gecko/content/media/nsBuiltinDecoderStateMachine.cpp

2630 lines
98 KiB
C++
Raw Normal View History

/* vim:set ts=2 sw=2 sts=2 et cindent: */
2012-05-21 04:12:37 -07:00
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <limits>
#include "nsAudioStream.h"
#include "nsTArray.h"
#include "nsBuiltinDecoder.h"
#include "nsBuiltinDecoderReader.h"
#include "nsBuiltinDecoderStateMachine.h"
#include "mozilla/mozalloc.h"
#include "VideoUtils.h"
#include "nsTimeRanges.h"
#include "nsDeque.h"
#include "AudioSegment.h"
#include "VideoSegment.h"
#include "mozilla/Preferences.h"
#include "mozilla/StandardInteger.h"
#include "mozilla/Util.h"
using namespace mozilla;
using namespace mozilla::layers;
#ifdef PR_LOGGING
extern PRLogModuleInfo* gBuiltinDecoderLog;
#define LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
#else
#define LOG(type, msg)
#endif
// Wait this number of seconds when buffering, then leave and play
// as best as we can if the required amount of data hasn't been
// retrieved.
static const PRUint32 BUFFERING_WAIT_S = 30;
// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const PRUint32 LOW_AUDIO_USECS = 300000;
// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
const PRInt64 AMPLE_AUDIO_USECS = 1000000;
// Maximum number of bytes we'll allocate and write at once to the audio
// hardware when the audio stream contains missing frames and we're
// writing silence in order to fill the gap. We limit our silence-writes
// to 32KB in order to avoid allocating an impossibly large chunk of
// memory if we encounter a large chunk of silence.
const PRUint32 SILENCE_BYTES_CHUNK = 32 * 1024;
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "pumping video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const PRUint32 LOW_VIDEO_FRAMES = 1;
// If we've got more than AMPLE_VIDEO_FRAMES decoded video frames waiting in
// the video queue, we will not decode any more video frames until some have
// been consumed by the play state machine thread.
static const PRUint32 AMPLE_VIDEO_FRAMES = 10;
// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;
// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const PRInt64 LOW_DATA_THRESHOLD_USECS = 5000000;
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
PR_STATIC_ASSERT(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS);
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const PRUint32 EXHAUSTED_DATA_MARGIN_USECS = 60000;
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
// normal buffering mode. This exists so that if the decode-ahead exhausts the
// downloaded data while decode/playback is just starting up (for example
// after a seek while the media is still playing, or when playing a media
// as soon as it's load started), we won't necessarily stop for 30s and wait
// for buffering. We may actually be able to playback in this case, so exit
// buffering early and try to play. If it turns out we can't play, we'll fall
// back to buffering normally.
static const PRUint32 QUICK_BUFFER_THRESHOLD_USECS = 2000000;
// If we're quick buffering, we'll remain in buffering mode while we have less than
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
static const PRUint32 QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
// quick buffering in a timely fashion, as the decode pauses when it
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
// QUICK_BUFFERING_LOW_DATA_USECS.
PR_STATIC_ASSERT(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS);
static TimeDuration UsecsToDuration(PRInt64 aUsecs) {
return TimeDuration::FromMilliseconds(static_cast<double>(aUsecs) / USECS_PER_MS);
}
static PRInt64 DurationToUsecs(TimeDuration aDuration) {
return static_cast<PRInt64>(aDuration.ToSeconds() * USECS_PER_S);
}
class nsAudioMetadataEventRunner : public nsRunnable
{
private:
nsCOMPtr<nsBuiltinDecoder> mDecoder;
public:
nsAudioMetadataEventRunner(nsBuiltinDecoder* aDecoder, PRUint32 aChannels,
PRUint32 aRate, bool aHasAudio,
nsHTMLMediaElement::MetadataTags* aTags) :
mDecoder(aDecoder),
mChannels(aChannels),
mRate(aRate),
mHasAudio(aHasAudio),
mTags(aTags)
{
}
NS_IMETHOD Run()
{
mDecoder->MetadataLoaded(mChannels, mRate, mHasAudio, mTags);
return NS_OK;
}
const PRUint32 mChannels;
const PRUint32 mRate;
const bool mHasAudio;
nsHTMLMediaElement::MetadataTags* mTags;
};
// Owns the global state machine thread and counts of
// state machine and decoder threads. There should
// only be one instance of this class.
class StateMachineTracker
{
private:
StateMachineTracker() :
mMonitor("media.statemachinetracker"),
mStateMachineCount(0),
mDecodeThreadCount(0),
mStateMachineThread(nullptr)
{
MOZ_COUNT_CTOR(StateMachineTracker);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
}
~StateMachineTracker()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(StateMachineTracker);
}
public:
// Access singleton instance. This is initially called on the main
// thread in the nsBuiltinDecoderStateMachine constructor resulting
// in the global object being created lazily. Non-main thread
// access always occurs after this and uses the monitor to
// safely access the decode thread counts.
static StateMachineTracker& Instance();
// Instantiate the global state machine thread if required.
// Call on main thread only.
void EnsureGlobalStateMachine();
// Destroy global state machine thread if required.
// Call on main thread only.
void CleanupGlobalStateMachine();
// Return the global state machine thread. Call from any thread.
nsIThread* GetGlobalStateMachineThread()
{
ReentrantMonitorAutoEnter mon(mMonitor);
NS_ASSERTION(mStateMachineThread, "Should have non-null state machine thread!");
return mStateMachineThread;
}
// Requests that a decode thread be created for aStateMachine. The thread
// may be created immediately, or after some delay, once a thread becomes
// available. The request can be cancelled using CancelCreateDecodeThread().
// It's the callers responsibility to not call this more than once for any
// given state machine.
nsresult RequestCreateDecodeThread(nsBuiltinDecoderStateMachine* aStateMachine);
// Cancels a request made by RequestCreateDecodeThread to create a decode
// thread for aStateMachine.
nsresult CancelCreateDecodeThread(nsBuiltinDecoderStateMachine* aStateMachine);
// Maximum number of active decode threads allowed. When more
// than this number are active the thread creation will fail.
static const PRUint32 MAX_DECODE_THREADS = 25;
// Returns the number of active decode threads.
// Call on any thread. Holds the internal monitor so don't
// call with any other monitor held to avoid deadlock.
PRUint32 GetDecodeThreadCount();
// Keep track of the fact that a decode thread was destroyed.
// Call on any thread. Holds the internal monitor so don't
// call with any other monitor held to avoid deadlock.
void NoteDecodeThreadDestroyed();
#ifdef DEBUG
// Returns true if aStateMachine has a pending request for a
// decode thread.
bool IsQueued(nsBuiltinDecoderStateMachine* aStateMachine);
#endif
private:
// Holds global instance of StateMachineTracker.
// Writable on main thread only.
static StateMachineTracker* sInstance;
// Reentrant monitor that must be obtained to access
// the decode thread count member and methods.
ReentrantMonitor mMonitor;
// Number of instances of nsBuiltinDecoderStateMachine
// that are currently instantiated. Access on the
// main thread only.
PRUint32 mStateMachineCount;
// Number of instances of decoder threads that are
// currently instantiated. Access only with the
// mMonitor lock held. Can be used from any thread.
PRUint32 mDecodeThreadCount;
// Global state machine thread. Write on the main thread
// only, read from the decoder threads. Synchronized via
// the mMonitor.
nsIThread* mStateMachineThread;
// Queue of state machines waiting for decode threads. Entries at the front
// get their threads first.
nsDeque mPending;
};
StateMachineTracker* StateMachineTracker::sInstance = nullptr;
StateMachineTracker& StateMachineTracker::Instance()
{
if (!sInstance) {
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
sInstance = new StateMachineTracker();
}
return *sInstance;
}
void StateMachineTracker::EnsureGlobalStateMachine()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mMonitor);
if (mStateMachineCount == 0) {
NS_ASSERTION(!mStateMachineThread, "Should have null state machine thread!");
DebugOnly<nsresult> rv = NS_NewNamedThread("Media State", &mStateMachineThread, nullptr);
NS_ABORT_IF_FALSE(NS_SUCCEEDED(rv), "Can't create media state machine thread");
}
mStateMachineCount++;
}
#ifdef DEBUG
bool StateMachineTracker::IsQueued(nsBuiltinDecoderStateMachine* aStateMachine)
{
ReentrantMonitorAutoEnter mon(mMonitor);
PRInt32 size = mPending.GetSize();
for (int i = 0; i < size; ++i) {
nsBuiltinDecoderStateMachine* m =
static_cast<nsBuiltinDecoderStateMachine*>(mPending.ObjectAt(i));
if (m == aStateMachine) {
return true;
}
}
return false;
}
#endif
void StateMachineTracker::CleanupGlobalStateMachine()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
NS_ABORT_IF_FALSE(mStateMachineCount > 0,
"State machine ref count must be > 0");
mStateMachineCount--;
if (mStateMachineCount == 0) {
LOG(PR_LOG_DEBUG, ("Destroying media state machine thread"));
NS_ASSERTION(mPending.GetSize() == 0, "Shouldn't all requests be handled by now?");
{
ReentrantMonitorAutoEnter mon(mMonitor);
nsCOMPtr<nsIRunnable> event = new ShutdownThreadEvent(mStateMachineThread);
NS_RELEASE(mStateMachineThread);
mStateMachineThread = nullptr;
NS_DispatchToMainThread(event);
NS_ASSERTION(mDecodeThreadCount == 0, "Decode thread count must be zero.");
sInstance = nullptr;
}
delete this;
}
}
void StateMachineTracker::NoteDecodeThreadDestroyed()
{
ReentrantMonitorAutoEnter mon(mMonitor);
--mDecodeThreadCount;
while (mDecodeThreadCount < MAX_DECODE_THREADS && mPending.GetSize() > 0) {
nsBuiltinDecoderStateMachine* m =
static_cast<nsBuiltinDecoderStateMachine*>(mPending.PopFront());
nsresult rv;
{
ReentrantMonitorAutoExit exitMon(mMonitor);
rv = m->StartDecodeThread();
}
if (NS_SUCCEEDED(rv)) {
++mDecodeThreadCount;
}
}
}
PRUint32 StateMachineTracker::GetDecodeThreadCount()
{
ReentrantMonitorAutoEnter mon(mMonitor);
return mDecodeThreadCount;
}
nsresult StateMachineTracker::CancelCreateDecodeThread(nsBuiltinDecoderStateMachine* aStateMachine) {
ReentrantMonitorAutoEnter mon(mMonitor);
PRInt32 size = mPending.GetSize();
for (PRInt32 i = 0; i < size; ++i) {
void* m = static_cast<nsBuiltinDecoderStateMachine*>(mPending.ObjectAt(i));
if (m == aStateMachine) {
mPending.RemoveObjectAt(i);
break;
}
}
NS_ASSERTION(!IsQueued(aStateMachine), "State machine should no longer have queued request.");
return NS_OK;
}
nsresult StateMachineTracker::RequestCreateDecodeThread(nsBuiltinDecoderStateMachine* aStateMachine)
{
NS_ENSURE_STATE(aStateMachine);
ReentrantMonitorAutoEnter mon(mMonitor);
if (mPending.GetSize() > 0 || mDecodeThreadCount + 1 >= MAX_DECODE_THREADS) {
// If there's already state machines in the queue, or we've exceeded the
// limit, append the state machine to the queue of state machines waiting
// for a decode thread. This ensures state machines already waiting get
// their threads first.
mPending.Push(aStateMachine);
return NS_OK;
}
nsresult rv;
{
ReentrantMonitorAutoExit exitMon(mMonitor);
rv = aStateMachine->StartDecodeThread();
}
if (NS_SUCCEEDED(rv)) {
++mDecodeThreadCount;
}
NS_ASSERTION(mDecodeThreadCount <= MAX_DECODE_THREADS,
"Should keep to thread limit!");
return NS_OK;
}
nsBuiltinDecoderStateMachine::nsBuiltinDecoderStateMachine(nsBuiltinDecoder* aDecoder,
nsBuiltinDecoderReader* aReader,
bool aRealTime) :
mDecoder(aDecoder),
mState(DECODER_STATE_DECODING_METADATA),
mCbCrSize(0),
mPlayDuration(0),
mStartTime(-1),
mEndTime(-1),
mSeekTime(0),
mFragmentEndTime(-1),
mReader(aReader),
mCurrentFrameTime(0),
mAudioStartTime(-1),
mAudioEndTime(-1),
mVideoFrameEndTime(-1),
mVolume(1.0),
mAudioCaptured(false),
mSeekable(true),
mPositionChangeQueued(false),
mAudioCompleted(false),
mGotDurationFromMetaData(false),
mStopDecodeThread(true),
mDecodeThreadIdle(false),
mStopAudioThread(true),
mQuickBuffering(false),
mIsRunning(false),
mRunAgain(false),
mDispatchedRunEvent(false),
mDecodeThreadWaiting(false),
mRealTime(aRealTime),
mDidThrottleAudioDecoding(false),
mDidThrottleVideoDecoding(false),
mRequestedNewDecodeThread(false),
mEventManager(aDecoder)
{
MOZ_COUNT_CTOR(nsBuiltinDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
StateMachineTracker::Instance().EnsureGlobalStateMachine();
// only enable realtime mode when "media.realtime_decoder.enabled" is true.
if (Preferences::GetBool("media.realtime_decoder.enabled", false) == false)
mRealTime = false;
mBufferingWait = mRealTime ? 0 : BUFFERING_WAIT_S;
mLowDataThresholdUsecs = mRealTime ? 0 : LOW_DATA_THRESHOLD_USECS;
}
nsBuiltinDecoderStateMachine::~nsBuiltinDecoderStateMachine()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(nsBuiltinDecoderStateMachine);
NS_ASSERTION(!StateMachineTracker::Instance().IsQueued(this),
"Should not have a pending request for a new decode thread");
NS_ASSERTION(!mRequestedNewDecodeThread,
"Should not have (or flagged) a pending request for a new decode thread");
if (mTimer)
mTimer->Cancel();
mTimer = nullptr;
mReader = nullptr;
StateMachineTracker::Instance().CleanupGlobalStateMachine();
}
bool nsBuiltinDecoderStateMachine::HasFutureAudio() const {
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
// We've got audio ready to play if:
// 1. We've not completed playback of audio, and
// 2. we either have more than the threshold of decoded audio available, or
// we've completely decoded all audio (but not finished playing it yet
// as per 1).
return !mAudioCompleted &&
(AudioDecodedUsecs() > LOW_AUDIO_USECS || mReader->mAudioQueue.IsFinished());
}
bool nsBuiltinDecoderStateMachine::HaveNextFrameData() const {
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
return (!HasAudio() || HasFutureAudio()) &&
(!HasVideo() || mReader->mVideoQueue.GetSize() > 0);
}
PRInt64 nsBuiltinDecoderStateMachine::GetDecodedAudioDuration() {
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
PRInt64 audioDecoded = mReader->mAudioQueue.Duration();
if (mAudioEndTime != -1) {
audioDecoded += mAudioEndTime - GetMediaTime();
}
return audioDecoded;
}
void nsBuiltinDecoderStateMachine::DecodeThreadRun()
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_DECODING_METADATA) {
if (NS_FAILED(DecodeMetadata())) {
NS_ASSERTION(mState == DECODER_STATE_SHUTDOWN,
"Should be in shutdown state if metadata loading fails.");
LOG(PR_LOG_DEBUG, ("Decode metadata failed, shutting down decode thread"));
}
}
while (mState != DECODER_STATE_SHUTDOWN &&
mState != DECODER_STATE_COMPLETED &&
!mStopDecodeThread)
{
if (mState == DECODER_STATE_DECODING || mState == DECODER_STATE_BUFFERING) {
DecodeLoop();
} else if (mState == DECODER_STATE_SEEKING) {
DecodeSeek();
}
}
mDecodeThreadIdle = true;
LOG(PR_LOG_DEBUG, ("%p Decode thread finished", mDecoder.get()));
}
void nsBuiltinDecoderStateMachine::SendOutputStreamAudio(AudioData* aAudio,
OutputMediaStream* aStream,
AudioSegment* aOutput)
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (aAudio->mTime <= aStream->mLastAudioPacketTime) {
// ignore packet that we've already processed
return;
}
aStream->mLastAudioPacketTime = aAudio->mTime;
aStream->mLastAudioPacketEndTime = aAudio->GetEnd();
NS_ASSERTION(aOutput->GetChannels() == PRInt32(aAudio->mChannels),
"Wrong number of channels");
// This logic has to mimic AudioLoop closely to make sure we write
// the exact same silences
CheckedInt64 audioWrittenOffset = UsecsToFrames(mInfo.mAudioRate,
aStream->mAudioFramesWrittenBaseTime + mStartTime) + aStream->mAudioFramesWritten;
CheckedInt64 frameOffset = UsecsToFrames(mInfo.mAudioRate, aAudio->mTime);
if (!audioWrittenOffset.isValid() || !frameOffset.isValid())
return;
if (audioWrittenOffset.value() < frameOffset.value()) {
// Write silence to catch up
LOG(PR_LOG_DEBUG, ("%p Decoder writing %d frames of silence to MediaStream",
mDecoder.get(), PRInt32(frameOffset.value() - audioWrittenOffset.value())));
AudioSegment silence;
silence.InitFrom(*aOutput);
silence.InsertNullDataAtStart(frameOffset.value() - audioWrittenOffset.value());
aStream->mAudioFramesWritten += silence.GetDuration();
aOutput->AppendFrom(&silence);
}
PRInt64 offset;
if (aStream->mAudioFramesWritten == 0) {
NS_ASSERTION(frameOffset.value() <= audioWrittenOffset.value(),
"Otherwise we'd have taken the write-silence path");
// We're starting in the middle of a packet. Split the packet.
offset = audioWrittenOffset.value() - frameOffset.value();
} else {
// Write the entire packet.
offset = 0;
}
if (offset >= aAudio->mFrames)
return;
aAudio->EnsureAudioBuffer();
nsRefPtr<SharedBuffer> buffer = aAudio->mAudioBuffer;
aOutput->AppendFrames(buffer.forget(), aAudio->mFrames, PRInt32(offset), aAudio->mFrames,
MOZ_AUDIO_DATA_FORMAT);
LOG(PR_LOG_DEBUG, ("%p Decoder writing %d frames of data to MediaStream for AudioData at %lld",
mDecoder.get(), aAudio->mFrames - PRInt32(offset), aAudio->mTime));
aStream->mAudioFramesWritten += aAudio->mFrames - PRInt32(offset);
}
static void WriteVideoToMediaStream(mozilla::layers::Image* aImage,
PRInt64 aDuration, const gfxIntSize& aIntrinsicSize,
VideoSegment* aOutput)
{
nsRefPtr<mozilla::layers::Image> image = aImage;
aOutput->AppendFrame(image.forget(), aDuration, aIntrinsicSize);
}
static const TrackID TRACK_AUDIO = 1;
static const TrackID TRACK_VIDEO = 2;
static const TrackRate RATE_VIDEO = USECS_PER_S;
void nsBuiltinDecoderStateMachine::SendOutputStreamData()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (mState == DECODER_STATE_DECODING_METADATA)
return;
nsTArray<OutputMediaStream>& streams = mDecoder->OutputStreams();
PRInt64 minLastAudioPacketTime = PR_INT64_MAX;
bool finished =
(!mInfo.mHasAudio || mReader->mAudioQueue.IsFinished()) &&
(!mInfo.mHasVideo || mReader->mVideoQueue.IsFinished());
for (PRUint32 i = 0; i < streams.Length(); ++i) {
OutputMediaStream* stream = &streams[i];
SourceMediaStream* mediaStream = stream->mStream;
StreamTime endPosition = 0;
if (!stream->mStreamInitialized) {
if (mInfo.mHasAudio) {
AudioSegment* audio = new AudioSegment();
audio->Init(mInfo.mAudioChannels);
mediaStream->AddTrack(TRACK_AUDIO, mInfo.mAudioRate, 0, audio);
}
if (mInfo.mHasVideo) {
VideoSegment* video = new VideoSegment();
mediaStream->AddTrack(TRACK_VIDEO, RATE_VIDEO, 0, video);
}
stream->mStreamInitialized = true;
}
if (mInfo.mHasAudio) {
nsAutoTArray<AudioData*,10> audio;
// It's OK to hold references to the AudioData because while audio
// is captured, only the decoder thread pops from the queue (see below).
mReader->mAudioQueue.GetElementsAfter(stream->mLastAudioPacketTime, &audio);
AudioSegment output;
output.Init(mInfo.mAudioChannels);
for (PRUint32 i = 0; i < audio.Length(); ++i) {
SendOutputStreamAudio(audio[i], stream, &output);
}
if (output.GetDuration() > 0) {
mediaStream->AppendToTrack(TRACK_AUDIO, &output);
}
if (mReader->mAudioQueue.IsFinished() && !stream->mHaveSentFinishAudio) {
mediaStream->EndTrack(TRACK_AUDIO);
stream->mHaveSentFinishAudio = true;
}
minLastAudioPacketTime = NS_MIN(minLastAudioPacketTime, stream->mLastAudioPacketTime);
endPosition = NS_MAX(endPosition,
TicksToTimeRoundDown(mInfo.mAudioRate, stream->mAudioFramesWritten));
}
if (mInfo.mHasVideo) {
nsAutoTArray<VideoData*,10> video;
// It's OK to hold references to the VideoData only the decoder thread
// pops from the queue.
mReader->mVideoQueue.GetElementsAfter(stream->mNextVideoTime + mStartTime, &video);
VideoSegment output;
for (PRUint32 i = 0; i < video.Length(); ++i) {
VideoData* v = video[i];
if (stream->mNextVideoTime + mStartTime < v->mTime) {
LOG(PR_LOG_DEBUG, ("%p Decoder writing last video to MediaStream for %lld ms",
mDecoder.get(), v->mTime - (stream->mNextVideoTime + mStartTime)));
// Write last video frame to catch up. mLastVideoImage can be null here
// which is fine, it just means there's no video.
WriteVideoToMediaStream(stream->mLastVideoImage,
v->mTime - (stream->mNextVideoTime + mStartTime), stream->mLastVideoImageDisplaySize,
&output);
stream->mNextVideoTime = v->mTime - mStartTime;
}
if (stream->mNextVideoTime + mStartTime < v->mEndTime) {
LOG(PR_LOG_DEBUG, ("%p Decoder writing video frame %lld to MediaStream",
mDecoder.get(), v->mTime));
WriteVideoToMediaStream(v->mImage,
v->mEndTime - (stream->mNextVideoTime + mStartTime), v->mDisplay,
&output);
stream->mNextVideoTime = v->mEndTime - mStartTime;
stream->mLastVideoImage = v->mImage;
stream->mLastVideoImageDisplaySize = v->mDisplay;
} else {
LOG(PR_LOG_DEBUG, ("%p Decoder skipping writing video frame %lld to MediaStream",
mDecoder.get(), v->mTime));
}
}
if (output.GetDuration() > 0) {
mediaStream->AppendToTrack(TRACK_VIDEO, &output);
}
if (mReader->mVideoQueue.IsFinished() && !stream->mHaveSentFinishVideo) {
mediaStream->EndTrack(TRACK_VIDEO);
stream->mHaveSentFinishVideo = true;
}
endPosition = NS_MAX(endPosition,
TicksToTimeRoundDown(RATE_VIDEO, stream->mNextVideoTime));
}
if (!stream->mHaveSentFinish) {
stream->mStream->AdvanceKnownTracksTime(endPosition);
}
if (finished && !stream->mHaveSentFinish) {
stream->mHaveSentFinish = true;
stream->mStream->Finish();
}
}
if (mAudioCaptured) {
// Discard audio packets that are no longer needed.
PRInt64 audioPacketTimeToDiscard =
NS_MIN(minLastAudioPacketTime, mStartTime + mCurrentFrameTime);
while (true) {
nsAutoPtr<AudioData> a(mReader->mAudioQueue.PopFront());
if (!a)
break;
// Packet times are not 100% reliable so this may discard packets that
// actually contain data for mCurrentFrameTime. This means if someone might
// create a new output stream and we actually don't have the audio for the
// very start. That's OK, we'll play silence instead for a brief moment.
// That's OK. Seeking to this time would have a similar issue for such
// badly muxed resources.
if (a->GetEnd() >= audioPacketTimeToDiscard) {
mReader->mAudioQueue.PushFront(a.forget());
break;
}
}
if (finished) {
mAudioCompleted = true;
UpdateReadyState();
}
}
}
void nsBuiltinDecoderStateMachine::FinishOutputStreams()
{
// Tell all our output streams that all tracks have ended and we've
// finished.
nsTArray<OutputMediaStream>& streams = mDecoder->OutputStreams();
for (PRUint32 i = 0; i < streams.Length(); ++i) {
OutputMediaStream* stream = &streams[i];
if (!stream->mStreamInitialized) {
continue;
}
SourceMediaStream* mediaStream = stream->mStream;
if (mInfo.mHasAudio && !stream->mHaveSentFinishAudio) {
mediaStream->EndTrack(TRACK_AUDIO);
stream->mHaveSentFinishAudio = true;
}
if (mInfo.mHasVideo && !stream->mHaveSentFinishVideo) {
mediaStream->EndTrack(TRACK_VIDEO);
stream->mHaveSentFinishVideo = true;
}
// XXX ignoring mFinishWhenEnded for now. Immediate goal is to not crash.
if (!stream->mHaveSentFinish) {
mediaStream->Finish();
stream->mHaveSentFinish = true;
}
}
}
bool nsBuiltinDecoderStateMachine::HaveEnoughDecodedAudio(PRInt64 aAmpleAudioUSecs)
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (mReader->mAudioQueue.GetSize() == 0 ||
GetDecodedAudioDuration() < aAmpleAudioUSecs) {
return false;
}
if (!mAudioCaptured) {
return true;
}
nsTArray<OutputMediaStream>& streams = mDecoder->OutputStreams();
for (PRUint32 i = 0; i < streams.Length(); ++i) {
OutputMediaStream* stream = &streams[i];
if (stream->mStreamInitialized && !stream->mHaveSentFinishAudio &&
!stream->mStream->HaveEnoughBuffered(TRACK_AUDIO)) {
return false;
}
}
nsIThread* thread = GetStateMachineThread();
nsCOMPtr<nsIRunnable> callback = NS_NewRunnableMethod(this,
&nsBuiltinDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder);
for (PRUint32 i = 0; i < streams.Length(); ++i) {
OutputMediaStream* stream = &streams[i];
if (stream->mStreamInitialized && !stream->mHaveSentFinishAudio) {
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_AUDIO, thread, callback);
}
}
return true;
}
bool nsBuiltinDecoderStateMachine::HaveEnoughDecodedVideo()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (static_cast<PRUint32>(mReader->mVideoQueue.GetSize()) < AMPLE_VIDEO_FRAMES) {
return false;
}
nsTArray<OutputMediaStream>& streams = mDecoder->OutputStreams();
if (streams.IsEmpty()) {
return true;
}
for (PRUint32 i = 0; i < streams.Length(); ++i) {
OutputMediaStream* stream = &streams[i];
if (stream->mStreamInitialized && !stream->mHaveSentFinishVideo &&
!stream->mStream->HaveEnoughBuffered(TRACK_VIDEO)) {
return false;
}
}
nsIThread* thread = GetStateMachineThread();
nsCOMPtr<nsIRunnable> callback = NS_NewRunnableMethod(this,
&nsBuiltinDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder);
for (PRUint32 i = 0; i < streams.Length(); ++i) {
OutputMediaStream* stream = &streams[i];
if (stream->mStreamInitialized && !stream->mHaveSentFinishVideo) {
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_VIDEO, thread, callback);
}
}
return true;
}
void nsBuiltinDecoderStateMachine::DecodeLoop()
{
LOG(PR_LOG_DEBUG, ("%p Start DecodeLoop()", mDecoder.get()));
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
// We want to "pump" the decode until we've got a few frames decoded
// before we consider whether decode is falling behind.
bool audioPump = true;
bool videoPump = true;
// If the video decode is falling behind the audio, we'll start dropping the
// inter-frames up until the next keyframe which is at or before the current
// playback position. skipToNextKeyframe is true if we're currently
// skipping up to the next keyframe.
bool skipToNextKeyframe = false;
// Once we've decoded more than videoPumpThreshold video frames, we'll
// no longer be considered to be "pumping video".
const unsigned videoPumpThreshold = mRealTime ? 0 : AMPLE_VIDEO_FRAMES / 2;
// After the audio decode fills with more than audioPumpThreshold usecs
// of decoded audio, we'll start to check whether the audio or video decode
// is falling behind.
const unsigned audioPumpThreshold = mRealTime ? 0 : LOW_AUDIO_USECS * 2;
// Our local low audio threshold. We may increase this if we're slow to
// decode video frames, in order to reduce the chance of audio underruns.
PRInt64 lowAudioThreshold = LOW_AUDIO_USECS;
// Our local ample audio threshold. If we increase lowAudioThreshold, we'll
// also increase this too appropriately (we don't want lowAudioThreshold to
// be greater than ampleAudioThreshold, else we'd stop decoding!).
PRInt64 ampleAudioThreshold = AMPLE_AUDIO_USECS;
MediaQueue<VideoData>& videoQueue = mReader->mVideoQueue;
// Main decode loop.
bool videoPlaying = HasVideo();
bool audioPlaying = HasAudio();
while ((mState == DECODER_STATE_DECODING || mState == DECODER_STATE_BUFFERING) &&
!mStopDecodeThread &&
(videoPlaying || audioPlaying))
{
// We don't want to consider skipping to the next keyframe if we've
// only just started up the decode loop, so wait until we've decoded
// some frames before enabling the keyframe skip logic on video.
if (videoPump &&
static_cast<PRUint32>(videoQueue.GetSize()) >= videoPumpThreshold)
{
videoPump = false;
}
// We don't want to consider skipping to the next keyframe if we've
// only just started up the decode loop, so wait until we've decoded
// some audio data before enabling the keyframe skip logic on audio.
if (audioPump && GetDecodedAudioDuration() >= audioPumpThreshold) {
audioPump = false;
}
// We'll skip the video decode to the nearest keyframe if we're low on
// audio, or if we're low on video, provided we're not running low on
// data to decode. If we're running low on downloaded data to decode,
// we won't start keyframe skipping, as we'll be pausing playback to buffer
// soon anyway and we'll want to be able to display frames immediately
// after buffering finishes.
if (mState == DECODER_STATE_DECODING &&
!skipToNextKeyframe &&
videoPlaying &&
((!audioPump && audioPlaying && !mDidThrottleAudioDecoding && GetDecodedAudioDuration() < lowAudioThreshold) ||
(!videoPump && videoPlaying && !mDidThrottleVideoDecoding &&
static_cast<PRUint32>(videoQueue.GetSize()) < LOW_VIDEO_FRAMES)) &&
!HasLowUndecodedData())
{
skipToNextKeyframe = true;
LOG(PR_LOG_DEBUG, ("%p Skipping video decode to the next keyframe", mDecoder.get()));
}
// Video decode.
bool throttleVideoDecoding = !videoPlaying || HaveEnoughDecodedVideo();
if (mDidThrottleVideoDecoding && !throttleVideoDecoding) {
videoPump = true;
}
mDidThrottleVideoDecoding = throttleVideoDecoding;
if (!throttleVideoDecoding)
{
// Time the video decode, so that if it's slow, we can increase our low
// audio threshold to reduce the chance of an audio underrun while we're
// waiting for a video decode to complete.
TimeDuration decodeTime;
{
PRInt64 currentTime = GetMediaTime();
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
TimeStamp start = TimeStamp::Now();
videoPlaying = mReader->DecodeVideoFrame(skipToNextKeyframe, currentTime);
decodeTime = TimeStamp::Now() - start;
}
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > lowAudioThreshold &&
!HasLowUndecodedData())
{
lowAudioThreshold =
NS_MIN(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), AMPLE_AUDIO_USECS);
ampleAudioThreshold = NS_MAX(THRESHOLD_FACTOR * lowAudioThreshold,
ampleAudioThreshold);
LOG(PR_LOG_DEBUG,
("Slow video decode, set lowAudioThreshold=%lld ampleAudioThreshold=%lld",
lowAudioThreshold, ampleAudioThreshold));
}
}
// Audio decode.
bool throttleAudioDecoding = !audioPlaying || HaveEnoughDecodedAudio(ampleAudioThreshold);
if (mDidThrottleAudioDecoding && !throttleAudioDecoding) {
audioPump = true;
}
mDidThrottleAudioDecoding = throttleAudioDecoding;
if (!mDidThrottleAudioDecoding) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
audioPlaying = mReader->DecodeAudioData();
}
SendOutputStreamData();
// Notify to ensure that the AudioLoop() is not waiting, in case it was
// waiting for more audio to be decoded.
mDecoder->GetReentrantMonitor().NotifyAll();
// The ready state can change when we've decoded data, so update the
// ready state, so that DOM events can fire.
UpdateReadyState();
if ((mState == DECODER_STATE_DECODING || mState == DECODER_STATE_BUFFERING) &&
!mStopDecodeThread &&
(videoPlaying || audioPlaying) &&
throttleAudioDecoding && throttleVideoDecoding)
{
// All active bitstreams' decode is well ahead of the playback
// position, we may as well wait for the playback to catch up. Note the
// audio push thread acquires and notifies the decoder monitor every time
// it pops AudioData off the audio queue. So if the audio push thread pops
// the last AudioData off the audio queue right after that queue reported
// it was non-empty here, we'll receive a notification on the decoder
// monitor which will wake us up shortly after we sleep, thus preventing
// both the decode and audio push threads waiting at the same time.
// See bug 620326.
mDecodeThreadWaiting = true;
if (mDecoder->GetState() != nsBuiltinDecoder::PLAY_STATE_PLAYING) {
// We're not playing, and the decode is about to wait. This means
// the decode thread may not be needed in future. Signal the state
// machine thread to run, so it can decide whether to shutdown the
// decode thread.
ScheduleStateMachine();
}
mDecoder->GetReentrantMonitor().Wait();
mDecodeThreadWaiting = false;
}
} // End decode loop.
if (!mStopDecodeThread &&
mState != DECODER_STATE_SHUTDOWN &&
mState != DECODER_STATE_SEEKING)
{
mState = DECODER_STATE_COMPLETED;
ScheduleStateMachine();
}
LOG(PR_LOG_DEBUG, ("%p Exiting DecodeLoop", mDecoder.get()));
}
bool nsBuiltinDecoderStateMachine::IsPlaying()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
return !mPlayStartTime.IsNull();
}
static void WriteSilence(nsAudioStream* aStream, PRUint32 aFrames)
{
PRUint32 numSamples = aFrames * aStream->GetChannels();
nsAutoTArray<AudioDataValue, 1000> buf;
buf.SetLength(numSamples);
memset(buf.Elements(), 0, numSamples * sizeof(AudioDataValue));
aStream->Write(buf.Elements(), aFrames);
}
void nsBuiltinDecoderStateMachine::AudioLoop()
{
NS_ASSERTION(OnAudioThread(), "Should be on audio thread.");
LOG(PR_LOG_DEBUG, ("%p Begun audio thread/loop", mDecoder.get()));
PRInt64 audioDuration = 0;
PRInt64 audioStartTime = -1;
PRUint32 channels, rate;
double volume = -1;
bool setVolume;
PRInt32 minWriteFrames = -1;
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mAudioCompleted = false;
audioStartTime = mAudioStartTime;
channels = mInfo.mAudioChannels;
rate = mInfo.mAudioRate;
NS_ASSERTION(audioStartTime != -1, "Should have audio start time by now");
}
// It is unsafe to call some methods of nsAudioStream with the decoder
// monitor held, as on Android those methods do a synchronous dispatch to
// the main thread. If the audio thread holds the decoder monitor while
// it does a synchronous dispatch to the main thread, we can get deadlocks
// if the main thread tries to acquire the decoder monitor before the
// dispatched event has finished (or even started!) running. Methods which
// are unsafe to call with the decoder monitor held are documented as such
// in nsAudioStream.h.
nsRefPtr<nsAudioStream> audioStream = nsAudioStream::AllocateStream();
audioStream->Init(channels, rate, MOZ_AUDIO_DATA_FORMAT);
{
// We must hold the monitor while setting mAudioStream or whenever we query
// the playback position off the audio thread. This ensures the audio stream
// is always alive when we use it off the audio thread. Note that querying
// the playback position does not do a synchronous dispatch to the main
// thread, so it's safe to call with the decoder monitor held.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mAudioStream = audioStream;
volume = mVolume;
mAudioStream->SetVolume(volume);
}
while (1) {
// Wait while we're not playing, and we're not shutting down, or we're
// playing and we've got no audio to play.
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(mState != DECODER_STATE_DECODING_METADATA,
"Should have meta data before audio started playing.");
while (mState != DECODER_STATE_SHUTDOWN &&
!mStopAudioThread &&
(!IsPlaying() ||
mState == DECODER_STATE_BUFFERING ||
(mReader->mAudioQueue.GetSize() == 0 &&
!mReader->mAudioQueue.AtEndOfStream())))
{
if (!IsPlaying() && !mAudioStream->IsPaused()) {
mAudioStream->Pause();
}
mon.Wait();
}
// If we're shutting down, break out and exit the audio thread.
// Also break out if audio is being captured.
if (mState == DECODER_STATE_SHUTDOWN ||
mStopAudioThread ||
mReader->mAudioQueue.AtEndOfStream())
{
break;
}
// We only want to go to the expense of changing the volume if
// the volume has changed.
setVolume = volume != mVolume;
volume = mVolume;
// Note audio stream IsPaused() does not do synchronous dispatch to the
// main thread on Android, so can be called safely with the decoder
// monitor held.
if (IsPlaying() && mAudioStream->IsPaused()) {
mAudioStream->Resume();
}
}
if (setVolume) {
mAudioStream->SetVolume(volume);
}
if (minWriteFrames == -1) {
minWriteFrames = mAudioStream->GetMinWriteSize();
}
NS_ASSERTION(mReader->mAudioQueue.GetSize() > 0,
"Should have data to play");
// See if there's a gap in the audio. If there is, push silence into the
// audio hardware, so we can play across the gap.
const AudioData* s = mReader->mAudioQueue.PeekFront();
// Calculate the number of frames that have been pushed onto the audio
// hardware.
CheckedInt64 playedFrames = UsecsToFrames(audioStartTime, rate) +
audioDuration;
// Calculate the timestamp of the next chunk of audio in numbers of
// samples.
CheckedInt64 sampleTime = UsecsToFrames(s->mTime, rate);
CheckedInt64 missingFrames = sampleTime - playedFrames;
if (!missingFrames.isValid() || !sampleTime.isValid()) {
NS_WARNING("Int overflow adding in AudioLoop()");
break;
}
PRInt64 framesWritten = 0;
if (missingFrames.value() > 0) {
// The next audio chunk begins some time after the end of the last chunk
// we pushed to the audio hardware. We must push silence into the audio
// hardware so that the next audio chunk begins playback at the correct
// time.
missingFrames = NS_MIN<int64_t>(UINT32_MAX, missingFrames.value());
LOG(PR_LOG_DEBUG, ("%p Decoder playing %d frames of silence",
mDecoder.get(), PRInt32(missingFrames.value())));
framesWritten = PlaySilence(static_cast<PRUint32>(missingFrames.value()),
channels, playedFrames.value());
} else {
framesWritten = PlayFromAudioQueue(sampleTime.value(), channels);
}
audioDuration += framesWritten;
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
CheckedInt64 playedUsecs = FramesToUsecs(audioDuration, rate) + audioStartTime;
if (!playedUsecs.isValid()) {
NS_WARNING("Int overflow calculating audio end time");
break;
}
mAudioEndTime = playedUsecs.value();
}
}
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mReader->mAudioQueue.AtEndOfStream() &&
mState != DECODER_STATE_SHUTDOWN &&
!mStopAudioThread)
{
// Last frame pushed to audio hardware, wait for the audio to finish,
// before the audio thread terminates.
bool seeking = false;
{
PRInt64 unplayedFrames = audioDuration % minWriteFrames;
if (minWriteFrames > 1 && unplayedFrames > 0) {
// Sound is written by libsydneyaudio to the hardware in blocks of
// frames of size minWriteFrames. So if the number of frames we've
// written isn't an exact multiple of minWriteFrames, we'll have
// left over audio data which hasn't yet been written to the hardware,
// and so that audio will not start playing. Write silence to ensure
// the last block gets pushed to hardware, so that playback starts.
PRInt64 framesToWrite = minWriteFrames - unplayedFrames;
if (framesToWrite < PR_UINT32_MAX / channels) {
// Write silence manually rather than using PlaySilence(), so that
// the AudioAPI doesn't get a copy of the audio frames.
ReentrantMonitorAutoExit exit(mDecoder->GetReentrantMonitor());
WriteSilence(mAudioStream, framesToWrite);
}
}
PRInt64 oldPosition = -1;
PRInt64 position = GetMediaTime();
while (oldPosition != position &&
mAudioEndTime - position > 0 &&
mState != DECODER_STATE_SEEKING &&
mState != DECODER_STATE_SHUTDOWN)
{
const PRInt64 DRAIN_BLOCK_USECS = 100000;
Wait(NS_MIN(mAudioEndTime - position, DRAIN_BLOCK_USECS));
oldPosition = position;
position = GetMediaTime();
}
seeking = mState == DECODER_STATE_SEEKING;
}
if (!seeking && !mAudioStream->IsPaused()) {
{
ReentrantMonitorAutoExit exit(mDecoder->GetReentrantMonitor());
mAudioStream->Drain();
}
// Fire one last event for any extra frames that didn't fill a framebuffer.
mEventManager.Drain(mAudioEndTime);
}
}
}
LOG(PR_LOG_DEBUG, ("%p Reached audio stream end.", mDecoder.get()));
{
// Must hold lock while anulling the audio stream to prevent
// state machine thread trying to use it while we're destroying it.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mAudioStream = nullptr;
mEventManager.Clear();
if (!mAudioCaptured) {
mAudioCompleted = true;
UpdateReadyState();
// Kick the decode thread; it may be sleeping waiting for this to finish.
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
// Must not hold the decoder monitor while we shutdown the audio stream, as
// it makes a synchronous dispatch on Android.
audioStream->Shutdown();
audioStream = nullptr;
LOG(PR_LOG_DEBUG, ("%p Audio stream finished playing, audio thread exit", mDecoder.get()));
}
PRUint32 nsBuiltinDecoderStateMachine::PlaySilence(PRUint32 aFrames,
PRUint32 aChannels,
PRUint64 aFrameOffset)
{
NS_ASSERTION(OnAudioThread(), "Only call on audio thread.");
NS_ASSERTION(!mAudioStream->IsPaused(), "Don't play when paused");
PRUint32 maxFrames = SILENCE_BYTES_CHUNK / aChannels / sizeof(AudioDataValue);
PRUint32 frames = NS_MIN(aFrames, maxFrames);
WriteSilence(mAudioStream, frames);
// Dispatch events to the DOM for the audio just written.
mEventManager.QueueWrittenAudioData(nullptr, frames * aChannels,
(aFrameOffset + frames) * aChannels);
return frames;
}
PRUint32 nsBuiltinDecoderStateMachine::PlayFromAudioQueue(PRUint64 aFrameOffset,
PRUint32 aChannels)
{
NS_ASSERTION(OnAudioThread(), "Only call on audio thread.");
NS_ASSERTION(!mAudioStream->IsPaused(), "Don't play when paused");
nsAutoPtr<AudioData> audio(mReader->mAudioQueue.PopFront());
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_WARN_IF_FALSE(IsPlaying(), "Should be playing");
NS_ASSERTION(!mAudioCaptured, "Audio cannot be captured here!");
// Awaken the decode loop if it's waiting for space to free up in the
// audio queue.
mDecoder->GetReentrantMonitor().NotifyAll();
}
PRInt64 offset = -1;
PRUint32 frames = 0;
LOG(PR_LOG_DEBUG, ("%p Decoder playing %d frames of data to stream for AudioData at %lld",
mDecoder.get(), audio->mFrames, audio->mTime));
mAudioStream->Write(audio->mAudioData,
audio->mFrames);
offset = audio->mOffset;
frames = audio->mFrames;
// Dispatch events to the DOM for the audio just written.
mEventManager.QueueWrittenAudioData(audio->mAudioData.get(),
audio->mFrames * aChannels,
(aFrameOffset + frames) * aChannels);
if (offset != -1) {
mDecoder->UpdatePlaybackOffset(offset);
}
return frames;
}
nsresult nsBuiltinDecoderStateMachine::Init(nsDecoderStateMachine* aCloneDonor)
{
nsBuiltinDecoderReader* cloneReader = nullptr;
if (aCloneDonor) {
cloneReader = static_cast<nsBuiltinDecoderStateMachine*>(aCloneDonor)->mReader;
}
return mReader->Init(cloneReader);
}
void nsBuiltinDecoderStateMachine::StopPlayback()
{
LOG(PR_LOG_DEBUG, ("%p StopPlayback()", mDecoder.get()));
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mDecoder->mPlaybackStatistics.Stop(TimeStamp::Now());
if (IsPlaying()) {
mPlayDuration += DurationToUsecs(TimeStamp::Now() - mPlayStartTime);
mPlayStartTime = TimeStamp();
}
// Notify the audio thread, so that it notices that we've stopped playing,
// so it can pause audio playback.
mDecoder->GetReentrantMonitor().NotifyAll();
NS_ASSERTION(!IsPlaying(), "Should report not playing at end of StopPlayback()");
}
void nsBuiltinDecoderStateMachine::StartPlayback()
{
LOG(PR_LOG_DEBUG, ("%p StartPlayback()", mDecoder.get()));
NS_ASSERTION(!IsPlaying(), "Shouldn't be playing when StartPlayback() is called");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
LOG(PR_LOG_DEBUG, ("%p StartPlayback", mDecoder.get()));
mDecoder->mPlaybackStatistics.Start(TimeStamp::Now());
mPlayStartTime = TimeStamp::Now();
NS_ASSERTION(IsPlaying(), "Should report playing by end of StartPlayback()");
if (NS_FAILED(StartAudioThread())) {
NS_WARNING("Failed to create audio thread");
}
mDecoder->GetReentrantMonitor().NotifyAll();
}
void nsBuiltinDecoderStateMachine::UpdatePlaybackPositionInternal(PRInt64 aTime)
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(mStartTime >= 0, "Should have positive mStartTime");
mCurrentFrameTime = aTime - mStartTime;
NS_ASSERTION(mCurrentFrameTime >= 0, "CurrentTime should be positive!");
if (aTime > mEndTime) {
NS_ASSERTION(mCurrentFrameTime > GetDuration(),
"CurrentTime must be after duration if aTime > endTime!");
mEndTime = aTime;
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::DurationChanged);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
}
void nsBuiltinDecoderStateMachine::UpdatePlaybackPosition(PRInt64 aTime)
{
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
if (!mPositionChangeQueued || fragmentEnded) {
mPositionChangeQueued = true;
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::PlaybackPositionChanged);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
// Notify DOM of any queued up audioavailable events
mEventManager.DispatchPendingEvents(GetMediaTime());
if (fragmentEnded) {
StopPlayback();
}
}
void nsBuiltinDecoderStateMachine::ClearPositionChangeFlag()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mPositionChangeQueued = false;
}
nsHTMLMediaElement::NextFrameStatus nsBuiltinDecoderStateMachine::GetNextFrameStatus()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsBuffering() || IsSeeking()) {
return nsHTMLMediaElement::NEXT_FRAME_UNAVAILABLE_BUFFERING;
} else if (HaveNextFrameData()) {
return nsHTMLMediaElement::NEXT_FRAME_AVAILABLE;
}
return nsHTMLMediaElement::NEXT_FRAME_UNAVAILABLE;
}
void nsBuiltinDecoderStateMachine::SetVolume(double volume)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mVolume = volume;
}
void nsBuiltinDecoderStateMachine::SetAudioCaptured(bool aCaptured)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (!mAudioCaptured && aCaptured) {
StopAudioThread();
}
mAudioCaptured = aCaptured;
}
double nsBuiltinDecoderStateMachine::GetCurrentTime() const
{
NS_ASSERTION(NS_IsMainThread() ||
OnStateMachineThread() ||
OnDecodeThread(),
"Should be on main, decode, or state machine thread.");
return static_cast<double>(mCurrentFrameTime) / static_cast<double>(USECS_PER_S);
}
PRInt64 nsBuiltinDecoderStateMachine::GetDuration()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (mEndTime == -1 || mStartTime == -1)
return -1;
return mEndTime - mStartTime;
}
void nsBuiltinDecoderStateMachine::SetDuration(PRInt64 aDuration)
{
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
"Should be on main or decode thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (aDuration == -1) {
return;
}
if (mStartTime != -1) {
mEndTime = mStartTime + aDuration;
} else {
mStartTime = 0;
mEndTime = aDuration;
}
}
void nsBuiltinDecoderStateMachine::SetEndTime(PRInt64 aEndTime)
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mEndTime = aEndTime;
}
void nsBuiltinDecoderStateMachine::SetFragmentEndTime(PRInt64 aEndTime)
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mFragmentEndTime = aEndTime < 0 ? aEndTime : aEndTime + mStartTime;
}
void nsBuiltinDecoderStateMachine::SetSeekable(bool aSeekable)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mSeekable = aSeekable;
}
void nsBuiltinDecoderStateMachine::Shutdown()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// Once we've entered the shutdown state here there's no going back.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// Change state before issuing shutdown request to threads so those
// threads can start exiting cleanly during the Shutdown call.
LOG(PR_LOG_DEBUG, ("%p Changed state to SHUTDOWN", mDecoder.get()));
ScheduleStateMachine();
mState = DECODER_STATE_SHUTDOWN;
mDecoder->GetReentrantMonitor().NotifyAll();
}
void nsBuiltinDecoderStateMachine::StartDecoding()
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState != DECODER_STATE_DECODING) {
mDecodeStartTime = TimeStamp::Now();
}
mState = DECODER_STATE_DECODING;
ScheduleStateMachine();
}
void nsBuiltinDecoderStateMachine::Play()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// When asked to play, switch to decoding state only if
// we are currently buffering. In other cases, we'll start playing anyway
// when the state machine notices the decoder's state change to PLAYING.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_BUFFERING) {
LOG(PR_LOG_DEBUG, ("%p Changed state from BUFFERING to DECODING", mDecoder.get()));
mState = DECODER_STATE_DECODING;
mDecodeStartTime = TimeStamp::Now();
}
ScheduleStateMachine();
}
void nsBuiltinDecoderStateMachine::ResetPlayback()
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
mVideoFrameEndTime = -1;
mAudioStartTime = -1;
mAudioEndTime = -1;
mAudioCompleted = false;
}
void nsBuiltinDecoderStateMachine::NotifyDataArrived(const char* aBuffer,
PRUint32 aLength,
PRInt64 aOffset)
{
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
mReader->NotifyDataArrived(aBuffer, aLength, aOffset);
// While playing an unseekable stream of unknown duration, mEndTime is
// updated (in AdvanceFrame()) as we play. But if data is being downloaded
// faster than played, mEndTime won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mEndTime here as new data is downloaded to prevent such a lag.
nsTimeRanges buffered;
if (mDecoder->IsInfinite() &&
NS_SUCCEEDED(mDecoder->GetBuffered(&buffered)))
{
PRUint32 length = 0;
buffered.GetLength(&length);
if (length) {
double end = 0;
buffered.End(length - 1, &end);
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mEndTime = NS_MAX<PRInt64>(mEndTime, end * USECS_PER_S);
}
}
}
void nsBuiltinDecoderStateMachine::Seek(double aTime)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// nsBuiltinDecoder::mPlayState should be SEEKING while we seek, and
// in that case nsBuiltinDecoder shouldn't be calling us.
NS_ASSERTION(mState != DECODER_STATE_SEEKING,
"We shouldn't already be seeking");
NS_ASSERTION(mState >= DECODER_STATE_DECODING,
"We should have loaded metadata");
double t = aTime * static_cast<double>(USECS_PER_S);
if (t > INT64_MAX) {
// Prevent integer overflow.
return;
}
mSeekTime = static_cast<PRInt64>(t) + mStartTime;
NS_ASSERTION(mSeekTime >= mStartTime && mSeekTime <= mEndTime,
"Can only seek in range [0,duration]");
// Bound the seek time to be inside the media range.
NS_ASSERTION(mStartTime != -1, "Should know start time by now");
NS_ASSERTION(mEndTime != -1, "Should know end time by now");
mSeekTime = NS_MIN(mSeekTime, mEndTime);
mSeekTime = NS_MAX(mStartTime, mSeekTime);
LOG(PR_LOG_DEBUG, ("%p Changed state to SEEKING (to %f)", mDecoder.get(), aTime));
mState = DECODER_STATE_SEEKING;
ScheduleStateMachine();
}
void nsBuiltinDecoderStateMachine::StopDecodeThread()
{
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (mRequestedNewDecodeThread) {
// We've requested that the decode be created, but it hasn't been yet.
// Cancel that request.
NS_ASSERTION(!mDecodeThread,
"Shouldn't have a decode thread until after request processed");
StateMachineTracker::Instance().CancelCreateDecodeThread(this);
mRequestedNewDecodeThread = false;
}
mStopDecodeThread = true;
mDecoder->GetReentrantMonitor().NotifyAll();
if (mDecodeThread) {
LOG(PR_LOG_DEBUG, ("%p Shutdown decode thread", mDecoder.get()));
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mDecodeThread->Shutdown();
StateMachineTracker::Instance().NoteDecodeThreadDestroyed();
}
mDecodeThread = nullptr;
mDecodeThreadIdle = false;
}
NS_ASSERTION(!mRequestedNewDecodeThread,
"Any pending requests for decode threads must be canceled and unflagged");
NS_ASSERTION(!StateMachineTracker::Instance().IsQueued(this),
"Any pending requests for decode threads must be canceled");
}
void nsBuiltinDecoderStateMachine::StopAudioThread()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mStopAudioThread = true;
mDecoder->GetReentrantMonitor().NotifyAll();
if (mAudioThread) {
LOG(PR_LOG_DEBUG, ("%p Shutdown audio thread", mDecoder.get()));
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mAudioThread->Shutdown();
}
mAudioThread = nullptr;
}
}
nsresult
nsBuiltinDecoderStateMachine::ScheduleDecodeThread()
{
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mStopDecodeThread = false;
if (mState >= DECODER_STATE_COMPLETED) {
return NS_OK;
}
if (mDecodeThread) {
NS_ASSERTION(!mRequestedNewDecodeThread,
"Shouldn't have requested new decode thread when we have a decode thread");
// We already have a decode thread...
if (mDecodeThreadIdle) {
// ... and it's not been shutdown yet, wake it up.
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(this, &nsBuiltinDecoderStateMachine::DecodeThreadRun);
mDecodeThread->Dispatch(event, NS_DISPATCH_NORMAL);
mDecodeThreadIdle = false;
}
return NS_OK;
} else if (!mRequestedNewDecodeThread) {
// We don't already have a decode thread, request a new one.
mRequestedNewDecodeThread = true;
ReentrantMonitorAutoExit mon(mDecoder->GetReentrantMonitor());
StateMachineTracker::Instance().RequestCreateDecodeThread(this);
}
return NS_OK;
}
nsresult
nsBuiltinDecoderStateMachine::StartDecodeThread()
{
NS_ASSERTION(StateMachineTracker::Instance().GetDecodeThreadCount() <
StateMachineTracker::MAX_DECODE_THREADS,
"Should not have reached decode thread limit");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(!StateMachineTracker::Instance().IsQueued(this),
"Should not already have a pending request for a new decode thread.");
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
NS_ASSERTION(!mDecodeThread, "Should not have decode thread yet");
NS_ASSERTION(mRequestedNewDecodeThread, "Should have requested this...");
mRequestedNewDecodeThread = false;
nsresult rv = NS_NewNamedThread("Media Decode",
getter_AddRefs(mDecodeThread),
nullptr,
MEDIA_THREAD_STACK_SIZE);
if (NS_FAILED(rv)) {
// Give up, report error to media element.
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::DecodeError);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
return rv;
}
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(this, &nsBuiltinDecoderStateMachine::DecodeThreadRun);
mDecodeThread->Dispatch(event, NS_DISPATCH_NORMAL);
mDecodeThreadIdle = false;
return NS_OK;
}
nsresult
nsBuiltinDecoderStateMachine::StartAudioThread()
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mStopAudioThread = false;
if (HasAudio() && !mAudioThread && !mAudioCaptured) {
nsresult rv = NS_NewNamedThread("Media Audio",
getter_AddRefs(mAudioThread),
nullptr,
MEDIA_THREAD_STACK_SIZE);
if (NS_FAILED(rv)) {
LOG(PR_LOG_DEBUG, ("%p Changed state to SHUTDOWN because failed to create audio thread", mDecoder.get()));
mState = DECODER_STATE_SHUTDOWN;
return rv;
}
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(this, &nsBuiltinDecoderStateMachine::AudioLoop);
mAudioThread->Dispatch(event, NS_DISPATCH_NORMAL);
}
return NS_OK;
}
PRInt64 nsBuiltinDecoderStateMachine::AudioDecodedUsecs() const
{
NS_ASSERTION(HasAudio(),
"Should only call AudioDecodedUsecs() when we have audio");
// The amount of audio we have decoded is the amount of audio data we've
// already decoded and pushed to the hardware, plus the amount of audio
// data waiting to be pushed to the hardware.
PRInt64 pushed = (mAudioEndTime != -1) ? (mAudioEndTime - GetMediaTime()) : 0;
return pushed + mReader->mAudioQueue.Duration();
}
bool nsBuiltinDecoderStateMachine::HasLowDecodedData(PRInt64 aAudioUsecs) const
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
// We consider ourselves low on decoded data if we're low on audio,
// provided we've not decoded to the end of the audio stream, or
// if we're only playing video and we're low on video frames, provided
// we've not decoded to the end of the video stream.
return ((HasAudio() &&
!mReader->mAudioQueue.IsFinished() &&
AudioDecodedUsecs() < aAudioUsecs)
||
(!HasAudio() &&
HasVideo() &&
!mReader->mVideoQueue.IsFinished() &&
static_cast<PRUint32>(mReader->mVideoQueue.GetSize()) < LOW_VIDEO_FRAMES));
}
bool nsBuiltinDecoderStateMachine::HasLowUndecodedData() const
{
return GetUndecodedData() < mLowDataThresholdUsecs;
}
PRInt64 nsBuiltinDecoderStateMachine::GetUndecodedData() const
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
"Must have loaded metadata for GetBuffered() to work");
nsTimeRanges buffered;
nsresult res = mDecoder->GetBuffered(&buffered);
NS_ENSURE_SUCCESS(res, 0);
double currentTime = GetCurrentTime();
nsIDOMTimeRanges* r = static_cast<nsIDOMTimeRanges*>(&buffered);
PRUint32 length = 0;
res = r->GetLength(&length);
NS_ENSURE_SUCCESS(res, 0);
for (PRUint32 index = 0; index < length; ++index) {
double start, end;
res = r->Start(index, &start);
NS_ENSURE_SUCCESS(res, 0);
res = r->End(index, &end);
NS_ENSURE_SUCCESS(res, 0);
if (start <= currentTime && end >= currentTime) {
return static_cast<PRInt64>((end - currentTime) * USECS_PER_S);
}
}
return 0;
}
void nsBuiltinDecoderStateMachine::SetFrameBufferLength(PRUint32 aLength)
{
NS_ASSERTION(aLength >= 512 && aLength <= 16384,
"The length must be between 512 and 16384");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mEventManager.SetSignalBufferLength(aLength);
}
nsresult nsBuiltinDecoderStateMachine::DecodeMetadata()
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(mState == DECODER_STATE_DECODING_METADATA,
"Only call when in metadata decoding state");
LOG(PR_LOG_DEBUG, ("%p Decoding Media Headers", mDecoder.get()));
nsresult res;
nsVideoInfo info;
nsHTMLMediaElement::MetadataTags* tags;
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
res = mReader->ReadMetadata(&info, &tags);
}
mInfo = info;
if (NS_FAILED(res) || (!info.mHasVideo && !info.mHasAudio)) {
// Dispatch the event to call DecodeError synchronously. This ensures
// we're in shutdown state by the time we exit the decode thread.
// If we just moved to shutdown state here on the decode thread, we may
// cause the state machine to shutdown/free memory without closing its
// media stream properly, and we'll get callbacks from the media stream
// causing a crash. Note the state machine shutdown joins this decode
// thread during shutdown (and other state machines can run on the state
// machine thread while the join is waiting), so it's safe to do this
// synchronously.
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::DecodeError);
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);
return NS_ERROR_FAILURE;
}
mDecoder->StartProgressUpdates();
mGotDurationFromMetaData = (GetDuration() != -1);
VideoData* videoData = FindStartTime();
if (videoData) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
RenderVideoFrame(videoData, TimeStamp::Now());
}
if (mState == DECODER_STATE_SHUTDOWN) {
return NS_ERROR_FAILURE;
}
NS_ASSERTION(mStartTime != -1, "Must have start time");
NS_ASSERTION((!HasVideo() && !HasAudio()) ||
!mSeekable || mEndTime != -1,
"Active seekable media should have end time");
NS_ASSERTION(!mSeekable || GetDuration() != -1, "Seekable media should have duration");
LOG(PR_LOG_DEBUG, ("%p Media goes from %lld to %lld (duration %lld) seekable=%d",
mDecoder.get(), mStartTime, mEndTime, GetDuration(), mSeekable));
// Inform the element that we've loaded the metadata and the first frame,
// setting the default framebuffer size for audioavailable events. Also,
// if there is audio, let the MozAudioAvailable event manager know about
// the metadata.
if (HasAudio()) {
mEventManager.Init(mInfo.mAudioChannels, mInfo.mAudioRate);
// Set the buffer length at the decoder level to be able, to be able
// to retrive the value via media element method. The RequestFrameBufferLength
// will call the nsBuiltinDecoderStateMachine::SetFrameBufferLength().
PRUint32 frameBufferLength = mInfo.mAudioChannels * FRAMEBUFFER_LENGTH_PER_CHANNEL;
mDecoder->RequestFrameBufferLength(frameBufferLength);
}
nsCOMPtr<nsIRunnable> metadataLoadedEvent =
new nsAudioMetadataEventRunner(mDecoder,
mInfo.mAudioChannels,
mInfo.mAudioRate,
HasAudio(),
tags);
NS_DispatchToMainThread(metadataLoadedEvent, NS_DISPATCH_NORMAL);
if (mState == DECODER_STATE_DECODING_METADATA) {
LOG(PR_LOG_DEBUG, ("%p Changed state from DECODING_METADATA to DECODING", mDecoder.get()));
StartDecoding();
}
if ((mState == DECODER_STATE_DECODING || mState == DECODER_STATE_COMPLETED) &&
mDecoder->GetState() == nsBuiltinDecoder::PLAY_STATE_PLAYING &&
!IsPlaying())
{
StartPlayback();
}
return NS_OK;
}
void nsBuiltinDecoderStateMachine::DecodeSeek()
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(mState == DECODER_STATE_SEEKING,
"Only call when in seeking state");
mDidThrottleAudioDecoding = false;
mDidThrottleVideoDecoding = false;
// During the seek, don't have a lock on the decoder state,
// otherwise long seek operations can block the main thread.
// The events dispatched to the main thread are SYNC calls.
// These calls are made outside of the decode monitor lock so
// it is safe for the main thread to makes calls that acquire
// the lock since it won't deadlock. We check the state when
// acquiring the lock again in case shutdown has occurred
// during the time when we didn't have the lock.
PRInt64 seekTime = mSeekTime;
mDecoder->StopProgressUpdates();
bool currentTimeChanged = false;
PRInt64 mediaTime = GetMediaTime();
if (mediaTime != seekTime) {
currentTimeChanged = true;
// Stop playback now to ensure that while we're outside the monitor
// dispatching SeekingStarted, playback doesn't advance and mess with
// mCurrentFrameTime that we've setting to seekTime here.
StopPlayback();
UpdatePlaybackPositionInternal(seekTime);
}
// SeekingStarted will do a UpdateReadyStateForData which will
// inform the element and its users that we have no frames
// to display
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
nsCOMPtr<nsIRunnable> startEvent =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::SeekingStarted);
NS_DispatchToMainThread(startEvent, NS_DISPATCH_SYNC);
}
if (currentTimeChanged) {
// The seek target is different than the current playback position,
// we'll need to seek the playback position, so shutdown our decode
// and audio threads.
StopAudioThread();
ResetPlayback();
nsresult res;
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
// Now perform the seek. We must not hold the state machine monitor
// while we seek, since the seek reads, which could block on I/O.
res = mReader->Seek(seekTime,
mStartTime,
mEndTime,
mediaTime);
}
if (NS_SUCCEEDED(res)) {
AudioData* audio = HasAudio() ? mReader->mAudioQueue.PeekFront() : nullptr;
NS_ASSERTION(!audio || (audio->mTime <= seekTime &&
seekTime <= audio->mTime + audio->mDuration),
"Seek target should lie inside the first audio block after seek");
PRInt64 startTime = (audio && audio->mTime < seekTime) ? audio->mTime : seekTime;
mAudioStartTime = startTime;
mPlayDuration = startTime - mStartTime;
if (HasVideo()) {
VideoData* video = mReader->mVideoQueue.PeekFront();
if (video) {
NS_ASSERTION(video->mTime <= seekTime && seekTime <= video->mEndTime,
"Seek target should lie inside the first frame after seek");
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
RenderVideoFrame(video, TimeStamp::Now());
}
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::Invalidate);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
}
}
}
mDecoder->StartProgressUpdates();
if (mState == DECODER_STATE_SHUTDOWN)
return;
// Try to decode another frame to detect if we're at the end...
LOG(PR_LOG_DEBUG, ("%p Seek completed, mCurrentFrameTime=%lld\n",
mDecoder.get(), mCurrentFrameTime));
// Change state to DECODING or COMPLETED now. SeekingStopped will
// call nsBuiltinDecoderStateMachine::Seek to reset our state to SEEKING
// if we need to seek again.
nsCOMPtr<nsIRunnable> stopEvent;
bool isLiveStream = mDecoder->GetResource()->GetLength() == -1;
if (GetMediaTime() == mEndTime && !isLiveStream) {
// Seeked to end of media, move to COMPLETED state. Note we don't do
// this if we're playing a live stream, since the end of media will advance
// once we download more data!
LOG(PR_LOG_DEBUG, ("%p Changed state from SEEKING (to %lld) to COMPLETED",
mDecoder.get(), seekTime));
stopEvent = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::SeekingStoppedAtEnd);
mState = DECODER_STATE_COMPLETED;
} else {
LOG(PR_LOG_DEBUG, ("%p Changed state from SEEKING (to %lld) to DECODING",
mDecoder.get(), seekTime));
stopEvent = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::SeekingStopped);
StartDecoding();
}
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
NS_DispatchToMainThread(stopEvent, NS_DISPATCH_SYNC);
}
// Reset quick buffering status. This ensures that if we began the
// seek while quick-buffering, we won't bypass quick buffering mode
// if we need to buffer after the seek.
mQuickBuffering = false;
ScheduleStateMachine();
}
// Runnable to dispose of the decoder and state machine on the main thread.
class nsDecoderDisposeEvent : public nsRunnable {
public:
nsDecoderDisposeEvent(already_AddRefed<nsBuiltinDecoder> aDecoder,
already_AddRefed<nsBuiltinDecoderStateMachine> aStateMachine)
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
NS_IMETHOD Run() {
NS_ASSERTION(NS_IsMainThread(), "Must be on main thread.");
mStateMachine->ReleaseDecoder();
mDecoder->ReleaseStateMachine();
mStateMachine = nullptr;
mDecoder = nullptr;
return NS_OK;
}
private:
nsRefPtr<nsBuiltinDecoder> mDecoder;
nsCOMPtr<nsBuiltinDecoderStateMachine> mStateMachine;
};
// Runnable which dispatches an event to the main thread to dispose of the
// decoder and state machine. This runs on the state machine thread after
// the state machine has shutdown, and all events for that state machine have
// finished running.
class nsDispatchDisposeEvent : public nsRunnable {
public:
nsDispatchDisposeEvent(nsBuiltinDecoder* aDecoder,
nsBuiltinDecoderStateMachine* aStateMachine)
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
NS_IMETHOD Run() {
NS_DispatchToMainThread(new nsDecoderDisposeEvent(mDecoder.forget(),
mStateMachine.forget()));
return NS_OK;
}
private:
nsRefPtr<nsBuiltinDecoder> mDecoder;
nsCOMPtr<nsBuiltinDecoderStateMachine> mStateMachine;
};
nsresult nsBuiltinDecoderStateMachine::RunStateMachine()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
MediaResource* resource = mDecoder->GetResource();
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
switch (mState) {
case DECODER_STATE_SHUTDOWN: {
if (IsPlaying()) {
StopPlayback();
}
StopAudioThread();
StopDecodeThread();
NS_ASSERTION(mState == DECODER_STATE_SHUTDOWN,
"How did we escape from the shutdown state?");
// Need to call this before dispatching nsDispatchDisposeEvent below, to
// ensure that any notifications dispatched by the stream graph
// will run before nsDispatchDisposeEvent below.
FinishOutputStreams();
// We must daisy-chain these events to destroy the decoder. We must
// destroy the decoder on the main thread, but we can't destroy the
// decoder while this thread holds the decoder monitor. We can't
// dispatch an event to the main thread to destroy the decoder from
// here, as the event may run before the dispatch returns, and we
// hold the decoder monitor here. We also want to guarantee that the
// state machine is destroyed on the main thread, and so the
// event runner running this function (which holds a reference to the
// state machine) needs to finish and be released in order to allow
// that. So we dispatch an event to run after this event runner has
// finished and released its monitor/references. That event then will
// dispatch an event to the main thread to release the decoder and
// state machine.
NS_DispatchToCurrentThread(new nsDispatchDisposeEvent(mDecoder, this));
return NS_OK;
}
case DECODER_STATE_DECODING_METADATA: {
// Ensure we have a decode thread to decode metadata.
return ScheduleDecodeThread();
}
case DECODER_STATE_DECODING: {
if (mDecoder->GetState() != nsBuiltinDecoder::PLAY_STATE_PLAYING &&
IsPlaying())
{
// We're playing, but the element/decoder is in paused state. Stop
// playing! Note we do this before StopDecodeThread() below because
// that blocks this state machine's execution, and can cause a
// perceptible delay between the pause command, and playback actually
// pausing.
StopPlayback();
}
if (IsPausedAndDecoderWaiting()) {
// The decode buffers are full, and playback is paused. Shutdown the
// decode thread.
StopDecodeThread();
return NS_OK;
}
// We're playing and/or our decode buffers aren't full. Ensure we have
// an active decode thread.
if (NS_FAILED(ScheduleDecodeThread())) {
NS_WARNING("Failed to start media decode thread!");
return NS_ERROR_FAILURE;
}
AdvanceFrame();
NS_ASSERTION(mDecoder->GetState() != nsBuiltinDecoder::PLAY_STATE_PLAYING ||
IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_BUFFERING: {
if (IsPausedAndDecoderWaiting()) {
// The decode buffers are full, and playback is paused. Shutdown the
// decode thread.
StopDecodeThread();
return NS_OK;
}
TimeStamp now = TimeStamp::Now();
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
// We will remain in the buffering state if we've not decoded enough
// data to begin playback, or if we've not downloaded a reasonable
// amount of data inside our buffering time.
TimeDuration elapsed = now - mBufferingStart;
bool isLiveStream = mDecoder->GetResource()->GetLength() == -1;
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
elapsed < TimeDuration::FromSeconds(mBufferingWait) &&
(mQuickBuffering ? HasLowDecodedData(QUICK_BUFFERING_LOW_DATA_USECS)
: (GetUndecodedData() < mBufferingWait * USECS_PER_S / 1000)) &&
!resource->IsDataCachedToEndOfResource(mDecoder->mDecoderPosition) &&
!resource->IsSuspended())
{
LOG(PR_LOG_DEBUG,
("%p Buffering: %.3lfs/%ds, timeout in %.3lfs %s",
mDecoder.get(),
GetUndecodedData() / static_cast<double>(USECS_PER_S),
mBufferingWait,
mBufferingWait - elapsed.ToSeconds(),
(mQuickBuffering ? "(quick exit)" : "")));
ScheduleStateMachine(USECS_PER_S);
return NS_OK;
} else {
LOG(PR_LOG_DEBUG, ("%p Changed state from BUFFERING to DECODING", mDecoder.get()));
LOG(PR_LOG_DEBUG, ("%p Buffered for %.3lfs",
mDecoder.get(),
(now - mBufferingStart).ToSeconds()));
StartDecoding();
}
// Notify to allow blocked decoder thread to continue
mDecoder->GetReentrantMonitor().NotifyAll();
UpdateReadyState();
if (mDecoder->GetState() == nsBuiltinDecoder::PLAY_STATE_PLAYING &&
!IsPlaying())
{
StartPlayback();
}
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_SEEKING: {
// Ensure we have a decode thread to perform the seek.
return ScheduleDecodeThread();
}
case DECODER_STATE_COMPLETED: {
StopDecodeThread();
if (mState != DECODER_STATE_COMPLETED) {
// While we're waiting for the decode thread to shutdown, we can
// change state, for example to seeking or shutdown state.
// Whatever changed our state should have scheduled another state
// machine run.
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if (mState == DECODER_STATE_COMPLETED &&
(mReader->mVideoQueue.GetSize() > 0 ||
(HasAudio() && !mAudioCompleted)))
{
AdvanceFrame();
NS_ASSERTION(mDecoder->GetState() != nsBuiltinDecoder::PLAY_STATE_PLAYING ||
IsStateMachineScheduled(),
"Must have timer scheduled");
return NS_OK;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
StopPlayback();
if (mState != DECODER_STATE_COMPLETED) {
// While we're presenting a frame we can change state. Whatever changed
// our state should have scheduled another state machine run.
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
StopAudioThread();
if (mDecoder->GetState() == nsBuiltinDecoder::PLAY_STATE_PLAYING) {
PRInt64 videoTime = HasVideo() ? mVideoFrameEndTime : 0;
PRInt64 clockTime = NS_MAX(mEndTime, NS_MAX(videoTime, GetAudioClock()));
UpdatePlaybackPosition(clockTime);
printf("nsBuiltinDecoderStateMachine::RunStateMachine queuing nsBuiltinDecoder::PlaybackEnded\n");
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::PlaybackEnded);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
return NS_OK;
}
}
return NS_OK;
}
void nsBuiltinDecoderStateMachine::RenderVideoFrame(VideoData* aData,
TimeStamp aTarget)
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
mDecoder->GetReentrantMonitor().AssertNotCurrentThreadIn();
if (aData->mDuplicate) {
return;
}
LOG(PR_LOG_DEBUG, ("%p Decoder playing video frame %lld",
mDecoder.get(), aData->mTime));
VideoFrameContainer* container = mDecoder->GetVideoFrameContainer();
if (container) {
container->SetCurrentFrame(aData->mDisplay, aData->mImage, aTarget);
}
}
PRInt64
nsBuiltinDecoderStateMachine::GetAudioClock()
{
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (!HasAudio() || mAudioCaptured)
return -1;
// We must hold the decoder monitor while using the audio stream off the
// audio thread to ensure that it doesn't get destroyed on the audio thread
// while we're using it.
if (!mAudioStream) {
// Audio thread hasn't played any data yet.
return mAudioStartTime;
}
// Note that querying the playback position does not do a synchronous
// dispatch to the main thread on Android, so it's safe to call with
// the decoder monitor held here.
PRInt64 t = mAudioStream->GetPosition();
return (t == -1) ? -1 : t + mAudioStartTime;
}
void nsBuiltinDecoderStateMachine::AdvanceFrame()
{
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(!HasAudio() || mAudioStartTime != -1,
"Should know audio start time if we have audio.");
if (mDecoder->GetState() != nsBuiltinDecoder::PLAY_STATE_PLAYING) {
return;
}
// Determine the clock time. If we've got audio, and we've not reached
// the end of the audio, use the audio clock. However if we've finished
// audio, or don't have audio, use the system clock.
PRInt64 clock_time = -1;
if (!IsPlaying()) {
clock_time = mPlayDuration + mStartTime;
} else {
PRInt64 audio_time = GetAudioClock();
if (HasAudio() && !mAudioCompleted && audio_time != -1) {
clock_time = audio_time;
// Resync against the audio clock, while we're trusting the
// audio clock. This ensures no "drift", particularly on Linux.
mPlayDuration = clock_time - mStartTime;
mPlayStartTime = TimeStamp::Now();
} else {
// Audio is disabled on this system. Sync to the system clock.
clock_time = DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration;
// Ensure the clock can never go backwards.
NS_ASSERTION(mCurrentFrameTime <= clock_time, "Clock should go forwards");
clock_time = NS_MAX(mCurrentFrameTime, clock_time) + mStartTime;
}
}
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame.
PRInt64 remainingTime = AUDIO_DURATION_USECS;
NS_ASSERTION(clock_time >= mStartTime, "Should have positive clock time.");
nsAutoPtr<VideoData> currentFrame;
if (mReader->mVideoQueue.GetSize() > 0) {
VideoData* frame = mReader->mVideoQueue.PeekFront();
while (mRealTime || clock_time >= frame->mTime) {
mVideoFrameEndTime = frame->mEndTime;
currentFrame = frame;
LOG(PR_LOG_DEBUG, ("%p Decoder discarding video frame %lld", mDecoder.get(), frame->mTime));
mReader->mVideoQueue.PopFront();
// Notify the decode thread that the video queue's buffers may have
// free'd up space for more frames.
mDecoder->GetReentrantMonitor().NotifyAll();
mDecoder->UpdatePlaybackOffset(frame->mOffset);
if (mReader->mVideoQueue.GetSize() == 0)
break;
frame = mReader->mVideoQueue.PeekFront();
}
// Current frame has already been presented, wait until it's time to
// present the next frame.
if (frame && !currentFrame) {
PRInt64 now = IsPlaying()
? (DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration)
: mPlayDuration;
remainingTime = frame->mTime - mStartTime - now;
}
}
// Check to see if we don't have enough data to play up to the next frame.
// If we don't, switch to buffering mode.
MediaResource* resource = mDecoder->GetResource();
if (mState == DECODER_STATE_DECODING &&
mDecoder->GetState() == nsBuiltinDecoder::PLAY_STATE_PLAYING &&
HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
!resource->IsDataCachedToEndOfResource(mDecoder->mDecoderPosition) &&
!resource->IsSuspended() &&
(JustExitedQuickBuffering() || HasLowUndecodedData()))
{
if (currentFrame) {
mReader->mVideoQueue.PushFront(currentFrame.forget());
}
StartBuffering();
ScheduleStateMachine();
return;
}
// We've got enough data to keep playing until at least the next frame.
// Start playing now if need be.
if (!IsPlaying() && ((mFragmentEndTime >= 0 && clock_time < mFragmentEndTime) || mFragmentEndTime < 0)) {
StartPlayback();
}
if (currentFrame) {
// Decode one frame and display it.
TimeStamp presTime = mPlayStartTime - UsecsToDuration(mPlayDuration) +
UsecsToDuration(currentFrame->mTime - mStartTime);
NS_ASSERTION(currentFrame->mTime >= mStartTime, "Should have positive frame time");
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
// If we have video, we want to increment the clock in steps of the frame
// duration.
RenderVideoFrame(currentFrame, presTime);
}
// If we're no longer playing after dropping and reacquiring the lock,
// playback must've been stopped on the decode thread (by a seek, for
// example). In that case, the current frame is probably out of date.
if (!IsPlaying()) {
ScheduleStateMachine();
return;
}
mDecoder->GetFrameStatistics().NotifyPresentedFrame();
PRInt64 now = DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration;
remainingTime = currentFrame->mEndTime - mStartTime - now;
currentFrame = nullptr;
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (mVideoFrameEndTime != -1 || mAudioEndTime != -1) {
// These will be non -1 if we've displayed a video frame, or played an audio frame.
clock_time = NS_MIN(clock_time, NS_MAX(mVideoFrameEndTime, mAudioEndTime));
if (clock_time > GetMediaTime()) {
// Only update the playback position if the clock time is greater
// than the previous playback position. The audio clock can
// sometimes report a time less than its previously reported in
// some situations, and we need to gracefully handle that.
UpdatePlaybackPosition(clock_time);
}
}
// If the number of audio/video frames queued has changed, either by
// this function popping and playing a video frame, or by the audio
// thread popping and playing an audio frame, we may need to update our
// ready state. Post an update to do so.
UpdateReadyState();
ScheduleStateMachine(remainingTime);
}
void nsBuiltinDecoderStateMachine::Wait(PRInt64 aUsecs) {
NS_ASSERTION(OnAudioThread(), "Only call on the audio thread");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
TimeStamp end = TimeStamp::Now() + UsecsToDuration(NS_MAX<PRInt64>(USECS_PER_MS, aUsecs));
TimeStamp now;
while ((now = TimeStamp::Now()) < end &&
mState != DECODER_STATE_SHUTDOWN &&
mState != DECODER_STATE_SEEKING &&
!mStopAudioThread &&
IsPlaying())
{
PRInt64 ms = static_cast<PRInt64>(NS_round((end - now).ToSeconds() * 1000));
if (ms == 0 || ms > PR_UINT32_MAX) {
break;
}
mDecoder->GetReentrantMonitor().Wait(PR_MillisecondsToInterval(static_cast<PRUint32>(ms)));
}
}
VideoData* nsBuiltinDecoderStateMachine::FindStartTime()
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
PRInt64 startTime = 0;
mStartTime = 0;
VideoData* v = nullptr;
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
v = mReader->FindStartTime(startTime);
}
if (startTime != 0) {
mStartTime = startTime;
if (mGotDurationFromMetaData) {
NS_ASSERTION(mEndTime != -1,
"We should have mEndTime as supplied duration here");
// We were specified a duration from a Content-Duration HTTP header.
// Adjust mEndTime so that mEndTime-mStartTime matches the specified
// duration.
mEndTime = mStartTime + mEndTime;
}
}
// Set the audio start time to be start of media. If this lies before the
// first actual audio frame we have, we'll inject silence during playback
// to ensure the audio starts at the correct time.
mAudioStartTime = mStartTime;
LOG(PR_LOG_DEBUG, ("%p Media start time is %lld", mDecoder.get(), mStartTime));
return v;
}
void nsBuiltinDecoderStateMachine::UpdateReadyState() {
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
nsCOMPtr<nsIRunnable> event;
switch (GetNextFrameStatus()) {
case nsHTMLMediaElement::NEXT_FRAME_UNAVAILABLE_BUFFERING:
event = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::NextFrameUnavailableBuffering);
break;
case nsHTMLMediaElement::NEXT_FRAME_AVAILABLE:
event = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::NextFrameAvailable);
break;
case nsHTMLMediaElement::NEXT_FRAME_UNAVAILABLE:
event = NS_NewRunnableMethod(mDecoder, &nsBuiltinDecoder::NextFrameUnavailable);
break;
default:
PR_NOT_REACHED("unhandled frame state");
}
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
bool nsBuiltinDecoderStateMachine::JustExitedQuickBuffering()
{
return !mDecodeStartTime.IsNull() &&
mQuickBuffering &&
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromSeconds(QUICK_BUFFER_THRESHOLD_USECS);
}
void nsBuiltinDecoderStateMachine::StartBuffering()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
if (IsPlaying()) {
StopPlayback();
}
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
// Go into quick buffering mode provided we've not just left buffering using
// a "quick exit". This stops us flip-flopping between playing and buffering
// when the download speed is similar to the decode speed.
mQuickBuffering =
!JustExitedQuickBuffering() &&
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
mBufferingStart = TimeStamp::Now();
// We need to tell the element that buffering has started.
// We can't just directly send an asynchronous runnable that
// eventually fires the "waiting" event. The problem is that
// there might be pending main-thread events, such as "data
// received" notifications, that mean we're not actually still
// buffering by the time this runnable executes. So instead
// we just trigger UpdateReadyStateForData; when it runs, it
// will check the current state and decide whether to tell
// the element we're buffering or not.
UpdateReadyState();
mState = DECODER_STATE_BUFFERING;
LOG(PR_LOG_DEBUG, ("%p Changed state from DECODING to BUFFERING, decoded for %.3lfs",
mDecoder.get(), decodeDuration.ToSeconds()));
#ifdef PR_LOGGING
nsMediaDecoder::Statistics stats = mDecoder->GetStatistics();
#endif
LOG(PR_LOG_DEBUG, ("%p Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
mDecoder.get(),
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)"));
}
nsresult nsBuiltinDecoderStateMachine::GetBuffered(nsTimeRanges* aBuffered) {
MediaResource* resource = mDecoder->GetResource();
NS_ENSURE_TRUE(resource, NS_ERROR_FAILURE);
resource->Pin();
nsresult res = mReader->GetBuffered(aBuffered, mStartTime);
resource->Unpin();
return res;
}
bool nsBuiltinDecoderStateMachine::IsPausedAndDecoderWaiting() {
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
return
mDecodeThreadWaiting &&
mDecoder->GetState() != nsBuiltinDecoder::PLAY_STATE_PLAYING &&
(mState == DECODER_STATE_DECODING || mState == DECODER_STATE_BUFFERING);
}
nsresult nsBuiltinDecoderStateMachine::Run()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
return CallRunStateMachine();
}
nsresult nsBuiltinDecoderStateMachine::CallRunStateMachine()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
// This will be set to true by ScheduleStateMachine() if it's called
// while we're in RunStateMachine().
mRunAgain = false;
// Set to true whenever we dispatch an event to run this state machine.
// This flag prevents us from dispatching
mDispatchedRunEvent = false;
mTimeout = TimeStamp();
mIsRunning = true;
nsresult res = RunStateMachine();
mIsRunning = false;
if (mRunAgain && !mDispatchedRunEvent) {
mDispatchedRunEvent = true;
return NS_DispatchToCurrentThread(this);
}
return res;
}
static void TimeoutExpired(nsITimer *aTimer, void *aClosure) {
nsBuiltinDecoderStateMachine *machine =
static_cast<nsBuiltinDecoderStateMachine*>(aClosure);
NS_ASSERTION(machine, "Must have been passed state machine");
machine->TimeoutExpired();
}
void nsBuiltinDecoderStateMachine::TimeoutExpired()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnStateMachineThread(), "Must be on state machine thread");
if (mIsRunning) {
mRunAgain = true;
} else if (!mDispatchedRunEvent) {
// We don't have an event dispatched to run the state machine, so we
// can just run it from here.
CallRunStateMachine();
}
// Otherwise, an event has already been dispatched to run the state machine
// as soon as possible. Nothing else needed to do, the state machine is
// going to run anyway.
}
nsresult nsBuiltinDecoderStateMachine::ScheduleStateMachine() {
return ScheduleStateMachine(0);
}
void nsBuiltinDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder() {
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mon.NotifyAll();
ScheduleStateMachine(0);
}
nsresult nsBuiltinDecoderStateMachine::ScheduleStateMachine(PRInt64 aUsecs) {
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
NS_ABORT_IF_FALSE(GetStateMachineThread(),
"Must have a state machine thread to schedule");
if (mState == DECODER_STATE_SHUTDOWN) {
return NS_ERROR_FAILURE;
}
aUsecs = PR_MAX(aUsecs, 0);
TimeStamp timeout = TimeStamp::Now() + UsecsToDuration(aUsecs);
if (!mTimeout.IsNull()) {
if (timeout >= mTimeout) {
// We've already scheduled a timer set to expire at or before this time,
// or have an event dispatched to run the state machine.
return NS_OK;
}
if (mTimer) {
// We've been asked to schedule a timer to run before an existing timer.
// Cancel the existing timer.
mTimer->Cancel();
}
}
PRUint32 ms = static_cast<PRUint32>((aUsecs / USECS_PER_MS) & 0xFFFFFFFF);
if (mRealTime && ms > 40)
ms = 40;
if (ms == 0) {
if (mIsRunning) {
// We're currently running this state machine on the state machine
// thread. Signal it to run again once it finishes its current cycle.
mRunAgain = true;
return NS_OK;
} else if (!mDispatchedRunEvent) {
// We're not currently running this state machine on the state machine
// thread. Dispatch an event to run one cycle of the state machine.
mDispatchedRunEvent = true;
return GetStateMachineThread()->Dispatch(this, NS_DISPATCH_NORMAL);
}
// We're not currently running this state machine on the state machine
// thread, but something has already dispatched an event to run it again,
// so just exit; it's going to run real soon.
return NS_OK;
}
mTimeout = timeout;
nsresult res;
if (!mTimer) {
mTimer = do_CreateInstance("@mozilla.org/timer;1", &res);
if (NS_FAILED(res)) return res;
mTimer->SetTarget(GetStateMachineThread());
}
res = mTimer->InitWithFuncCallback(::TimeoutExpired,
this,
ms,
nsITimer::TYPE_ONE_SHOT);
return res;
}
bool nsBuiltinDecoderStateMachine::OnStateMachineThread() const
{
return IsCurrentThread(GetStateMachineThread());
}
nsIThread* nsBuiltinDecoderStateMachine::GetStateMachineThread()
{
return StateMachineTracker::Instance().GetGlobalStateMachineThread();
}
void nsBuiltinDecoderStateMachine::NotifyAudioAvailableListener()
{
mDecoder->GetReentrantMonitor().AssertCurrentThreadIn();
mEventManager.NotifyAudioAvailableListener();
}