but we haven't used these registers in any way yet.
We probably would want to introduce these as synthetic variables
allocated in a special register set. In that case we have to remember to
use MOVA instead of MOV in the store operations, but they shouldn't be src
or dst of CAST operations.
Regarding constant integer registers, in some shaders, constants are
expected to be received formatted as an integer, such as:
int m;
float4 main() : sv_target
{
float4 res = {0, 0, 0, 0};
for (int k = 0; k < m; ++k)
res += k;
return res;
}
which compiles as:
// Registers:
//
// Name Reg Size
// ------------ ----- ----
// m i0 1
//
ps_3_0
def c0, 0, 1, 0, 0
mov r0, c0.x
mov r1.x, c0.x
rep i0
add r0, r0, r1.x
add r1.x, r1.x, c0.y
endrep
mov oC0, r0
but this only happens if the integer constant is used directly in an
instruction that needs it, and as I said there is no instruction that
allows converting them to a float representation.
Notice how a more complex shader, that performs operations with this
integer variable "m":
int m;
float4 main() : sv_target
{
float4 res = {0, 0, 0, 0};
for (int k = 0; k < m * m; ++k)
res += k;
return res;
}
gives the following output:
// Registers:
//
// Name Reg Size
// ------------ ----- ----
// m c0 1
//
ps_3_0
def c1, 0, 0, 1, 0
defi i0, 255, 0, 0, 0
mul r0.x, c0.x, c0.x
mov r1, c1.y
mov r0.y, c1.y
rep i0
mov r0.z, r0.x
break_ge r0.y, r0.z
add r1, r0.y, r1
add r0.y, r0.y, c1.z
endrep
mov oC0, r1
Meaning that the uniform "m" is just stored as a floating point in
"c0", the constant integer register "i0" is just set to 255 (hoping
it is a high enough value) using "defi", and the "break_ge"
involving c0 is used to break from the loop.
We could potentially use this approach to implement loops from SM3
without expecting the variables being received as constant integer
registers.
According to the D3D documentation, for SM1-SM3 constant integer
registers are only used by the 'loop' and 'rep' instructions.
These tests should actually compile and run in SM1, which is possible
if we pass the int and uint uniforms in the expected IEEE 754 float
format for SM1 shaders.
Also, bools should be passed as 1.0f or 0.0f to SM1.
The location of dxcompiler should be set during configuration with
'DXCOMPILER_LIBS=-L/path/to/dxcompiler', and then at runtime with
LD_LIBRARY_PATH, WINEPATH or PATH as applicable.
A new 'fail(sm<6)' decoration is needed on many shader declarations
because dxcompiler succeeds on many shaders which fail with fxc. The
opposite case is less common and is flagged with 'fail(sm>=6)'. A few
tests cause dxcompiler to crash or hang, so these are avoided using
[require], which now skips tests until reset instead of exiting. Also,
'todo(sm<6)' and 'todo(sm>=6)' are used to separate checking of results.