gecko/js/src/jsmath.cpp
2008-09-09 23:38:21 -07:00

631 lines
16 KiB
C++

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS math package.
*/
#include "jsstddef.h"
#include "jslibmath.h"
#include <stdlib.h>
#include "jstypes.h"
#include "jslong.h"
#include "prmjtime.h"
#include "jsapi.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jslock.h"
#include "jsmath.h"
#include "jsnum.h"
#include "jsobj.h"
#ifndef M_E
#define M_E 2.7182818284590452354
#endif
#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif
#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif
static JSConstDoubleSpec math_constants[] = {
{M_E, "E", 0, {0,0,0}},
{M_LOG2E, "LOG2E", 0, {0,0,0}},
{M_LOG10E, "LOG10E", 0, {0,0,0}},
{M_LN2, "LN2", 0, {0,0,0}},
{M_LN10, "LN10", 0, {0,0,0}},
{M_PI, "PI", 0, {0,0,0}},
{M_SQRT2, "SQRT2", 0, {0,0,0}},
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
{0,0,0,{0,0,0}}
};
JSClass js_MathClass = {
js_Math_str,
JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub,
JSCLASS_NO_OPTIONAL_MEMBERS
};
static JSBool
math_abs(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_fabs(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_acos(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
if (x < -1 || 1 < x) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
#endif
z = fd_acos(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_asin(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
if (x < -1 || 1 < x) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
#endif
z = fd_asin(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_atan(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_atan(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_atan2(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, y, z;
if (argc <= 1) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
y = js_ValueToNumber(cx, &vp[3]);
if (JSVAL_IS_NULL(vp[3]))
return JS_FALSE;
#if defined(_MSC_VER)
/*
* MSVC's atan2 does not yield the result demanded by ECMA when both x
* and y are infinite.
* - The result is a multiple of pi/4.
* - The sign of x determines the sign of the result.
* - The sign of y determines the multiplicator, 1 or 3.
*/
if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) {
z = fd_copysign(M_PI / 4, x);
if (y < 0)
z *= 3;
return js_NewDoubleInRootedValue(cx, z, vp);
}
#endif
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
if (x == 0) {
if (JSDOUBLE_IS_NEGZERO(y)) {
z = fd_copysign(M_PI, x);
return js_NewDoubleInRootedValue(cx, z, vp);
}
if (y == 0) {
z = x;
return js_NewDoubleInRootedValue(cx, z, vp);
}
}
#endif
z = fd_atan2(x, y);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_ceil(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_ceil(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_cos(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_cos(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_exp(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#ifdef _WIN32
if (!JSDOUBLE_IS_NaN(x)) {
if (x == *cx->runtime->jsPositiveInfinity) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity);
return JS_TRUE;
}
if (x == *cx->runtime->jsNegativeInfinity) {
*vp = JSVAL_ZERO;
return JS_TRUE;
}
}
#endif
z = fd_exp(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_floor(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_floor(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_log(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
if (x < 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
#endif
z = fd_log(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_max(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z = *cx->runtime->jsNegativeInfinity;
jsval *argv;
uintN i;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNegativeInfinity);
return JS_TRUE;
}
argv = vp + 2;
for (i = 0; i < argc; i++) {
x = js_ValueToNumber(cx, &argv[i]);
if (JSVAL_IS_NULL(argv[i]))
return JS_FALSE;
if (JSDOUBLE_IS_NaN(x)) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
if (x == 0 && x == z && fd_copysign(1.0, z) == -1)
z = x;
else
z = (x > z) ? x : z;
}
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_min(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z = *cx->runtime->jsPositiveInfinity;
jsval *argv;
uintN i;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity);
return JS_TRUE;
}
argv = vp + 2;
for (i = 0; i < argc; i++) {
x = js_ValueToNumber(cx, &argv[i]);
if (JSVAL_IS_NULL(argv[i]))
return JS_FALSE;
if (JSDOUBLE_IS_NaN(x)) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
if (x == 0 && x == z && fd_copysign(1.0,x) == -1)
z = x;
else
z = (x < z) ? x : z;
}
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_pow(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, y, z;
if (argc <= 1) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
y = js_ValueToNumber(cx, &vp[3]);
if (JSVAL_IS_NULL(vp[3]))
return JS_FALSE;
/*
* Because C99 and ECMA specify different behavior for pow(),
* we need to wrap the libm call to make it ECMA compliant.
*/
if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
/* pow(x, +-0) is always 1, even for x = NaN. */
if (y == 0) {
*vp = JSVAL_ONE;
return JS_TRUE;
}
z = fd_pow(x, y);
return js_NewNumberInRootedValue(cx, z, vp);
}
/*
* Math.random() support, lifted from java.util.Random.java.
*/
static void
random_setSeed(JSRuntime *rt, int64 seed)
{
int64 tmp;
JSLL_I2L(tmp, 1000);
JSLL_DIV(seed, seed, tmp);
JSLL_XOR(tmp, seed, rt->rngMultiplier);
JSLL_AND(rt->rngSeed, tmp, rt->rngMask);
}
void
js_random_init(JSRuntime *rt)
{
int64 tmp, tmp2;
/* Do at most once. */
if (rt->rngInitialized)
return;
rt->rngInitialized = JS_TRUE;
/* rt->rngMultiplier = 0x5DEECE66DL */
JSLL_ISHL(tmp, 0x5, 32);
JSLL_UI2L(tmp2, 0xDEECE66DL);
JSLL_OR(rt->rngMultiplier, tmp, tmp2);
/* rt->rngAddend = 0xBL */
JSLL_I2L(rt->rngAddend, 0xBL);
/* rt->rngMask = (1L << 48) - 1 */
JSLL_I2L(tmp, 1);
JSLL_SHL(tmp2, tmp, 48);
JSLL_SUB(rt->rngMask, tmp2, tmp);
/* rt->rngDscale = (jsdouble)(1L << 53) */
JSLL_SHL(tmp2, tmp, 53);
JSLL_L2D(rt->rngDscale, tmp2);
/* Finally, set the seed from current time. */
random_setSeed(rt, PRMJ_Now());
}
static uint32
random_next(JSRuntime *rt, int bits)
{
int64 nextseed, tmp;
uint32 retval;
JSLL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier);
JSLL_ADD(nextseed, nextseed, rt->rngAddend);
JSLL_AND(nextseed, nextseed, rt->rngMask);
rt->rngSeed = nextseed;
JSLL_USHR(tmp, nextseed, 48 - bits);
JSLL_L2I(retval, tmp);
return retval;
}
jsdouble
js_random_nextDouble(JSRuntime *rt)
{
int64 tmp, tmp2;
jsdouble d;
JSLL_ISHL(tmp, random_next(rt, 26), 27);
JSLL_UI2L(tmp2, random_next(rt, 27));
JSLL_ADD(tmp, tmp, tmp2);
JSLL_L2D(d, tmp);
return d / rt->rngDscale;
}
JSBool
js_math_random(JSContext *cx, uintN argc, jsval *vp)
{
JSRuntime *rt;
jsdouble z;
rt = cx->runtime;
JS_LOCK_RUNTIME(rt);
js_random_init(rt);
z = js_random_nextDouble(rt);
JS_UNLOCK_RUNTIME(rt);
return js_NewNumberInRootedValue(cx, z, vp);
}
#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400
/* Try to work around apparent _copysign bustage in VC6 and VC7. */
double
js_copysign(double x, double y)
{
jsdpun xu, yu;
xu.d = x;
yu.d = y;
xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT;
xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT;
return xu.d;
}
#endif
static JSBool
math_round(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_copysign(fd_floor(x + 0.5), x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_sin(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_sin(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_sqrt(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_sqrt(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_tan(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fd_tan(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
#if JS_HAS_TOSOURCE
static JSBool
math_toSource(JSContext *cx, uintN argc, jsval *vp)
{
*vp = ATOM_KEY(CLASS_ATOM(cx, Math));
return JS_TRUE;
}
#endif
static JSFunctionSpec math_static_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, math_toSource, 0, 0),
#endif
JS_FN("abs", math_abs, 1, 0),
JS_FN("acos", math_acos, 1, 0),
JS_FN("asin", math_asin, 1, 0),
JS_FN("atan", math_atan, 1, 0),
JS_FN("atan2", math_atan2, 2, 0),
JS_FN("ceil", js_math_ceil, 1, 0),
JS_FN("cos", js_math_cos, 1, 0),
JS_FN("exp", math_exp, 1, 0),
JS_FN("floor", js_math_floor, 1, 0),
JS_FN("log", js_math_log, 1, 0),
JS_FN("max", js_math_max, 2, 0),
JS_FN("min", math_min, 2, 0),
JS_FN("pow", js_math_pow, 2, 0),
JS_FN("random", js_math_random, 0, 0),
JS_FN("round", math_round, 1, 0),
JS_FN("sin", js_math_sin, 1, 0),
JS_FN("sqrt", js_math_sqrt, 1, 0),
JS_FN("tan", math_tan, 1, 0),
JS_FS_END
};
JSObject *
js_InitMathClass(JSContext *cx, JSObject *obj)
{
JSObject *Math;
Math = JS_NewObject(cx, &js_MathClass, NULL, obj);
if (!Math)
return NULL;
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
JS_PropertyStub, JS_PropertyStub,
JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
if (!JS_DefineFunctions(cx, Math, math_static_methods))
return NULL;
if (!JS_DefineConstDoubles(cx, Math, math_constants))
return NULL;
return Math;
}