mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
0fd9123eac
This patch was generated by a script. Here's the source of the script for future reference: function convert() { echo "Converting $1 to $2..." find . ! -wholename "*nsprpub*" \ ! -wholename "*security/nss*" \ ! -wholename "*/.hg*" \ ! -wholename "obj-ff-dbg*" \ ! -name nsXPCOMCID.h \ ! -name prtypes.h \ -type f \ \( -iname "*.cpp" \ -o -iname "*.h" \ -o -iname "*.c" \ -o -iname "*.cc" \ -o -iname "*.idl" \ -o -iname "*.ipdl" \ -o -iname "*.ipdlh" \ -o -iname "*.mm" \) | \ xargs -n 1 sed -i -e "s/\b$1\b/$2/g" } convert PRInt8 int8_t convert PRUint8 uint8_t convert PRInt16 int16_t convert PRUint16 uint16_t convert PRInt32 int32_t convert PRUint32 uint32_t convert PRInt64 int64_t convert PRUint64 uint64_t convert PRIntn int convert PRUintn unsigned convert PRSize size_t convert PROffset32 int32_t convert PROffset64 int64_t convert PRPtrdiff ptrdiff_t convert PRFloat64 double
495 lines
14 KiB
C++
495 lines
14 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsTimerImpl.h"
|
|
#include "TimerThread.h"
|
|
|
|
#include "nsThreadUtils.h"
|
|
#include "pratom.h"
|
|
|
|
#include "nsIObserverService.h"
|
|
#include "nsIServiceManager.h"
|
|
#include "mozilla/Services.h"
|
|
|
|
#include <math.h>
|
|
|
|
using namespace mozilla;
|
|
|
|
NS_IMPL_THREADSAFE_ISUPPORTS2(TimerThread, nsIRunnable, nsIObserver)
|
|
|
|
TimerThread::TimerThread() :
|
|
mInitInProgress(0),
|
|
mInitialized(false),
|
|
mMonitor("TimerThread.mMonitor"),
|
|
mShutdown(false),
|
|
mWaiting(false),
|
|
mSleeping(false),
|
|
mDelayLineCounter(0),
|
|
mMinTimerPeriod(0)
|
|
{
|
|
}
|
|
|
|
TimerThread::~TimerThread()
|
|
{
|
|
mThread = nullptr;
|
|
|
|
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::InitLocks()
|
|
{
|
|
return NS_OK;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TimerObserverRunnable : public nsRunnable
|
|
{
|
|
public:
|
|
TimerObserverRunnable(nsIObserver* observer)
|
|
: mObserver(observer)
|
|
{ }
|
|
|
|
NS_DECL_NSIRUNNABLE
|
|
|
|
private:
|
|
nsCOMPtr<nsIObserver> mObserver;
|
|
};
|
|
|
|
NS_IMETHODIMP
|
|
TimerObserverRunnable::Run()
|
|
{
|
|
nsCOMPtr<nsIObserverService> observerService =
|
|
mozilla::services::GetObserverService();
|
|
if (observerService) {
|
|
observerService->AddObserver(mObserver, "sleep_notification", false);
|
|
observerService->AddObserver(mObserver, "wake_notification", false);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
nsresult TimerThread::Init()
|
|
{
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG, ("TimerThread::Init [%d]\n", mInitialized));
|
|
|
|
if (mInitialized) {
|
|
if (!mThread)
|
|
return NS_ERROR_FAILURE;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
if (PR_ATOMIC_SET(&mInitInProgress, 1) == 0) {
|
|
// We hold on to mThread to keep the thread alive.
|
|
nsresult rv = NS_NewThread(getter_AddRefs(mThread), this);
|
|
if (NS_FAILED(rv)) {
|
|
mThread = nullptr;
|
|
}
|
|
else {
|
|
nsRefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
|
|
if (NS_IsMainThread()) {
|
|
r->Run();
|
|
}
|
|
else {
|
|
NS_DispatchToMainThread(r);
|
|
}
|
|
}
|
|
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
mInitialized = true;
|
|
mMonitor.NotifyAll();
|
|
}
|
|
}
|
|
else {
|
|
MonitorAutoLock lock(mMonitor);
|
|
while (!mInitialized) {
|
|
mMonitor.Wait();
|
|
}
|
|
}
|
|
|
|
if (!mThread)
|
|
return NS_ERROR_FAILURE;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::Shutdown()
|
|
{
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG, ("TimerThread::Shutdown begin\n"));
|
|
|
|
if (!mThread)
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
|
|
nsTArray<nsTimerImpl*> timers;
|
|
{ // lock scope
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
mShutdown = true;
|
|
|
|
// notify the cond var so that Run() can return
|
|
if (mWaiting)
|
|
mMonitor.Notify();
|
|
|
|
// Need to copy content of mTimers array to a local array
|
|
// because call to timers' ReleaseCallback() (and release its self)
|
|
// must not be done under the lock. Destructor of a callback
|
|
// might potentially call some code reentering the same lock
|
|
// that leads to unexpected behavior or deadlock.
|
|
// See bug 422472.
|
|
timers.AppendElements(mTimers);
|
|
mTimers.Clear();
|
|
}
|
|
|
|
uint32_t timersCount = timers.Length();
|
|
for (uint32_t i = 0; i < timersCount; i++) {
|
|
nsTimerImpl *timer = timers[i];
|
|
timer->ReleaseCallback();
|
|
ReleaseTimerInternal(timer);
|
|
}
|
|
|
|
mThread->Shutdown(); // wait for the thread to die
|
|
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG, ("TimerThread::Shutdown end\n"));
|
|
return NS_OK;
|
|
}
|
|
|
|
// Keep track of how early (positive slack) or late (negative slack) timers
|
|
// are running, and use the filtered slack number to adaptively estimate how
|
|
// early timers should fire to be "on time".
|
|
void TimerThread::UpdateFilter(uint32_t aDelay, TimeStamp aTimeout,
|
|
TimeStamp aNow)
|
|
{
|
|
TimeDuration slack = aTimeout - aNow;
|
|
double smoothSlack = 0;
|
|
uint32_t i, filterLength;
|
|
static TimeDuration kFilterFeedbackMaxTicks =
|
|
TimeDuration::FromMilliseconds(FILTER_FEEDBACK_MAX);
|
|
static TimeDuration kFilterFeedbackMinTicks =
|
|
TimeDuration::FromMilliseconds(-FILTER_FEEDBACK_MAX);
|
|
|
|
if (slack > kFilterFeedbackMaxTicks)
|
|
slack = kFilterFeedbackMaxTicks;
|
|
else if (slack < kFilterFeedbackMinTicks)
|
|
slack = kFilterFeedbackMinTicks;
|
|
|
|
mDelayLine[mDelayLineCounter & DELAY_LINE_LENGTH_MASK] =
|
|
slack.ToMilliseconds();
|
|
if (++mDelayLineCounter < DELAY_LINE_LENGTH) {
|
|
// Startup mode: accumulate a full delay line before filtering.
|
|
PR_ASSERT(mTimeoutAdjustment.ToSeconds() == 0);
|
|
filterLength = 0;
|
|
} else {
|
|
// Past startup: compute number of filter taps based on mMinTimerPeriod.
|
|
if (mMinTimerPeriod == 0) {
|
|
mMinTimerPeriod = (aDelay != 0) ? aDelay : 1;
|
|
} else if (aDelay != 0 && aDelay < mMinTimerPeriod) {
|
|
mMinTimerPeriod = aDelay;
|
|
}
|
|
|
|
filterLength = (uint32_t) (FILTER_DURATION / mMinTimerPeriod);
|
|
if (filterLength > DELAY_LINE_LENGTH)
|
|
filterLength = DELAY_LINE_LENGTH;
|
|
else if (filterLength < 4)
|
|
filterLength = 4;
|
|
|
|
for (i = 1; i <= filterLength; i++)
|
|
smoothSlack += mDelayLine[(mDelayLineCounter-i) & DELAY_LINE_LENGTH_MASK];
|
|
smoothSlack /= filterLength;
|
|
|
|
// XXXbe do we need amplification? hacking a fudge factor, need testing...
|
|
mTimeoutAdjustment = TimeDuration::FromMilliseconds(smoothSlack * 1.5);
|
|
}
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG,
|
|
("UpdateFilter: smoothSlack = %g, filterLength = %u\n",
|
|
smoothSlack, filterLength));
|
|
#endif
|
|
}
|
|
|
|
/* void Run(); */
|
|
NS_IMETHODIMP TimerThread::Run()
|
|
{
|
|
PR_SetCurrentThreadName("Timer");
|
|
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// We need to know how many microseconds give a positive PRIntervalTime. This
|
|
// is platform-dependent, we calculate it at runtime now.
|
|
// First we find a value such that PR_MicrosecondsToInterval(high) = 1
|
|
int32_t low = 0, high = 1;
|
|
while (PR_MicrosecondsToInterval(high) == 0)
|
|
high <<= 1;
|
|
// We now have
|
|
// PR_MicrosecondsToInterval(low) = 0
|
|
// PR_MicrosecondsToInterval(high) = 1
|
|
// and we can proceed to find the critical value using binary search
|
|
while (high-low > 1) {
|
|
int32_t mid = (high+low) >> 1;
|
|
if (PR_MicrosecondsToInterval(mid) == 0)
|
|
low = mid;
|
|
else
|
|
high = mid;
|
|
}
|
|
|
|
// Half of the amount of microseconds needed to get positive PRIntervalTime.
|
|
// We use this to decide how to round our wait times later
|
|
int32_t halfMicrosecondsIntervalResolution = high >> 1;
|
|
|
|
while (!mShutdown) {
|
|
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
|
|
PRIntervalTime waitFor;
|
|
|
|
if (mSleeping) {
|
|
// Sleep for 0.1 seconds while not firing timers.
|
|
waitFor = PR_MillisecondsToInterval(100);
|
|
} else {
|
|
waitFor = PR_INTERVAL_NO_TIMEOUT;
|
|
TimeStamp now = TimeStamp::Now();
|
|
nsTimerImpl *timer = nullptr;
|
|
|
|
if (!mTimers.IsEmpty()) {
|
|
timer = mTimers[0];
|
|
|
|
if (now >= timer->mTimeout + mTimeoutAdjustment) {
|
|
next:
|
|
// NB: AddRef before the Release under RemoveTimerInternal to avoid
|
|
// mRefCnt passing through zero, in case all other refs than the one
|
|
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
|
|
// must be racing with us, blocked in gThread->RemoveTimer waiting
|
|
// for TimerThread::mMonitor, under nsTimerImpl::Release.
|
|
|
|
NS_ADDREF(timer);
|
|
RemoveTimerInternal(timer);
|
|
|
|
{
|
|
// We release mMonitor around the Fire call to avoid deadlock.
|
|
MonitorAutoUnlock unlock(mMonitor);
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) {
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG,
|
|
("Timer thread woke up %fms from when it was supposed to\n",
|
|
fabs((now - timer->mTimeout).ToMilliseconds())));
|
|
}
|
|
#endif
|
|
|
|
// We are going to let the call to PostTimerEvent here handle the
|
|
// release of the timer so that we don't end up releasing the timer
|
|
// on the TimerThread instead of on the thread it targets.
|
|
if (NS_FAILED(timer->PostTimerEvent())) {
|
|
nsrefcnt rc;
|
|
NS_RELEASE2(timer, rc);
|
|
|
|
// The nsITimer interface requires that its users keep a reference
|
|
// to the timers they use while those timers are initialized but
|
|
// have not yet fired. If this ever happens, it is a bug in the
|
|
// code that created and used the timer.
|
|
//
|
|
// Further, note that this should never happen even with a
|
|
// misbehaving user, because nsTimerImpl::Release checks for a
|
|
// refcount of 1 with an armed timer (a timer whose only reference
|
|
// is from the timer thread) and when it hits this will remove the
|
|
// timer from the timer thread and thus destroy the last reference,
|
|
// preventing this situation from occurring.
|
|
NS_ASSERTION(rc != 0, "destroyed timer off its target thread!");
|
|
}
|
|
timer = nullptr;
|
|
}
|
|
|
|
if (mShutdown)
|
|
break;
|
|
|
|
// Update now, as PostTimerEvent plus the locking may have taken a
|
|
// tick or two, and we may goto next below.
|
|
now = TimeStamp::Now();
|
|
}
|
|
}
|
|
|
|
if (!mTimers.IsEmpty()) {
|
|
timer = mTimers[0];
|
|
|
|
TimeStamp timeout = timer->mTimeout + mTimeoutAdjustment;
|
|
|
|
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
|
|
// is due now or overdue.
|
|
//
|
|
// Note that we can only sleep for integer values of a certain
|
|
// resolution. We use halfMicrosecondsIntervalResolution, calculated
|
|
// before, to do the optimal rounding (i.e., of how to decide what
|
|
// interval is so small we should not wait at all).
|
|
double microseconds = (timeout - now).ToMilliseconds()*1000;
|
|
if (microseconds < halfMicrosecondsIntervalResolution)
|
|
goto next; // round down; execute event now
|
|
waitFor = PR_MicrosecondsToInterval(microseconds);
|
|
if (waitFor == 0)
|
|
waitFor = 1; // round up, wait the minimum time we can wait
|
|
}
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) {
|
|
if (waitFor == PR_INTERVAL_NO_TIMEOUT)
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG,
|
|
("waiting for PR_INTERVAL_NO_TIMEOUT\n"));
|
|
else
|
|
PR_LOG(gTimerLog, PR_LOG_DEBUG,
|
|
("waiting for %u\n", PR_IntervalToMilliseconds(waitFor)));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
mWaiting = true;
|
|
mMonitor.Wait(waitFor);
|
|
mWaiting = false;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::AddTimer(nsTimerImpl *aTimer)
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Add the timer to our list.
|
|
int32_t i = AddTimerInternal(aTimer);
|
|
if (i < 0)
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting && i == 0)
|
|
mMonitor.Notify();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::TimerDelayChanged(nsTimerImpl *aTimer)
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Our caller has a strong ref to aTimer, so it can't go away here under
|
|
// ReleaseTimerInternal.
|
|
RemoveTimerInternal(aTimer);
|
|
|
|
int32_t i = AddTimerInternal(aTimer);
|
|
if (i < 0)
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting && i == 0)
|
|
mMonitor.Notify();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::RemoveTimer(nsTimerImpl *aTimer)
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Remove the timer from our array. Tell callers that aTimer was not found
|
|
// by returning NS_ERROR_NOT_AVAILABLE. Unlike the TimerDelayChanged case
|
|
// immediately above, our caller may be passing a (now-)weak ref in via the
|
|
// aTimer param, specifically when nsTimerImpl::Release loses a race with
|
|
// TimerThread::Run, must wait for the mMonitor auto-lock here, and during the
|
|
// wait Run drops the only remaining ref to aTimer via RemoveTimerInternal.
|
|
|
|
if (!RemoveTimerInternal(aTimer))
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting)
|
|
mMonitor.Notify();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
// This function must be called from within a lock
|
|
int32_t TimerThread::AddTimerInternal(nsTimerImpl *aTimer)
|
|
{
|
|
if (mShutdown)
|
|
return -1;
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
uint32_t count = mTimers.Length();
|
|
uint32_t i = 0;
|
|
for (; i < count; i++) {
|
|
nsTimerImpl *timer = mTimers[i];
|
|
|
|
// Don't break till we have skipped any overdue timers.
|
|
|
|
// XXXbz why? Given our definition of overdue in terms of
|
|
// mTimeoutAdjustment, aTimer might be overdue already! Why not
|
|
// just fire timers in order?
|
|
|
|
// XXX does this hold for TYPE_REPEATING_PRECISE? /be
|
|
|
|
if (now < timer->mTimeout + mTimeoutAdjustment &&
|
|
aTimer->mTimeout < timer->mTimeout) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!mTimers.InsertElementAt(i, aTimer))
|
|
return -1;
|
|
|
|
aTimer->mArmed = true;
|
|
NS_ADDREF(aTimer);
|
|
return i;
|
|
}
|
|
|
|
bool TimerThread::RemoveTimerInternal(nsTimerImpl *aTimer)
|
|
{
|
|
if (!mTimers.RemoveElement(aTimer))
|
|
return false;
|
|
|
|
ReleaseTimerInternal(aTimer);
|
|
return true;
|
|
}
|
|
|
|
void TimerThread::ReleaseTimerInternal(nsTimerImpl *aTimer)
|
|
{
|
|
// Order is crucial here -- see nsTimerImpl::Release.
|
|
aTimer->mArmed = false;
|
|
NS_RELEASE(aTimer);
|
|
}
|
|
|
|
void TimerThread::DoBeforeSleep()
|
|
{
|
|
mSleeping = true;
|
|
}
|
|
|
|
void TimerThread::DoAfterSleep()
|
|
{
|
|
mSleeping = true; // wake may be notified without preceding sleep notification
|
|
for (uint32_t i = 0; i < mTimers.Length(); i ++) {
|
|
nsTimerImpl *timer = mTimers[i];
|
|
// get and set the delay to cause its timeout to be recomputed
|
|
uint32_t delay;
|
|
timer->GetDelay(&delay);
|
|
timer->SetDelay(delay);
|
|
}
|
|
|
|
// nuke the stored adjustments, so they get recalibrated
|
|
mTimeoutAdjustment = TimeDuration(0);
|
|
mDelayLineCounter = 0;
|
|
mSleeping = false;
|
|
}
|
|
|
|
|
|
/* void observe (in nsISupports aSubject, in string aTopic, in wstring aData); */
|
|
NS_IMETHODIMP
|
|
TimerThread::Observe(nsISupports* /* aSubject */, const char *aTopic, const PRUnichar* /* aData */)
|
|
{
|
|
if (strcmp(aTopic, "sleep_notification") == 0)
|
|
DoBeforeSleep();
|
|
else if (strcmp(aTopic, "wake_notification") == 0)
|
|
DoAfterSleep();
|
|
|
|
return NS_OK;
|
|
}
|