mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
631 lines
16 KiB
C++
631 lines
16 KiB
C++
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla Communicator client code, released
|
|
* March 31, 1998.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 1998
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/*
|
|
* JS math package.
|
|
*/
|
|
#include "jsstddef.h"
|
|
#include "jslibmath.h"
|
|
#include <stdlib.h>
|
|
#include "jstypes.h"
|
|
#include "jslong.h"
|
|
#include "prmjtime.h"
|
|
#include "jsapi.h"
|
|
#include "jsatom.h"
|
|
#include "jscntxt.h"
|
|
#include "jsversion.h"
|
|
#include "jslock.h"
|
|
#include "jsmath.h"
|
|
#include "jsnum.h"
|
|
#include "jsobj.h"
|
|
|
|
#ifndef M_E
|
|
#define M_E 2.7182818284590452354
|
|
#endif
|
|
#ifndef M_LOG2E
|
|
#define M_LOG2E 1.4426950408889634074
|
|
#endif
|
|
#ifndef M_LOG10E
|
|
#define M_LOG10E 0.43429448190325182765
|
|
#endif
|
|
#ifndef M_LN2
|
|
#define M_LN2 0.69314718055994530942
|
|
#endif
|
|
#ifndef M_LN10
|
|
#define M_LN10 2.30258509299404568402
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
#ifndef M_SQRT2
|
|
#define M_SQRT2 1.41421356237309504880
|
|
#endif
|
|
#ifndef M_SQRT1_2
|
|
#define M_SQRT1_2 0.70710678118654752440
|
|
#endif
|
|
|
|
static JSConstDoubleSpec math_constants[] = {
|
|
{M_E, "E", 0, {0,0,0}},
|
|
{M_LOG2E, "LOG2E", 0, {0,0,0}},
|
|
{M_LOG10E, "LOG10E", 0, {0,0,0}},
|
|
{M_LN2, "LN2", 0, {0,0,0}},
|
|
{M_LN10, "LN10", 0, {0,0,0}},
|
|
{M_PI, "PI", 0, {0,0,0}},
|
|
{M_SQRT2, "SQRT2", 0, {0,0,0}},
|
|
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
|
|
{0,0,0,{0,0,0}}
|
|
};
|
|
|
|
JSClass js_MathClass = {
|
|
js_Math_str,
|
|
JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
|
|
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
|
|
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub,
|
|
JSCLASS_NO_OPTIONAL_MEMBERS
|
|
};
|
|
|
|
static JSBool
|
|
math_abs(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_fabs(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_acos(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
|
|
if (x < -1 || 1 < x) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
z = fd_acos(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_asin(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
|
|
if (x < -1 || 1 < x) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
z = fd_asin(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_atan(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_atan(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_atan2(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, y, z;
|
|
|
|
if (argc <= 1) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
y = js_ValueToNumber(cx, &vp[3]);
|
|
if (JSVAL_IS_NULL(vp[3]))
|
|
return JS_FALSE;
|
|
#if defined(_MSC_VER)
|
|
/*
|
|
* MSVC's atan2 does not yield the result demanded by ECMA when both x
|
|
* and y are infinite.
|
|
* - The result is a multiple of pi/4.
|
|
* - The sign of x determines the sign of the result.
|
|
* - The sign of y determines the multiplicator, 1 or 3.
|
|
*/
|
|
if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) {
|
|
z = fd_copysign(M_PI / 4, x);
|
|
if (y < 0)
|
|
z *= 3;
|
|
return js_NewDoubleInRootedValue(cx, z, vp);
|
|
}
|
|
#endif
|
|
|
|
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
|
|
if (x == 0) {
|
|
if (JSDOUBLE_IS_NEGZERO(y)) {
|
|
z = fd_copysign(M_PI, x);
|
|
return js_NewDoubleInRootedValue(cx, z, vp);
|
|
}
|
|
if (y == 0) {
|
|
z = x;
|
|
return js_NewDoubleInRootedValue(cx, z, vp);
|
|
}
|
|
}
|
|
#endif
|
|
z = fd_atan2(x, y);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_ceil(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_ceil(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_cos(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_cos(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_exp(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#ifdef _WIN32
|
|
if (!JSDOUBLE_IS_NaN(x)) {
|
|
if (x == *cx->runtime->jsPositiveInfinity) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity);
|
|
return JS_TRUE;
|
|
}
|
|
if (x == *cx->runtime->jsNegativeInfinity) {
|
|
*vp = JSVAL_ZERO;
|
|
return JS_TRUE;
|
|
}
|
|
}
|
|
#endif
|
|
z = fd_exp(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_floor(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_floor(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_log(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__)
|
|
if (x < 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
z = fd_log(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_max(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z = *cx->runtime->jsNegativeInfinity;
|
|
jsval *argv;
|
|
uintN i;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNegativeInfinity);
|
|
return JS_TRUE;
|
|
}
|
|
argv = vp + 2;
|
|
for (i = 0; i < argc; i++) {
|
|
x = js_ValueToNumber(cx, &argv[i]);
|
|
if (JSVAL_IS_NULL(argv[i]))
|
|
return JS_FALSE;
|
|
if (JSDOUBLE_IS_NaN(x)) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
if (x == 0 && x == z && fd_copysign(1.0, z) == -1)
|
|
z = x;
|
|
else
|
|
z = (x > z) ? x : z;
|
|
}
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_min(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z = *cx->runtime->jsPositiveInfinity;
|
|
jsval *argv;
|
|
uintN i;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity);
|
|
return JS_TRUE;
|
|
}
|
|
argv = vp + 2;
|
|
for (i = 0; i < argc; i++) {
|
|
x = js_ValueToNumber(cx, &argv[i]);
|
|
if (JSVAL_IS_NULL(argv[i]))
|
|
return JS_FALSE;
|
|
if (JSDOUBLE_IS_NaN(x)) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
if (x == 0 && x == z && fd_copysign(1.0,x) == -1)
|
|
z = x;
|
|
else
|
|
z = (x < z) ? x : z;
|
|
}
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_pow(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, y, z;
|
|
|
|
if (argc <= 1) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
y = js_ValueToNumber(cx, &vp[3]);
|
|
if (JSVAL_IS_NULL(vp[3]))
|
|
return JS_FALSE;
|
|
/*
|
|
* Because C99 and ECMA specify different behavior for pow(),
|
|
* we need to wrap the libm call to make it ECMA compliant.
|
|
*/
|
|
if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
/* pow(x, +-0) is always 1, even for x = NaN. */
|
|
if (y == 0) {
|
|
*vp = JSVAL_ONE;
|
|
return JS_TRUE;
|
|
}
|
|
z = fd_pow(x, y);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
/*
|
|
* Math.random() support, lifted from java.util.Random.java.
|
|
*/
|
|
static void
|
|
random_setSeed(JSRuntime *rt, int64 seed)
|
|
{
|
|
int64 tmp;
|
|
|
|
JSLL_I2L(tmp, 1000);
|
|
JSLL_DIV(seed, seed, tmp);
|
|
JSLL_XOR(tmp, seed, rt->rngMultiplier);
|
|
JSLL_AND(rt->rngSeed, tmp, rt->rngMask);
|
|
}
|
|
|
|
void
|
|
js_random_init(JSRuntime *rt)
|
|
{
|
|
int64 tmp, tmp2;
|
|
|
|
/* Do at most once. */
|
|
if (rt->rngInitialized)
|
|
return;
|
|
rt->rngInitialized = JS_TRUE;
|
|
|
|
/* rt->rngMultiplier = 0x5DEECE66DL */
|
|
JSLL_ISHL(tmp, 0x5, 32);
|
|
JSLL_UI2L(tmp2, 0xDEECE66DL);
|
|
JSLL_OR(rt->rngMultiplier, tmp, tmp2);
|
|
|
|
/* rt->rngAddend = 0xBL */
|
|
JSLL_I2L(rt->rngAddend, 0xBL);
|
|
|
|
/* rt->rngMask = (1L << 48) - 1 */
|
|
JSLL_I2L(tmp, 1);
|
|
JSLL_SHL(tmp2, tmp, 48);
|
|
JSLL_SUB(rt->rngMask, tmp2, tmp);
|
|
|
|
/* rt->rngDscale = (jsdouble)(1L << 53) */
|
|
JSLL_SHL(tmp2, tmp, 53);
|
|
JSLL_L2D(rt->rngDscale, tmp2);
|
|
|
|
/* Finally, set the seed from current time. */
|
|
random_setSeed(rt, PRMJ_Now());
|
|
}
|
|
|
|
static uint32
|
|
random_next(JSRuntime *rt, int bits)
|
|
{
|
|
int64 nextseed, tmp;
|
|
uint32 retval;
|
|
|
|
JSLL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier);
|
|
JSLL_ADD(nextseed, nextseed, rt->rngAddend);
|
|
JSLL_AND(nextseed, nextseed, rt->rngMask);
|
|
rt->rngSeed = nextseed;
|
|
JSLL_USHR(tmp, nextseed, 48 - bits);
|
|
JSLL_L2I(retval, tmp);
|
|
return retval;
|
|
}
|
|
|
|
jsdouble
|
|
js_random_nextDouble(JSRuntime *rt)
|
|
{
|
|
int64 tmp, tmp2;
|
|
jsdouble d;
|
|
|
|
JSLL_ISHL(tmp, random_next(rt, 26), 27);
|
|
JSLL_UI2L(tmp2, random_next(rt, 27));
|
|
JSLL_ADD(tmp, tmp, tmp2);
|
|
JSLL_L2D(d, tmp);
|
|
return d / rt->rngDscale;
|
|
}
|
|
|
|
JSBool
|
|
js_math_random(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
JSRuntime *rt;
|
|
jsdouble z;
|
|
|
|
rt = cx->runtime;
|
|
JS_LOCK_RUNTIME(rt);
|
|
js_random_init(rt);
|
|
z = js_random_nextDouble(rt);
|
|
JS_UNLOCK_RUNTIME(rt);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400
|
|
/* Try to work around apparent _copysign bustage in VC6 and VC7. */
|
|
double
|
|
js_copysign(double x, double y)
|
|
{
|
|
jsdpun xu, yu;
|
|
|
|
xu.d = x;
|
|
yu.d = y;
|
|
xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT;
|
|
xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT;
|
|
return xu.d;
|
|
}
|
|
#endif
|
|
|
|
static JSBool
|
|
math_round(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_copysign(fd_floor(x + 0.5), x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_sin(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_sin(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_sqrt(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_sqrt(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_tan(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fd_tan(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
#if JS_HAS_TOSOURCE
|
|
static JSBool
|
|
math_toSource(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
*vp = ATOM_KEY(CLASS_ATOM(cx, Math));
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static JSFunctionSpec math_static_methods[] = {
|
|
#if JS_HAS_TOSOURCE
|
|
JS_FN(js_toSource_str, math_toSource, 0, 0),
|
|
#endif
|
|
JS_FN("abs", math_abs, 1, 0),
|
|
JS_FN("acos", math_acos, 1, 0),
|
|
JS_FN("asin", math_asin, 1, 0),
|
|
JS_FN("atan", math_atan, 1, 0),
|
|
JS_FN("atan2", math_atan2, 2, 0),
|
|
JS_FN("ceil", js_math_ceil, 1, 0),
|
|
JS_FN("cos", js_math_cos, 1, 0),
|
|
JS_FN("exp", math_exp, 1, 0),
|
|
JS_FN("floor", js_math_floor, 1, 0),
|
|
JS_FN("log", js_math_log, 1, 0),
|
|
JS_FN("max", js_math_max, 2, 0),
|
|
JS_FN("min", math_min, 2, 0),
|
|
JS_FN("pow", js_math_pow, 2, 0),
|
|
JS_FN("random", js_math_random, 0, 0),
|
|
JS_FN("round", math_round, 1, 0),
|
|
JS_FN("sin", js_math_sin, 1, 0),
|
|
JS_FN("sqrt", js_math_sqrt, 1, 0),
|
|
JS_FN("tan", math_tan, 1, 0),
|
|
JS_FS_END
|
|
};
|
|
|
|
JSObject *
|
|
js_InitMathClass(JSContext *cx, JSObject *obj)
|
|
{
|
|
JSObject *Math;
|
|
|
|
Math = JS_NewObject(cx, &js_MathClass, NULL, obj);
|
|
if (!Math)
|
|
return NULL;
|
|
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
|
|
JS_PropertyStub, JS_PropertyStub,
|
|
JSPROP_READONLY | JSPROP_PERMANENT))
|
|
return NULL;
|
|
|
|
if (!JS_DefineFunctions(cx, Math, math_static_methods))
|
|
return NULL;
|
|
if (!JS_DefineConstDoubles(cx, Math, math_constants))
|
|
return NULL;
|
|
return Math;
|
|
}
|