/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsTimerImpl.h" #include "TimerThread.h" #include "nsThreadUtils.h" #include "pratom.h" #include "nsIObserverService.h" #include "nsIServiceManager.h" #include "mozilla/Services.h" #include using namespace mozilla; NS_IMPL_THREADSAFE_ISUPPORTS2(TimerThread, nsIRunnable, nsIObserver) TimerThread::TimerThread() : mInitInProgress(0), mInitialized(false), mMonitor("TimerThread.mMonitor"), mShutdown(false), mWaiting(false), mSleeping(false), mDelayLineCounter(0), mMinTimerPeriod(0) { } TimerThread::~TimerThread() { mThread = nullptr; NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread"); } nsresult TimerThread::InitLocks() { return NS_OK; } namespace { class TimerObserverRunnable : public nsRunnable { public: TimerObserverRunnable(nsIObserver* observer) : mObserver(observer) { } NS_DECL_NSIRUNNABLE private: nsCOMPtr mObserver; }; NS_IMETHODIMP TimerObserverRunnable::Run() { nsCOMPtr observerService = mozilla::services::GetObserverService(); if (observerService) { observerService->AddObserver(mObserver, "sleep_notification", false); observerService->AddObserver(mObserver, "wake_notification", false); } return NS_OK; } } // anonymous namespace nsresult TimerThread::Init() { PR_LOG(gTimerLog, PR_LOG_DEBUG, ("TimerThread::Init [%d]\n", mInitialized)); if (mInitialized) { if (!mThread) return NS_ERROR_FAILURE; return NS_OK; } if (PR_ATOMIC_SET(&mInitInProgress, 1) == 0) { // We hold on to mThread to keep the thread alive. nsresult rv = NS_NewThread(getter_AddRefs(mThread), this); if (NS_FAILED(rv)) { mThread = nullptr; } else { nsRefPtr r = new TimerObserverRunnable(this); if (NS_IsMainThread()) { r->Run(); } else { NS_DispatchToMainThread(r); } } { MonitorAutoLock lock(mMonitor); mInitialized = true; mMonitor.NotifyAll(); } } else { MonitorAutoLock lock(mMonitor); while (!mInitialized) { mMonitor.Wait(); } } if (!mThread) return NS_ERROR_FAILURE; return NS_OK; } nsresult TimerThread::Shutdown() { PR_LOG(gTimerLog, PR_LOG_DEBUG, ("TimerThread::Shutdown begin\n")); if (!mThread) return NS_ERROR_NOT_INITIALIZED; nsTArray timers; { // lock scope MonitorAutoLock lock(mMonitor); mShutdown = true; // notify the cond var so that Run() can return if (mWaiting) mMonitor.Notify(); // Need to copy content of mTimers array to a local array // because call to timers' ReleaseCallback() (and release its self) // must not be done under the lock. Destructor of a callback // might potentially call some code reentering the same lock // that leads to unexpected behavior or deadlock. // See bug 422472. timers.AppendElements(mTimers); mTimers.Clear(); } uint32_t timersCount = timers.Length(); for (uint32_t i = 0; i < timersCount; i++) { nsTimerImpl *timer = timers[i]; timer->ReleaseCallback(); ReleaseTimerInternal(timer); } mThread->Shutdown(); // wait for the thread to die PR_LOG(gTimerLog, PR_LOG_DEBUG, ("TimerThread::Shutdown end\n")); return NS_OK; } // Keep track of how early (positive slack) or late (negative slack) timers // are running, and use the filtered slack number to adaptively estimate how // early timers should fire to be "on time". void TimerThread::UpdateFilter(uint32_t aDelay, TimeStamp aTimeout, TimeStamp aNow) { TimeDuration slack = aTimeout - aNow; double smoothSlack = 0; uint32_t i, filterLength; static TimeDuration kFilterFeedbackMaxTicks = TimeDuration::FromMilliseconds(FILTER_FEEDBACK_MAX); static TimeDuration kFilterFeedbackMinTicks = TimeDuration::FromMilliseconds(-FILTER_FEEDBACK_MAX); if (slack > kFilterFeedbackMaxTicks) slack = kFilterFeedbackMaxTicks; else if (slack < kFilterFeedbackMinTicks) slack = kFilterFeedbackMinTicks; mDelayLine[mDelayLineCounter & DELAY_LINE_LENGTH_MASK] = slack.ToMilliseconds(); if (++mDelayLineCounter < DELAY_LINE_LENGTH) { // Startup mode: accumulate a full delay line before filtering. PR_ASSERT(mTimeoutAdjustment.ToSeconds() == 0); filterLength = 0; } else { // Past startup: compute number of filter taps based on mMinTimerPeriod. if (mMinTimerPeriod == 0) { mMinTimerPeriod = (aDelay != 0) ? aDelay : 1; } else if (aDelay != 0 && aDelay < mMinTimerPeriod) { mMinTimerPeriod = aDelay; } filterLength = (uint32_t) (FILTER_DURATION / mMinTimerPeriod); if (filterLength > DELAY_LINE_LENGTH) filterLength = DELAY_LINE_LENGTH; else if (filterLength < 4) filterLength = 4; for (i = 1; i <= filterLength; i++) smoothSlack += mDelayLine[(mDelayLineCounter-i) & DELAY_LINE_LENGTH_MASK]; smoothSlack /= filterLength; // XXXbe do we need amplification? hacking a fudge factor, need testing... mTimeoutAdjustment = TimeDuration::FromMilliseconds(smoothSlack * 1.5); } #ifdef DEBUG_TIMERS PR_LOG(gTimerLog, PR_LOG_DEBUG, ("UpdateFilter: smoothSlack = %g, filterLength = %u\n", smoothSlack, filterLength)); #endif } /* void Run(); */ NS_IMETHODIMP TimerThread::Run() { PR_SetCurrentThreadName("Timer"); MonitorAutoLock lock(mMonitor); // We need to know how many microseconds give a positive PRIntervalTime. This // is platform-dependent, we calculate it at runtime now. // First we find a value such that PR_MicrosecondsToInterval(high) = 1 int32_t low = 0, high = 1; while (PR_MicrosecondsToInterval(high) == 0) high <<= 1; // We now have // PR_MicrosecondsToInterval(low) = 0 // PR_MicrosecondsToInterval(high) = 1 // and we can proceed to find the critical value using binary search while (high-low > 1) { int32_t mid = (high+low) >> 1; if (PR_MicrosecondsToInterval(mid) == 0) low = mid; else high = mid; } // Half of the amount of microseconds needed to get positive PRIntervalTime. // We use this to decide how to round our wait times later int32_t halfMicrosecondsIntervalResolution = high >> 1; while (!mShutdown) { // Have to use PRIntervalTime here, since PR_WaitCondVar takes it PRIntervalTime waitFor; if (mSleeping) { // Sleep for 0.1 seconds while not firing timers. waitFor = PR_MillisecondsToInterval(100); } else { waitFor = PR_INTERVAL_NO_TIMEOUT; TimeStamp now = TimeStamp::Now(); nsTimerImpl *timer = nullptr; if (!mTimers.IsEmpty()) { timer = mTimers[0]; if (now >= timer->mTimeout + mTimeoutAdjustment) { next: // NB: AddRef before the Release under RemoveTimerInternal to avoid // mRefCnt passing through zero, in case all other refs than the one // from mTimers have gone away (the last non-mTimers[i]-ref's Release // must be racing with us, blocked in gThread->RemoveTimer waiting // for TimerThread::mMonitor, under nsTimerImpl::Release. NS_ADDREF(timer); RemoveTimerInternal(timer); { // We release mMonitor around the Fire call to avoid deadlock. MonitorAutoUnlock unlock(mMonitor); #ifdef DEBUG_TIMERS if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) { PR_LOG(gTimerLog, PR_LOG_DEBUG, ("Timer thread woke up %fms from when it was supposed to\n", fabs((now - timer->mTimeout).ToMilliseconds()))); } #endif // We are going to let the call to PostTimerEvent here handle the // release of the timer so that we don't end up releasing the timer // on the TimerThread instead of on the thread it targets. if (NS_FAILED(timer->PostTimerEvent())) { nsrefcnt rc; NS_RELEASE2(timer, rc); // The nsITimer interface requires that its users keep a reference // to the timers they use while those timers are initialized but // have not yet fired. If this ever happens, it is a bug in the // code that created and used the timer. // // Further, note that this should never happen even with a // misbehaving user, because nsTimerImpl::Release checks for a // refcount of 1 with an armed timer (a timer whose only reference // is from the timer thread) and when it hits this will remove the // timer from the timer thread and thus destroy the last reference, // preventing this situation from occurring. NS_ASSERTION(rc != 0, "destroyed timer off its target thread!"); } timer = nullptr; } if (mShutdown) break; // Update now, as PostTimerEvent plus the locking may have taken a // tick or two, and we may goto next below. now = TimeStamp::Now(); } } if (!mTimers.IsEmpty()) { timer = mTimers[0]; TimeStamp timeout = timer->mTimeout + mTimeoutAdjustment; // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer // is due now or overdue. // // Note that we can only sleep for integer values of a certain // resolution. We use halfMicrosecondsIntervalResolution, calculated // before, to do the optimal rounding (i.e., of how to decide what // interval is so small we should not wait at all). double microseconds = (timeout - now).ToMilliseconds()*1000; if (microseconds < halfMicrosecondsIntervalResolution) goto next; // round down; execute event now waitFor = PR_MicrosecondsToInterval(microseconds); if (waitFor == 0) waitFor = 1; // round up, wait the minimum time we can wait } #ifdef DEBUG_TIMERS if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) { if (waitFor == PR_INTERVAL_NO_TIMEOUT) PR_LOG(gTimerLog, PR_LOG_DEBUG, ("waiting for PR_INTERVAL_NO_TIMEOUT\n")); else PR_LOG(gTimerLog, PR_LOG_DEBUG, ("waiting for %u\n", PR_IntervalToMilliseconds(waitFor))); } #endif } mWaiting = true; mMonitor.Wait(waitFor); mWaiting = false; } return NS_OK; } nsresult TimerThread::AddTimer(nsTimerImpl *aTimer) { MonitorAutoLock lock(mMonitor); // Add the timer to our list. int32_t i = AddTimerInternal(aTimer); if (i < 0) return NS_ERROR_OUT_OF_MEMORY; // Awaken the timer thread. if (mWaiting && i == 0) mMonitor.Notify(); return NS_OK; } nsresult TimerThread::TimerDelayChanged(nsTimerImpl *aTimer) { MonitorAutoLock lock(mMonitor); // Our caller has a strong ref to aTimer, so it can't go away here under // ReleaseTimerInternal. RemoveTimerInternal(aTimer); int32_t i = AddTimerInternal(aTimer); if (i < 0) return NS_ERROR_OUT_OF_MEMORY; // Awaken the timer thread. if (mWaiting && i == 0) mMonitor.Notify(); return NS_OK; } nsresult TimerThread::RemoveTimer(nsTimerImpl *aTimer) { MonitorAutoLock lock(mMonitor); // Remove the timer from our array. Tell callers that aTimer was not found // by returning NS_ERROR_NOT_AVAILABLE. Unlike the TimerDelayChanged case // immediately above, our caller may be passing a (now-)weak ref in via the // aTimer param, specifically when nsTimerImpl::Release loses a race with // TimerThread::Run, must wait for the mMonitor auto-lock here, and during the // wait Run drops the only remaining ref to aTimer via RemoveTimerInternal. if (!RemoveTimerInternal(aTimer)) return NS_ERROR_NOT_AVAILABLE; // Awaken the timer thread. if (mWaiting) mMonitor.Notify(); return NS_OK; } // This function must be called from within a lock int32_t TimerThread::AddTimerInternal(nsTimerImpl *aTimer) { if (mShutdown) return -1; TimeStamp now = TimeStamp::Now(); uint32_t count = mTimers.Length(); uint32_t i = 0; for (; i < count; i++) { nsTimerImpl *timer = mTimers[i]; // Don't break till we have skipped any overdue timers. // XXXbz why? Given our definition of overdue in terms of // mTimeoutAdjustment, aTimer might be overdue already! Why not // just fire timers in order? // XXX does this hold for TYPE_REPEATING_PRECISE? /be if (now < timer->mTimeout + mTimeoutAdjustment && aTimer->mTimeout < timer->mTimeout) { break; } } if (!mTimers.InsertElementAt(i, aTimer)) return -1; aTimer->mArmed = true; NS_ADDREF(aTimer); return i; } bool TimerThread::RemoveTimerInternal(nsTimerImpl *aTimer) { if (!mTimers.RemoveElement(aTimer)) return false; ReleaseTimerInternal(aTimer); return true; } void TimerThread::ReleaseTimerInternal(nsTimerImpl *aTimer) { // Order is crucial here -- see nsTimerImpl::Release. aTimer->mArmed = false; NS_RELEASE(aTimer); } void TimerThread::DoBeforeSleep() { mSleeping = true; } void TimerThread::DoAfterSleep() { mSleeping = true; // wake may be notified without preceding sleep notification for (uint32_t i = 0; i < mTimers.Length(); i ++) { nsTimerImpl *timer = mTimers[i]; // get and set the delay to cause its timeout to be recomputed uint32_t delay; timer->GetDelay(&delay); timer->SetDelay(delay); } // nuke the stored adjustments, so they get recalibrated mTimeoutAdjustment = TimeDuration(0); mDelayLineCounter = 0; mSleeping = false; } /* void observe (in nsISupports aSubject, in string aTopic, in wstring aData); */ NS_IMETHODIMP TimerThread::Observe(nsISupports* /* aSubject */, const char *aTopic, const PRUnichar* /* aData */) { if (strcmp(aTopic, "sleep_notification") == 0) DoBeforeSleep(); else if (strcmp(aTopic, "wake_notification") == 0) DoAfterSleep(); return NS_OK; }