/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * JS math package. */ #include "jsstddef.h" #include "jslibmath.h" #include #include "jstypes.h" #include "jslong.h" #include "prmjtime.h" #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jsversion.h" #include "jslock.h" #include "jsmath.h" #include "jsnum.h" #include "jsobj.h" #ifndef M_E #define M_E 2.7182818284590452354 #endif #ifndef M_LOG2E #define M_LOG2E 1.4426950408889634074 #endif #ifndef M_LOG10E #define M_LOG10E 0.43429448190325182765 #endif #ifndef M_LN2 #define M_LN2 0.69314718055994530942 #endif #ifndef M_LN10 #define M_LN10 2.30258509299404568402 #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880 #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 0.70710678118654752440 #endif static JSConstDoubleSpec math_constants[] = { {M_E, "E", 0, {0,0,0}}, {M_LOG2E, "LOG2E", 0, {0,0,0}}, {M_LOG10E, "LOG10E", 0, {0,0,0}}, {M_LN2, "LN2", 0, {0,0,0}}, {M_LN10, "LN10", 0, {0,0,0}}, {M_PI, "PI", 0, {0,0,0}}, {M_SQRT2, "SQRT2", 0, {0,0,0}}, {M_SQRT1_2, "SQRT1_2", 0, {0,0,0}}, {0,0,0,{0,0,0}} }; JSClass js_MathClass = { js_Math_str, JSCLASS_HAS_CACHED_PROTO(JSProto_Math), JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub, JSCLASS_NO_OPTIONAL_MEMBERS }; static JSBool math_abs(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_fabs(x); return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_acos(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; #if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__) if (x < -1 || 1 < x) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } #endif z = fd_acos(x); return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_asin(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; #if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__) if (x < -1 || 1 < x) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } #endif z = fd_asin(x); return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_atan(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_atan(x); return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_atan2(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, y, z; if (argc <= 1) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; y = js_ValueToNumber(cx, &vp[3]); if (JSVAL_IS_NULL(vp[3])) return JS_FALSE; #if defined(_MSC_VER) /* * MSVC's atan2 does not yield the result demanded by ECMA when both x * and y are infinite. * - The result is a multiple of pi/4. * - The sign of x determines the sign of the result. * - The sign of y determines the multiplicator, 1 or 3. */ if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) { z = fd_copysign(M_PI / 4, x); if (y < 0) z *= 3; return js_NewDoubleInRootedValue(cx, z, vp); } #endif #if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__) if (x == 0) { if (JSDOUBLE_IS_NEGZERO(y)) { z = fd_copysign(M_PI, x); return js_NewDoubleInRootedValue(cx, z, vp); } if (y == 0) { z = x; return js_NewDoubleInRootedValue(cx, z, vp); } } #endif z = fd_atan2(x, y); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_ceil(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_ceil(x); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_cos(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_cos(x); return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_exp(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; #ifdef _WIN32 if (!JSDOUBLE_IS_NaN(x)) { if (x == *cx->runtime->jsPositiveInfinity) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity); return JS_TRUE; } if (x == *cx->runtime->jsNegativeInfinity) { *vp = JSVAL_ZERO; return JS_TRUE; } } #endif z = fd_exp(x); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_floor(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_floor(x); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_log(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; #if !JS_USE_FDLIBM_MATH && defined(SOLARIS) && defined(__GNUC__) if (x < 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } #endif z = fd_log(x); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_max(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z = *cx->runtime->jsNegativeInfinity; jsval *argv; uintN i; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNegativeInfinity); return JS_TRUE; } argv = vp + 2; for (i = 0; i < argc; i++) { x = js_ValueToNumber(cx, &argv[i]); if (JSVAL_IS_NULL(argv[i])) return JS_FALSE; if (JSDOUBLE_IS_NaN(x)) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } if (x == 0 && x == z && fd_copysign(1.0, z) == -1) z = x; else z = (x > z) ? x : z; } return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_min(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z = *cx->runtime->jsPositiveInfinity; jsval *argv; uintN i; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity); return JS_TRUE; } argv = vp + 2; for (i = 0; i < argc; i++) { x = js_ValueToNumber(cx, &argv[i]); if (JSVAL_IS_NULL(argv[i])) return JS_FALSE; if (JSDOUBLE_IS_NaN(x)) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } if (x == 0 && x == z && fd_copysign(1.0,x) == -1) z = x; else z = (x < z) ? x : z; } return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_pow(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, y, z; if (argc <= 1) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; y = js_ValueToNumber(cx, &vp[3]); if (JSVAL_IS_NULL(vp[3])) return JS_FALSE; /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } /* pow(x, +-0) is always 1, even for x = NaN. */ if (y == 0) { *vp = JSVAL_ONE; return JS_TRUE; } z = fd_pow(x, y); return js_NewNumberInRootedValue(cx, z, vp); } /* * Math.random() support, lifted from java.util.Random.java. */ static void random_setSeed(JSRuntime *rt, int64 seed) { int64 tmp; JSLL_I2L(tmp, 1000); JSLL_DIV(seed, seed, tmp); JSLL_XOR(tmp, seed, rt->rngMultiplier); JSLL_AND(rt->rngSeed, tmp, rt->rngMask); } void js_random_init(JSRuntime *rt) { int64 tmp, tmp2; /* Do at most once. */ if (rt->rngInitialized) return; rt->rngInitialized = JS_TRUE; /* rt->rngMultiplier = 0x5DEECE66DL */ JSLL_ISHL(tmp, 0x5, 32); JSLL_UI2L(tmp2, 0xDEECE66DL); JSLL_OR(rt->rngMultiplier, tmp, tmp2); /* rt->rngAddend = 0xBL */ JSLL_I2L(rt->rngAddend, 0xBL); /* rt->rngMask = (1L << 48) - 1 */ JSLL_I2L(tmp, 1); JSLL_SHL(tmp2, tmp, 48); JSLL_SUB(rt->rngMask, tmp2, tmp); /* rt->rngDscale = (jsdouble)(1L << 53) */ JSLL_SHL(tmp2, tmp, 53); JSLL_L2D(rt->rngDscale, tmp2); /* Finally, set the seed from current time. */ random_setSeed(rt, PRMJ_Now()); } static uint32 random_next(JSRuntime *rt, int bits) { int64 nextseed, tmp; uint32 retval; JSLL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier); JSLL_ADD(nextseed, nextseed, rt->rngAddend); JSLL_AND(nextseed, nextseed, rt->rngMask); rt->rngSeed = nextseed; JSLL_USHR(tmp, nextseed, 48 - bits); JSLL_L2I(retval, tmp); return retval; } jsdouble js_random_nextDouble(JSRuntime *rt) { int64 tmp, tmp2; jsdouble d; JSLL_ISHL(tmp, random_next(rt, 26), 27); JSLL_UI2L(tmp2, random_next(rt, 27)); JSLL_ADD(tmp, tmp, tmp2); JSLL_L2D(d, tmp); return d / rt->rngDscale; } JSBool js_math_random(JSContext *cx, uintN argc, jsval *vp) { JSRuntime *rt; jsdouble z; rt = cx->runtime; JS_LOCK_RUNTIME(rt); js_random_init(rt); z = js_random_nextDouble(rt); JS_UNLOCK_RUNTIME(rt); return js_NewNumberInRootedValue(cx, z, vp); } #if defined _WIN32 && !defined WINCE && _MSC_VER < 1400 /* Try to work around apparent _copysign bustage in VC6 and VC7. */ double js_copysign(double x, double y) { jsdpun xu, yu; xu.d = x; yu.d = y; xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT; xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT; return xu.d; } #endif static JSBool math_round(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_copysign(fd_floor(x + 0.5), x); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_sin(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_sin(x); return js_NewNumberInRootedValue(cx, z, vp); } JSBool js_math_sqrt(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_sqrt(x); return js_NewNumberInRootedValue(cx, z, vp); } static JSBool math_tan(JSContext *cx, uintN argc, jsval *vp) { jsdouble x, z; if (argc == 0) { *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN); return JS_TRUE; } x = js_ValueToNumber(cx, &vp[2]); if (JSVAL_IS_NULL(vp[2])) return JS_FALSE; z = fd_tan(x); return js_NewNumberInRootedValue(cx, z, vp); } #if JS_HAS_TOSOURCE static JSBool math_toSource(JSContext *cx, uintN argc, jsval *vp) { *vp = ATOM_KEY(CLASS_ATOM(cx, Math)); return JS_TRUE; } #endif static JSFunctionSpec math_static_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, math_toSource, 0, 0), #endif JS_FN("abs", math_abs, 1, 0), JS_FN("acos", math_acos, 1, 0), JS_FN("asin", math_asin, 1, 0), JS_FN("atan", math_atan, 1, 0), JS_FN("atan2", math_atan2, 2, 0), JS_FN("ceil", js_math_ceil, 1, 0), JS_FN("cos", js_math_cos, 1, 0), JS_FN("exp", math_exp, 1, 0), JS_FN("floor", js_math_floor, 1, 0), JS_FN("log", js_math_log, 1, 0), JS_FN("max", js_math_max, 2, 0), JS_FN("min", math_min, 2, 0), JS_FN("pow", js_math_pow, 2, 0), JS_FN("random", js_math_random, 0, 0), JS_FN("round", math_round, 1, 0), JS_FN("sin", js_math_sin, 1, 0), JS_FN("sqrt", js_math_sqrt, 1, 0), JS_FN("tan", math_tan, 1, 0), JS_FS_END }; JSObject * js_InitMathClass(JSContext *cx, JSObject *obj) { JSObject *Math; Math = JS_NewObject(cx, &js_MathClass, NULL, obj); if (!Math) return NULL; if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math), JS_PropertyStub, JS_PropertyStub, JSPROP_READONLY | JSPROP_PERMANENT)) return NULL; if (!JS_DefineFunctions(cx, Math, math_static_methods)) return NULL; if (!JS_DefineConstDoubles(cx, Math, math_constants)) return NULL; return Math; }