gecko/layout/base/FrameLayerBuilder.cpp

3514 lines
128 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2012-05-21 04:12:37 -07:00
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/DebugOnly.h"
#include "FrameLayerBuilder.h"
#include "nsDisplayList.h"
#include "nsPresContext.h"
#include "nsLayoutUtils.h"
#include "Layers.h"
#include "BasicLayers.h"
#include "nsSubDocumentFrame.h"
#include "nsCSSRendering.h"
#include "nsCSSFrameConstructor.h"
#include "gfxUtils.h"
#include "nsRenderingContext.h"
#include "MaskLayerImageCache.h"
#include "nsIScrollableFrame.h"
#include "nsPrintfCString.h"
#include "LayerTreeInvalidation.h"
#include "nsSVGIntegrationUtils.h"
#include "mozilla/Preferences.h"
#include "GeckoProfiler.h"
#include "mozilla/gfx/Tools.h"
#include "nsAnimationManager.h"
#include "nsTransitionManager.h"
#include <algorithm>
#ifdef DEBUG
#include <stdio.h>
//#define DEBUG_DISPLAY_ITEM_DATA
#endif
using namespace mozilla::layers;
using namespace mozilla::gfx;
namespace mozilla {
FrameLayerBuilder::DisplayItemData::DisplayItemData(LayerManagerData* aParent, uint32_t aKey,
Layer* aLayer, LayerState aLayerState, uint32_t aGeneration)
: mParent(aParent)
, mLayer(aLayer)
, mDisplayItemKey(aKey)
, mContainerLayerGeneration(aGeneration)
, mLayerState(aLayerState)
, mUsed(true)
, mIsInvalid(false)
{
}
FrameLayerBuilder::DisplayItemData::DisplayItemData(DisplayItemData &toCopy)
{
// This isn't actually a copy-constructor; notice that it steals toCopy's
// mGeometry pointer. Be careful.
mParent = toCopy.mParent;
mLayer = toCopy.mLayer;
mInactiveManager = toCopy.mInactiveManager;
mFrameList = toCopy.mFrameList;
mGeometry = toCopy.mGeometry;
mDisplayItemKey = toCopy.mDisplayItemKey;
mClip = toCopy.mClip;
mContainerLayerGeneration = toCopy.mContainerLayerGeneration;
mLayerState = toCopy.mLayerState;
mUsed = toCopy.mUsed;
}
void
FrameLayerBuilder::DisplayItemData::AddFrame(nsIFrame* aFrame)
{
mFrameList.AppendElement(aFrame);
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(FrameLayerBuilder::LayerManagerDataProperty()));
if (!array) {
array = new nsTArray<DisplayItemData*>();
aFrame->Properties().Set(FrameLayerBuilder::LayerManagerDataProperty(), array);
}
array->AppendElement(this);
}
void
FrameLayerBuilder::DisplayItemData::RemoveFrame(nsIFrame* aFrame)
{
DebugOnly<bool> result = mFrameList.RemoveElement(aFrame);
NS_ASSERTION(result, "Can't remove a frame that wasn't added!");
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(FrameLayerBuilder::LayerManagerDataProperty()));
NS_ASSERTION(array, "Must be already stored on the frame!");
array->RemoveElement(this);
}
void
FrameLayerBuilder::DisplayItemData::UpdateContents(Layer* aLayer, LayerState aState,
uint32_t aContainerLayerGeneration,
nsDisplayItem* aItem /* = nullptr */)
{
mLayer = aLayer;
mOptLayer = nullptr;
mInactiveManager = nullptr;
mLayerState = aState;
mContainerLayerGeneration = aContainerLayerGeneration;
mGeometry = nullptr;
mClip = DisplayItemClip();
mUsed = true;
if (!aItem) {
return;
}
nsAutoTArray<nsIFrame*, 4> copy(mFrameList);
if (!copy.RemoveElement(aItem->Frame())) {
AddFrame(aItem->Frame());
}
nsAutoTArray<nsIFrame*,4> mergedFrames;
aItem->GetMergedFrames(&mergedFrames);
for (uint32_t i = 0; i < mergedFrames.Length(); ++i) {
if (!copy.RemoveElement(mergedFrames[i])) {
AddFrame(mergedFrames[i]);
}
}
for (uint32_t i = 0; i < copy.Length(); i++) {
RemoveFrame(copy[i]);
}
}
static nsIFrame* sDestroyedFrame = NULL;
FrameLayerBuilder::DisplayItemData::~DisplayItemData()
{
for (uint32_t i = 0; i < mFrameList.Length(); i++) {
nsIFrame* frame = mFrameList[i];
if (frame == sDestroyedFrame) {
continue;
}
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(frame->Properties().Get(LayerManagerDataProperty()));
array->RemoveElement(this);
}
}
void
FrameLayerBuilder::DisplayItemData::GetFrameListChanges(nsDisplayItem* aOther,
nsTArray<nsIFrame*>& aOut)
{
aOut = mFrameList;
nsAutoTArray<nsIFrame*, 4> added;
if (!aOut.RemoveElement(aOther->Frame())) {
added.AppendElement(aOther->Frame());
}
nsAutoTArray<nsIFrame*,4> mergedFrames;
aOther->GetMergedFrames(&mergedFrames);
for (uint32_t i = 0; i < mergedFrames.Length(); ++i) {
if (!aOut.RemoveElement(mergedFrames[i])) {
added.AppendElement(mergedFrames[i]);
}
}
aOut.AppendElements(added);
}
/**
* This is the userdata we associate with a layer manager.
*/
class LayerManagerData : public LayerUserData {
public:
LayerManagerData(LayerManager *aManager)
: mLayerManager(aManager)
#ifdef DEBUG_DISPLAY_ITEM_DATA
, mParent(nullptr)
#endif
, mInvalidateAllLayers(false)
{
MOZ_COUNT_CTOR(LayerManagerData);
mDisplayItems.Init();
}
~LayerManagerData() {
MOZ_COUNT_DTOR(LayerManagerData);
}
#ifdef DEBUG_DISPLAY_ITEM_DATA
void Dump(const char *aPrefix = "") {
printf("%sLayerManagerData %p\n", aPrefix, this);
nsAutoCString prefix;
prefix += aPrefix;
prefix += " ";
mDisplayItems.EnumerateEntries(
FrameLayerBuilder::DumpDisplayItemDataForFrame, (void*)prefix.get());
}
#endif
/**
* Tracks which frames have layers associated with them.
*/
LayerManager *mLayerManager;
#ifdef DEBUG_DISPLAY_ITEM_DATA
LayerManagerData *mParent;
#endif
nsTHashtable<nsRefPtrHashKey<FrameLayerBuilder::DisplayItemData> > mDisplayItems;
bool mInvalidateAllLayers;
};
/* static */ void
FrameLayerBuilder::DestroyDisplayItemDataFor(nsIFrame* aFrame)
{
FrameProperties props = aFrame->Properties();
props.Delete(LayerManagerDataProperty());
}
namespace {
// a global cache of image containers used for mask layers
static MaskLayerImageCache* gMaskLayerImageCache = nullptr;
static inline MaskLayerImageCache* GetMaskLayerImageCache()
{
if (!gMaskLayerImageCache) {
gMaskLayerImageCache = new MaskLayerImageCache();
}
return gMaskLayerImageCache;
}
/**
* This is a helper object used to build up the layer children for
* a ContainerLayer.
*/
class ContainerState {
public:
ContainerState(nsDisplayListBuilder* aBuilder,
LayerManager* aManager,
FrameLayerBuilder* aLayerBuilder,
nsIFrame* aContainerFrame,
nsDisplayItem* aContainerItem,
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
ContainerLayer* aContainerLayer,
const FrameLayerBuilder::ContainerParameters& aParameters) :
mBuilder(aBuilder), mManager(aManager),
mLayerBuilder(aLayerBuilder),
mContainerFrame(aContainerFrame),
mContainerLayer(aContainerLayer),
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
mParameters(aParameters),
mNextFreeRecycledThebesLayer(0)
{
nsPresContext* presContext = aContainerFrame->PresContext();
mAppUnitsPerDevPixel = presContext->AppUnitsPerDevPixel();
mContainerReferenceFrame = aContainerItem ? aContainerItem->ReferenceFrameForChildren() :
mBuilder->FindReferenceFrameFor(mContainerFrame);
// When AllowResidualTranslation is false, display items will be drawn
// scaled with a translation by integer pixels, so we know how the snapping
// will work.
mSnappingEnabled = aManager->IsSnappingEffectiveTransforms() &&
!mParameters.AllowResidualTranslation();
mRecycledMaskImageLayers.Init();
CollectOldLayers();
}
enum ProcessDisplayItemsFlags {
NO_COMPONENT_ALPHA = 0x01,
};
/**
* This is the method that actually walks a display list and builds
* the child layers.
*/
void ProcessDisplayItems(const nsDisplayList& aList, uint32_t aFlags);
/**
* This finalizes all the open ThebesLayers by popping every element off
* mThebesLayerDataStack, then sets the children of the container layer
* to be all the layers in mNewChildLayers in that order and removes any
* layers as children of the container that aren't in mNewChildLayers.
* @param aTextContentFlags if any child layer has CONTENT_COMPONENT_ALPHA,
* set *aTextContentFlags to CONTENT_COMPONENT_ALPHA
*/
void Finish(uint32_t *aTextContentFlags, LayerManagerData* aData);
nsRect GetChildrenBounds() { return mBounds; }
nscoord GetAppUnitsPerDevPixel() { return mAppUnitsPerDevPixel; }
nsIntRect ScaleToNearestPixels(const nsRect& aRect)
{
return aRect.ScaleToNearestPixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRegion ScaleRegionToNearestPixels(const nsRegion& aRegion)
{
return aRegion.ScaleToNearestPixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRect ScaleToOutsidePixels(const nsRect& aRect, bool aSnap)
{
if (aSnap && mSnappingEnabled) {
return ScaleToNearestPixels(aRect);
}
return aRect.ScaleToOutsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRect ScaleToInsidePixels(const nsRect& aRect, bool aSnap)
{
if (aSnap && mSnappingEnabled) {
return ScaleToNearestPixels(aRect);
}
return aRect.ScaleToInsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRegion ScaleRegionToInsidePixels(const nsRegion& aRegion, bool aSnap)
{
if (aSnap && mSnappingEnabled) {
return ScaleRegionToNearestPixels(aRegion);
}
return aRegion.ScaleToInsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
protected:
/**
* We keep a stack of these to represent the ThebesLayers that are
* currently available to have display items added to.
* We use a stack here because as much as possible we want to
* assign display items to existing ThebesLayers, and to the lowest
* ThebesLayer in z-order. This reduces the number of layers and
* makes it more likely a display item will be rendered to an opaque
* layer, giving us the best chance of getting subpixel AA.
*/
class ThebesLayerData {
public:
ThebesLayerData() :
mActiveScrolledRoot(nullptr), mLayer(nullptr),
mIsSolidColorInVisibleRegion(false),
mNeedComponentAlpha(false),
mForceTransparentSurface(false),
mImage(nullptr),
mCommonClipCount(-1) {}
/**
* Record that an item has been added to the ThebesLayer, so we
* need to update our regions.
* @param aVisibleRect the area of the item that's visible
* @param aDrawRect the area of the item that would be drawn if it
* was completely visible
* @param aOpaqueRect if non-null, the area of the item that's opaque.
* We pass in a separate opaque rect because the opaque rect can be
* bigger than the visible rect, and we want to have the biggest
* opaque rect that we can.
* @param aSolidColor if non-null, the visible area of the item is
* a constant color given by *aSolidColor
*/
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
void Accumulate(ContainerState* aState,
nsDisplayItem* aItem,
const nsIntRect& aVisibleRect,
const nsIntRect& aDrawRect,
const DisplayItemClip& aClip);
const nsIFrame* GetActiveScrolledRoot() { return mActiveScrolledRoot; }
/**
* If this represents only a nsDisplayImage, and the image type
* supports being optimized to an ImageLayer (TYPE_RASTER only) returns
* an ImageContainer for the image.
*/
already_AddRefed<ImageContainer> CanOptimizeImageLayer(nsDisplayListBuilder* aBuilder);
/**
* The region of visible content in the layer, relative to the
* container layer (which is at the snapped top-left of the display
* list reference frame).
*/
nsIntRegion mVisibleRegion;
/**
* The region of visible content above the layer and below the
* next ThebesLayerData currently in the stack, if any. Note that not
* all ThebesLayers for the container are in the ThebesLayerData stack.
* Same coordinate system as mVisibleRegion.
* This is a conservative approximation: it contains the true region.
*/
nsIntRegion mVisibleAboveRegion;
/**
* The region containing the bounds of all display items in the layer,
* regardless of visbility.
* Same coordinate system as mVisibleRegion.
* This is a conservative approximation: it contains the true region.
*/
nsIntRegion mDrawRegion;
/**
* The region containing the bounds of all display items (regardless
* of visibility) in the layer and below the next ThebesLayerData
* currently in the stack, if any.
* Note that not all ThebesLayers for the container are in the
* ThebesLayerData stack.
* Same coordinate system as mVisibleRegion.
*/
nsIntRegion mDrawAboveRegion;
/**
* The region of visible content in the layer that is opaque.
* Same coordinate system as mVisibleRegion.
*/
nsIntRegion mOpaqueRegion;
/**
* The "active scrolled root" for all content in the layer. Must
* be non-null; all content in a ThebesLayer must have the same
* active scrolled root.
*/
const nsIFrame* mActiveScrolledRoot;
ThebesLayer* mLayer;
/**
* If mIsSolidColorInVisibleRegion is true, this is the color of the visible
* region.
*/
nscolor mSolidColor;
/**
* True if every pixel in mVisibleRegion will have color mSolidColor.
*/
bool mIsSolidColorInVisibleRegion;
/**
* True if there is any text visible in the layer that's over
* transparent pixels in the layer.
*/
bool mNeedComponentAlpha;
/**
* Set if the layer should be treated as transparent, even if its entire
* area is covered by opaque display items. For example, this needs to
* be set if something is going to "punch holes" in the layer by clearing
* part of its surface.
*/
bool mForceTransparentSurface;
/**
* Stores the pointer to the nsDisplayImage if we want to
* convert this to an ImageLayer.
*/
nsDisplayImageContainer* mImage;
/**
* Stores the clip that we need to apply to the image or, if there is no
* image, a clip for SOME item in the layer. There is no guarantee which
* item's clip will be stored here and mItemClip should not be used to clip
* the whole layer - only some part of the clip should be used, as determined
* by ThebesDisplayItemLayerUserData::GetCommonClipCount() - which may even be
* no part at all.
*/
DisplayItemClip mItemClip;
/**
* The first mCommonClipCount rounded rectangle clips are identical for
* all items in the layer.
* -1 if there are no items in the layer; must be >=0 by the time that this
* data is popped from the stack.
*/
int32_t mCommonClipCount;
/*
* Updates mCommonClipCount by checking for rounded rect clips in common
* between the clip on a new item (aCurrentClip) and the common clips
* on items already in the layer (the first mCommonClipCount rounded rects
* in mItemClip).
*/
void UpdateCommonClipCount(const DisplayItemClip& aCurrentClip);
};
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
friend class ThebesLayerData;
/**
* Grab the next recyclable ThebesLayer, or create one if there are no
* more recyclable ThebesLayers. Does any necessary invalidation of
* a recycled ThebesLayer, and sets up the transform on the ThebesLayer
* to account for scrolling.
*/
already_AddRefed<ThebesLayer> CreateOrRecycleThebesLayer(const nsIFrame* aActiveScrolledRoot,
const nsIFrame *aReferenceFrame,
const nsPoint& aTopLeft);
/**
* Grab the next recyclable ColorLayer, or create one if there are no
* more recyclable ColorLayers.
*/
already_AddRefed<ColorLayer> CreateOrRecycleColorLayer(ThebesLayer* aThebes);
/**
* Grab the next recyclable ImageLayer, or create one if there are no
* more recyclable ImageLayers.
*/
already_AddRefed<ImageLayer> CreateOrRecycleImageLayer(ThebesLayer* aThebes);
/**
* Grab a recyclable ImageLayer for use as a mask layer for aLayer (that is a
* mask layer which has been used for aLayer before), or create one if such
* a layer doesn't exist.
*/
already_AddRefed<ImageLayer> CreateOrRecycleMaskImageLayerFor(Layer* aLayer);
/**
* Grabs all ThebesLayers and ColorLayers from the ContainerLayer and makes them
* available for recycling.
*/
void CollectOldLayers();
/**
* If aItem used to belong to a ThebesLayer, invalidates the area of
* aItem in that layer. If aNewLayer is a ThebesLayer, invalidates the area of
* aItem in that layer.
*/
void InvalidateForLayerChange(nsDisplayItem* aItem,
Layer* aNewLayer,
const DisplayItemClip& aClip,
const nsPoint& aTopLeft,
nsDisplayItemGeometry *aGeometry);
/**
* Try to determine whether the ThebesLayer at aThebesLayerIndex
* has a single opaque color behind it, over the entire bounds of its visible
* region.
* If successful, return that color, otherwise return NS_RGBA(0,0,0,0).
*/
nscolor FindOpaqueBackgroundColorFor(int32_t aThebesLayerIndex);
/**
* Indicate that we are done adding items to the ThebesLayer at the top of
* mThebesLayerDataStack. Set the final visible region and opaque-content
* flag, and pop it off the stack.
*/
void PopThebesLayerData();
/**
* Find the ThebesLayer to which we should assign the next display item.
* We scan the ThebesLayerData stack to find the topmost ThebesLayer
* that is compatible with the display item (i.e., has the same
* active scrolled root), and that has no content from other layers above
* it and intersecting the aVisibleRect.
* Returns the layer, and also updates the ThebesLayerData. Will
* push a new ThebesLayerData onto the stack if no suitable existing
* layer is found. If we choose a ThebesLayer that's already on the
* ThebesLayerData stack, later elements on the stack will be popped off.
* @param aVisibleRect the area of the next display item that's visible
* @param aActiveScrolledRoot the active scrolled root for the next
* display item
* @param aOpaqueRect if non-null, a region of the display item that is opaque
* @param aSolidColor if non-null, indicates that every pixel in aVisibleRect
* will be painted with aSolidColor by the item
*/
ThebesLayerData* FindThebesLayerFor(nsDisplayItem* aItem,
const nsIntRect& aVisibleRect,
const nsIntRect& aDrawRect,
const DisplayItemClip& aClip,
const nsIFrame* aActiveScrolledRoot,
const nsPoint& aTopLeft);
ThebesLayerData* GetTopThebesLayerData()
{
return mThebesLayerDataStack.IsEmpty() ? nullptr
: mThebesLayerDataStack[mThebesLayerDataStack.Length() - 1].get();
}
/* Build a mask layer to represent the clipping region. Will return null if
* there is no clipping specified or a mask layer cannot be built.
* Builds an ImageLayer for the appropriate backend; the mask is relative to
* aLayer's visible region.
* aLayer is the layer to be clipped.
* aRoundedRectClipCount is used when building mask layers for ThebesLayers,
* SetupMaskLayer will build a mask layer for only the first
* aRoundedRectClipCount rounded rects in aClip
*/
void SetupMaskLayer(Layer *aLayer, const DisplayItemClip& aClip,
uint32_t aRoundedRectClipCount = UINT32_MAX);
bool ChooseActiveScrolledRoot(const nsDisplayList& aList,
const nsIFrame **aActiveScrolledRoot);
nsDisplayListBuilder* mBuilder;
LayerManager* mManager;
FrameLayerBuilder* mLayerBuilder;
nsIFrame* mContainerFrame;
const nsIFrame* mContainerReferenceFrame;
ContainerLayer* mContainerLayer;
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
FrameLayerBuilder::ContainerParameters mParameters;
/**
* The region of ThebesLayers that should be invalidated every time
* we recycle one.
*/
nsIntRegion mInvalidThebesContent;
nsRect mBounds;
nsAutoTArray<nsAutoPtr<ThebesLayerData>,1> mThebesLayerDataStack;
/**
* We collect the list of children in here. During ProcessDisplayItems,
* the layers in this array either have mContainerLayer as their parent,
* or no parent.
*/
typedef nsAutoTArray<nsRefPtr<Layer>,1> AutoLayersArray;
AutoLayersArray mNewChildLayers;
nsTArray<nsRefPtr<ThebesLayer> > mRecycledThebesLayers;
nsDataHashtable<nsPtrHashKey<Layer>, nsRefPtr<ImageLayer> >
mRecycledMaskImageLayers;
uint32_t mNextFreeRecycledThebesLayer;
nscoord mAppUnitsPerDevPixel;
bool mSnappingEnabled;
};
class ThebesDisplayItemLayerUserData : public LayerUserData
{
public:
ThebesDisplayItemLayerUserData() :
mMaskClipCount(0),
mForcedBackgroundColor(NS_RGBA(0,0,0,0)),
mXScale(1.f), mYScale(1.f),
mAppUnitsPerDevPixel(0),
mTranslation(0, 0),
mActiveScrolledRootPosition(0, 0) {}
/**
* Record the number of clips in the Thebes layer's mask layer.
* Should not be reset when the layer is recycled since it is used to track
* changes in the use of mask layers.
*/
uint32_t mMaskClipCount;
/**
* A color that should be painted over the bounds of the layer's visible
* region before any other content is painted.
*/
nscolor mForcedBackgroundColor;
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
/**
* The resolution scale used.
*/
float mXScale, mYScale;
/**
* The appunits per dev pixel for the items in this layer.
*/
nscoord mAppUnitsPerDevPixel;
/**
* The offset from the ThebesLayer's 0,0 to the
* reference frame. This isn't necessarily the same as the transform
* set on the ThebesLayer since we might also be applying an extra
* offset specified by the parent ContainerLayer/
*/
nsIntPoint mTranslation;
/**
* We try to make 0,0 of the ThebesLayer be the top-left of the
* border-box of the "active scrolled root" frame (i.e. the nearest ancestor
* frame for the display items that is being actively scrolled). But
* we force the ThebesLayer transform to be an integer translation, and we may
* have a resolution scale, so we have to snap the ThebesLayer transform, so
* 0,0 may not be exactly the top-left of the active scrolled root. Here we
* store the coordinates in ThebesLayer space of the top-left of the
* active scrolled root.
*/
gfxPoint mActiveScrolledRootPosition;
nsIntRegion mRegionToInvalidate;
// The offset between the active scrolled root of this layer
// and the root of the container for the previous and current
// paints respectively.
nsPoint mLastActiveScrolledRootOrigin;
nsPoint mActiveScrolledRootOrigin;
nsRefPtr<ColorLayer> mColorLayer;
nsRefPtr<ImageLayer> mImageLayer;
};
/*
* User data for layers which will be used as masks.
*/
struct MaskLayerUserData : public LayerUserData
{
MaskLayerUserData() : mImageKey(nullptr) {}
bool
operator== (const MaskLayerUserData& aOther) const
{
return mRoundedClipRects == aOther.mRoundedClipRects &&
mScaleX == aOther.mScaleX &&
mScaleY == aOther.mScaleY &&
mOffset == aOther.mOffset;
}
nsRefPtr<const MaskLayerImageCache::MaskLayerImageKey> mImageKey;
// properties of the mask layer; the mask layer may be re-used if these
// remain unchanged.
nsTArray<DisplayItemClip::RoundedRect> mRoundedClipRects;
// scale from the masked layer which is applied to the mask
float mScaleX, mScaleY;
// The ContainerParameters offset which is applied to the mask's transform.
nsIntPoint mOffset;
};
/**
* The address of gThebesDisplayItemLayerUserData is used as the user
* data key for ThebesLayers created by FrameLayerBuilder.
* It identifies ThebesLayers used to draw non-layer content, which are
* therefore eligible for recycling. We want display items to be able to
* create their own dedicated ThebesLayers in BuildLayer, if necessary,
* and we wouldn't want to accidentally recycle those.
* The user data is a ThebesDisplayItemLayerUserData.
*/
uint8_t gThebesDisplayItemLayerUserData;
/**
* The address of gColorLayerUserData is used as the user
* data key for ColorLayers created by FrameLayerBuilder.
* The user data is null.
*/
uint8_t gColorLayerUserData;
/**
* The address of gImageLayerUserData is used as the user
* data key for ImageLayers created by FrameLayerBuilder.
* The user data is null.
*/
uint8_t gImageLayerUserData;
/**
* The address of gLayerManagerUserData is used as the user
* data key for retained LayerManagers managed by FrameLayerBuilder.
* The user data is a LayerManagerData.
*/
uint8_t gLayerManagerUserData;
/**
* The address of gMaskLayerUserData is used as the user
* data key for mask layers managed by FrameLayerBuilder.
* The user data is a MaskLayerUserData.
*/
uint8_t gMaskLayerUserData;
/**
* Helper functions for getting user data and casting it to the correct type.
* aLayer is the layer where the user data is stored.
*/
MaskLayerUserData* GetMaskLayerUserData(Layer* aLayer)
{
return static_cast<MaskLayerUserData*>(aLayer->GetUserData(&gMaskLayerUserData));
}
ThebesDisplayItemLayerUserData* GetThebesDisplayItemLayerUserData(Layer* aLayer)
{
return static_cast<ThebesDisplayItemLayerUserData*>(
aLayer->GetUserData(&gThebesDisplayItemLayerUserData));
}
} // anonymous namespace
/* static */ void
FrameLayerBuilder::Shutdown()
{
if (gMaskLayerImageCache) {
delete gMaskLayerImageCache;
gMaskLayerImageCache = nullptr;
}
}
void
FrameLayerBuilder::Init(nsDisplayListBuilder* aBuilder, LayerManager* aManager)
{
mDisplayListBuilder = aBuilder;
mRootPresContext = aBuilder->RootReferenceFrame()->PresContext()->GetRootPresContext();
if (mRootPresContext) {
mInitialDOMGeneration = mRootPresContext->GetDOMGeneration();
}
aManager->SetUserData(&gLayerManagerLayerBuilder, this);
}
void
FrameLayerBuilder::FlashPaint(gfxContext *aContext)
{
float r = float(rand()) / RAND_MAX;
float g = float(rand()) / RAND_MAX;
float b = float(rand()) / RAND_MAX;
aContext->SetColor(gfxRGBA(r, g, b, 0.4));
aContext->Paint();
}
FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::GetDisplayItemData(nsIFrame* aFrame, uint32_t aKey)
{
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData* item = array->ElementAt(i);
if (item->mDisplayItemKey == aKey &&
item->mLayer->Manager() == mRetainingManager) {
return item;
}
}
}
return nullptr;
}
nsACString&
AppendToString(nsACString& s, const nsIntRect& r,
const char* pfx="", const char* sfx="")
{
s += pfx;
s += nsPrintfCString(
"(x=%d, y=%d, w=%d, h=%d)",
r.x, r.y, r.width, r.height);
return s += sfx;
}
nsACString&
AppendToString(nsACString& s, const nsIntRegion& r,
const char* pfx="", const char* sfx="")
{
s += pfx;
nsIntRegionRectIterator it(r);
s += "< ";
while (const nsIntRect* sr = it.Next()) {
AppendToString(s, *sr) += "; ";
}
s += ">";
return s += sfx;
}
/**
* Invalidate aRegion in aLayer. aLayer is in the coordinate system
* *after* aTranslation has been applied, so we need to
* apply the inverse of that transform before calling InvalidateRegion.
*/
static void
InvalidatePostTransformRegion(ThebesLayer* aLayer, const nsIntRegion& aRegion,
const nsIntPoint& aTranslation)
{
// Convert the region from the coordinates of the container layer
// (relative to the snapped top-left of the display list reference frame)
// to the ThebesLayer's own coordinates
nsIntRegion rgn = aRegion;
rgn.MoveBy(-aTranslation);
aLayer->InvalidateRegion(rgn);
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
nsAutoCString str;
AppendToString(str, rgn);
printf("Invalidating layer %p: %s\n", aLayer, str.get());
}
#endif
}
static void
InvalidatePostTransformRegion(ThebesLayer* aLayer, const nsRect& aRect,
const DisplayItemClip& aClip,
const nsIntPoint& aTranslation)
{
ThebesDisplayItemLayerUserData* data =
static_cast<ThebesDisplayItemLayerUserData*>(aLayer->GetUserData(&gThebesDisplayItemLayerUserData));
nsRect rect = aClip.ApplyNonRoundedIntersection(aRect);
nsIntRect pixelRect = rect.ScaleToOutsidePixels(data->mXScale, data->mYScale, data->mAppUnitsPerDevPixel);
InvalidatePostTransformRegion(aLayer, pixelRect, aTranslation);
}
static nsIntPoint
GetTranslationForThebesLayer(ThebesLayer* aLayer)
{
ThebesDisplayItemLayerUserData* data =
static_cast<ThebesDisplayItemLayerUserData*>
(aLayer->GetUserData(&gThebesDisplayItemLayerUserData));
NS_ASSERTION(data, "Must be a tracked thebes layer!");
return data->mTranslation;
}
/**
* Some frames can have multiple, nested, retaining layer managers
* associated with them (normal manager, inactive managers, SVG effects).
* In these cases we store the 'outermost' LayerManager data property
* on the frame since we can walk down the chain from there.
*
* If one of these frames has just been destroyed, we will free the inner
* layer manager when removing the entry from mFramesWithLayers. Destroying
* the layer manager destroys the LayerManagerData and calls into
* the DisplayItemData destructor. If the inner layer manager had any
* items with the same frame, then we attempt to retrieve properties
* from the deleted frame.
*
* Cache the destroyed frame pointer here so we can avoid crashing in this case.
*/
/* static */ void
FrameLayerBuilder::RemoveFrameFromLayerManager(nsIFrame* aFrame,
void* aPropertyValue)
{
sDestroyedFrame = aFrame;
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aPropertyValue);
// Hold a reference to all the items so that they don't get
// deleted from under us.
nsTArray<nsRefPtr<DisplayItemData> > arrayCopy;
for (uint32_t i = 0; i < array->Length(); ++i) {
arrayCopy.AppendElement(array->ElementAt(i));
}
#ifdef DEBUG_DISPLAY_ITEM_DATA
if (array->Length()) {
LayerManagerData *rootData = array->ElementAt(0)->mParent;
while (rootData->mParent) {
rootData = rootData->mParent;
}
printf("Removing frame %p - dumping display data\n", aFrame);
rootData->Dump();
}
#endif
for (uint32_t i = 0; i < array->Length(); ++i) {
DisplayItemData* data = array->ElementAt(i);
ThebesLayer* t = data->mLayer->AsThebesLayer();
if (t) {
ThebesDisplayItemLayerUserData* thebesData =
static_cast<ThebesDisplayItemLayerUserData*>(t->GetUserData(&gThebesDisplayItemLayerUserData));
if (thebesData) {
nsRegion old = data->mGeometry->ComputeInvalidationRegion();
nsIntRegion rgn = old.ScaleToOutsidePixels(thebesData->mXScale, thebesData->mYScale, thebesData->mAppUnitsPerDevPixel);
rgn.MoveBy(-GetTranslationForThebesLayer(t));
thebesData->mRegionToInvalidate.Or(thebesData->mRegionToInvalidate, rgn);
thebesData->mRegionToInvalidate.SimplifyOutward(8);
}
}
data->mParent->mDisplayItems.RemoveEntry(data);
}
arrayCopy.Clear();
delete array;
sDestroyedFrame = NULL;
}
void
FrameLayerBuilder::DidBeginRetainedLayerTransaction(LayerManager* aManager)
{
mRetainingManager = aManager;
LayerManagerData* data = static_cast<LayerManagerData*>
(aManager->GetUserData(&gLayerManagerUserData));
if (data) {
mInvalidateAllLayers = data->mInvalidateAllLayers;
} else {
data = new LayerManagerData(aManager);
aManager->SetUserData(&gLayerManagerUserData, data);
}
}
void
FrameLayerBuilder::StoreOptimizedLayerForFrame(nsDisplayItem* aItem, Layer* aLayer)
{
if (!mRetainingManager) {
return;
}
DisplayItemData* data = GetDisplayItemDataForManager(aItem, aLayer->Manager());
NS_ASSERTION(data, "Must have already stored data for this item!");
data->mOptLayer = aLayer;
}
void
FrameLayerBuilder::DidEndTransaction()
{
GetMaskLayerImageCache()->Sweep();
}
void
FrameLayerBuilder::WillEndTransaction()
{
if (!mRetainingManager) {
return;
}
// We need to save the data we'll need to support retaining.
LayerManagerData* data = static_cast<LayerManagerData*>
(mRetainingManager->GetUserData(&gLayerManagerUserData));
NS_ASSERTION(data, "Must have data!");
// Update all the frames that used to have layers.
data->mDisplayItems.EnumerateEntries(ProcessRemovedDisplayItems, this);
data->mInvalidateAllLayers = false;
}
/* static */ PLDHashOperator
FrameLayerBuilder::ProcessRemovedDisplayItems(nsRefPtrHashKey<DisplayItemData>* aEntry,
void* aUserArg)
{
DisplayItemData* data = aEntry->GetKey();
if (!data->mUsed) {
// This item was visible, but isn't anymore.
FrameLayerBuilder* layerBuilder = static_cast<FrameLayerBuilder*>(aUserArg);
ThebesLayer* t = data->mLayer->AsThebesLayer();
if (t) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Invalidating unused display item (%i) belonging to frame %p from layer %p\n", data->mDisplayItemKey, data->mFrameList[0], t);
}
#endif
InvalidatePostTransformRegion(t,
data->mGeometry->ComputeInvalidationRegion(),
data->mClip,
layerBuilder->GetLastPaintOffset(t));
}
return PL_DHASH_REMOVE;
}
data->mUsed = false;
data->mIsInvalid = false;
return PL_DHASH_NEXT;
}
/* static */ PLDHashOperator
FrameLayerBuilder::DumpDisplayItemDataForFrame(nsRefPtrHashKey<DisplayItemData>* aEntry,
void* aClosure)
{
#ifdef DEBUG_DISPLAY_ITEM_DATA
DisplayItemData *data = aEntry->GetKey();
nsAutoCString prefix;
prefix += static_cast<const char*>(aClosure);
const char *layerState;
switch (data->mLayerState) {
case LAYER_NONE:
layerState = "LAYER_NONE"; break;
case LAYER_INACTIVE:
layerState = "LAYER_INACTIVE"; break;
case LAYER_ACTIVE:
layerState = "LAYER_ACTIVE"; break;
case LAYER_ACTIVE_FORCE:
layerState = "LAYER_ACTIVE_FORCE"; break;
case LAYER_ACTIVE_EMPTY:
layerState = "LAYER_ACTIVE_EMPTY"; break;
case LAYER_SVG_EFFECTS:
layerState = "LAYER_SVG_EFFECTS"; break;
}
uint32_t mask = (1 << nsDisplayItem::TYPE_BITS) - 1;
nsAutoCString str;
str += prefix;
str += nsPrintfCString("Frame %p ", data->mFrameList[0]);
str += nsDisplayItem::DisplayItemTypeName(static_cast<nsDisplayItem::Type>(data->mDisplayItemKey & mask));
if ((data->mDisplayItemKey >> nsDisplayItem::TYPE_BITS)) {
str += nsPrintfCString("(%i)", data->mDisplayItemKey >> nsDisplayItem::TYPE_BITS);
}
str += nsPrintfCString(", %s, Layer %p", layerState, data->mLayer.get());
if (data->mOptLayer) {
str += nsPrintfCString(", OptLayer %p", data->mOptLayer.get());
}
if (data->mInactiveManager) {
str += nsPrintfCString(", InactiveLayerManager %p", data->mInactiveManager.get());
}
str += "\n";
printf("%s", str.get());
if (data->mInactiveManager) {
prefix += " ";
printf("%sDumping inactive layer info:\n", prefix.get());
LayerManagerData* lmd = static_cast<LayerManagerData*>
(data->mInactiveManager->GetUserData(&gLayerManagerUserData));
lmd->Dump(prefix.get());
}
#endif
return PL_DHASH_NEXT;
}
/* static */ FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::GetDisplayItemDataForManager(nsDisplayItem* aItem,
LayerManager* aManager)
{
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aItem->Frame()->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData* item = array->ElementAt(i);
if (item->mDisplayItemKey == aItem->GetPerFrameKey() &&
item->mLayer->Manager() == aManager) {
return item;
}
}
}
return nullptr;
}
bool
FrameLayerBuilder::HasRetainedDataFor(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
if (array->ElementAt(i)->mDisplayItemKey == aDisplayItemKey) {
return true;
}
}
}
return false;
}
void
FrameLayerBuilder::IterateRetainedDataFor(nsIFrame* aFrame, DisplayItemDataCallback aCallback)
{
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (!array) {
return;
}
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData* data = array->ElementAt(i);
if (data->mDisplayItemKey != nsDisplayItem::TYPE_ZERO) {
aCallback(aFrame, data);
}
}
}
FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::GetOldLayerForFrame(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
// If we need to build a new layer tree, then just refuse to recycle
// anything.
if (!mRetainingManager || mInvalidateAllLayers)
return nullptr;
DisplayItemData *data = GetDisplayItemData(aFrame, aDisplayItemKey);
if (data && data->mLayer->Manager() == mRetainingManager) {
return data;
}
return nullptr;
}
Layer*
FrameLayerBuilder::GetOldLayerFor(nsDisplayItem* aItem,
nsDisplayItemGeometry** aOldGeometry,
DisplayItemClip** aOldClip,
nsTArray<nsIFrame*>* aChangedFrames,
bool *aIsInvalid)
{
uint32_t key = aItem->GetPerFrameKey();
nsIFrame* frame = aItem->Frame();
DisplayItemData* oldData = GetOldLayerForFrame(frame, key);
if (oldData) {
if (aOldGeometry) {
*aOldGeometry = oldData->mGeometry.get();
}
if (aOldClip) {
*aOldClip = &oldData->mClip;
}
if (aChangedFrames) {
oldData->GetFrameListChanges(aItem, *aChangedFrames);
}
if (aIsInvalid) {
*aIsInvalid = oldData->mIsInvalid;
}
return oldData->mLayer;
}
return nullptr;
}
/* static */ Layer*
FrameLayerBuilder::GetDebugOldLayerFor(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (!array) {
return nullptr;
}
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData *data = array->ElementAt(i);
if (data->mDisplayItemKey == aDisplayItemKey) {
return data->mLayer;
}
}
return nullptr;
}
already_AddRefed<ColorLayer>
ContainerState::CreateOrRecycleColorLayer(ThebesLayer *aThebes)
{
ThebesDisplayItemLayerUserData* data =
static_cast<ThebesDisplayItemLayerUserData*>(aThebes->GetUserData(&gThebesDisplayItemLayerUserData));
nsRefPtr<ColorLayer> layer = data->mColorLayer;
if (layer) {
layer->SetMaskLayer(nullptr);
} else {
// Create a new layer
layer = mManager->CreateColorLayer();
if (!layer)
return nullptr;
// Mark this layer as being used for Thebes-painting display items
data->mColorLayer = layer;
layer->SetUserData(&gColorLayerUserData, nullptr);
// Remove other layer types we might have stored for this ThebesLayer
data->mImageLayer = nullptr;
}
return layer.forget();
}
already_AddRefed<ImageLayer>
ContainerState::CreateOrRecycleImageLayer(ThebesLayer *aThebes)
{
ThebesDisplayItemLayerUserData* data =
static_cast<ThebesDisplayItemLayerUserData*>(aThebes->GetUserData(&gThebesDisplayItemLayerUserData));
nsRefPtr<ImageLayer> layer = data->mImageLayer;
if (layer) {
layer->SetMaskLayer(nullptr);
} else {
// Create a new layer
layer = mManager->CreateImageLayer();
if (!layer)
return nullptr;
// Mark this layer as being used for Thebes-painting display items
data->mImageLayer = layer;
layer->SetUserData(&gImageLayerUserData, nullptr);
// Remove other layer types we might have stored for this ThebesLayer
data->mColorLayer = nullptr;
}
return layer.forget();
}
already_AddRefed<ImageLayer>
ContainerState::CreateOrRecycleMaskImageLayerFor(Layer* aLayer)
{
nsRefPtr<ImageLayer> result = mRecycledMaskImageLayers.Get(aLayer);
if (result) {
mRecycledMaskImageLayers.Remove(aLayer);
// XXX if we use clip on mask layers, null it out here
} else {
// Create a new layer
result = mManager->CreateImageLayer();
if (!result)
return nullptr;
result->SetUserData(&gMaskLayerUserData, new MaskLayerUserData());
result->SetForceSingleTile(true);
}
return result.forget();
}
static const double SUBPIXEL_OFFSET_EPSILON = 0.02;
/**
* This normally computes NSToIntRoundUp(aValue). However, if that would
* give a residual near 0.5 while aOldResidual is near -0.5, or
* it would give a residual near -0.5 while aOldResidual is near 0.5, then
* instead we return the integer in the other direction so that the residual
* is close to aOldResidual.
*/
static int32_t
RoundToMatchResidual(double aValue, double aOldResidual)
{
int32_t v = NSToIntRoundUp(aValue);
double residual = aValue - v;
if (aOldResidual < 0) {
if (residual > 0 && fabs(residual - 1.0 - aOldResidual) < SUBPIXEL_OFFSET_EPSILON) {
// Round up instead
return int32_t(ceil(aValue));
}
} else if (aOldResidual > 0) {
if (residual < 0 && fabs(residual + 1.0 - aOldResidual) < SUBPIXEL_OFFSET_EPSILON) {
// Round down instead
return int32_t(floor(aValue));
}
}
return v;
}
static void
ResetScrollPositionForLayerPixelAlignment(const nsIFrame* aActiveScrolledRoot)
{
nsIScrollableFrame* sf = nsLayoutUtils::GetScrollableFrameFor(aActiveScrolledRoot);
if (sf) {
sf->ResetScrollPositionForLayerPixelAlignment();
}
}
static void
InvalidateEntireThebesLayer(ThebesLayer* aLayer, const nsIFrame* aActiveScrolledRoot)
{
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Invalidating entire layer %p\n", aLayer);
}
#endif
nsIntRect invalidate = aLayer->GetValidRegion().GetBounds();
aLayer->InvalidateRegion(invalidate);
ResetScrollPositionForLayerPixelAlignment(aActiveScrolledRoot);
}
already_AddRefed<ThebesLayer>
ContainerState::CreateOrRecycleThebesLayer(const nsIFrame* aActiveScrolledRoot,
const nsIFrame* aReferenceFrame,
const nsPoint& aTopLeft)
{
// We need a new thebes layer
nsRefPtr<ThebesLayer> layer;
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
ThebesDisplayItemLayerUserData* data;
#ifndef MOZ_ANDROID_OMTC
bool didResetScrollPositionForLayerPixelAlignment = false;
#endif
if (mNextFreeRecycledThebesLayer < mRecycledThebesLayers.Length()) {
// Recycle a layer
layer = mRecycledThebesLayers[mNextFreeRecycledThebesLayer];
++mNextFreeRecycledThebesLayer;
// Clear clip rect and mask layer so we don't accidentally stay clipped.
// We will reapply any necessary clipping.
layer->SetMaskLayer(nullptr);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
data = static_cast<ThebesDisplayItemLayerUserData*>
(layer->GetUserData(&gThebesDisplayItemLayerUserData));
NS_ASSERTION(data, "Recycled ThebesLayers must have user data");
// This gets called on recycled ThebesLayers that are going to be in the
// final layer tree, so it's a convenient time to invalidate the
// content that changed where we don't know what ThebesLayer it belonged
// to, or if we need to invalidate the entire layer, we can do that.
// This needs to be done before we update the ThebesLayer to its new
// transform. See nsGfxScrollFrame::InvalidateInternal, where
// we ensure that mInvalidThebesContent is updated according to the
// scroll position as of the most recent paint.
if (!FuzzyEqual(data->mXScale, mParameters.mXScale, 0.00001f) ||
!FuzzyEqual(data->mYScale, mParameters.mYScale, 0.00001f) ||
data->mAppUnitsPerDevPixel != mAppUnitsPerDevPixel) {
InvalidateEntireThebesLayer(layer, aActiveScrolledRoot);
#ifndef MOZ_ANDROID_OMTC
didResetScrollPositionForLayerPixelAlignment = true;
#endif
}
if (!data->mRegionToInvalidate.IsEmpty()) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Invalidating deleted frame content from layer %p\n", layer.get());
}
#endif
layer->InvalidateRegion(data->mRegionToInvalidate);
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
nsAutoCString str;
AppendToString(str, data->mRegionToInvalidate);
printf("Invalidating layer %p: %s\n", layer.get(), str.get());
}
#endif
data->mRegionToInvalidate.SetEmpty();
}
// We do not need to Invalidate these areas in the widget because we
// assume the caller of InvalidateThebesLayerContents has ensured
// the area is invalidated in the widget.
} else {
// Create a new thebes layer
layer = mManager->CreateThebesLayer();
if (!layer)
return nullptr;
// Mark this layer as being used for Thebes-painting display items
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
data = new ThebesDisplayItemLayerUserData();
layer->SetUserData(&gThebesDisplayItemLayerUserData, data);
ResetScrollPositionForLayerPixelAlignment(aActiveScrolledRoot);
#ifndef MOZ_ANDROID_OMTC
didResetScrollPositionForLayerPixelAlignment = true;
#endif
}
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
data->mXScale = mParameters.mXScale;
data->mYScale = mParameters.mYScale;
data->mLastActiveScrolledRootOrigin = data->mActiveScrolledRootOrigin;
data->mActiveScrolledRootOrigin = aTopLeft;
data->mAppUnitsPerDevPixel = mAppUnitsPerDevPixel;
layer->SetAllowResidualTranslation(mParameters.AllowResidualTranslation());
mLayerBuilder->SaveLastPaintOffset(layer);
// Set up transform so that 0,0 in the Thebes layer corresponds to the
// (pixel-snapped) top-left of the aActiveScrolledRoot.
nsPoint offset = aActiveScrolledRoot->GetOffsetToCrossDoc(aReferenceFrame);
nscoord appUnitsPerDevPixel = aActiveScrolledRoot->PresContext()->AppUnitsPerDevPixel();
gfxPoint scaledOffset(
NSAppUnitsToDoublePixels(offset.x, appUnitsPerDevPixel)*mParameters.mXScale,
NSAppUnitsToDoublePixels(offset.y, appUnitsPerDevPixel)*mParameters.mYScale);
// We call RoundToMatchResidual here so that the residual after rounding
// is close to data->mActiveScrolledRootPosition if possible.
nsIntPoint pixOffset(RoundToMatchResidual(scaledOffset.x, data->mActiveScrolledRootPosition.x),
RoundToMatchResidual(scaledOffset.y, data->mActiveScrolledRootPosition.y));
data->mTranslation = pixOffset;
pixOffset += mParameters.mOffset;
gfxMatrix matrix;
matrix.Translate(gfxPoint(pixOffset.x, pixOffset.y));
layer->SetBaseTransform(gfx3DMatrix::From2D(matrix));
// FIXME: Temporary workaround for bug 681192 and bug 724786.
#ifndef MOZ_ANDROID_OMTC
// Calculate exact position of the top-left of the active scrolled root.
// This might not be 0,0 due to the snapping in ScaleToNearestPixels.
gfxPoint activeScrolledRootTopLeft = scaledOffset - matrix.GetTranslation() + mParameters.mOffset;
// If it has changed, then we need to invalidate the entire layer since the
// pixels in the layer buffer have the content at a (subpixel) offset
// from what we need.
if (!activeScrolledRootTopLeft.WithinEpsilonOf(data->mActiveScrolledRootPosition, SUBPIXEL_OFFSET_EPSILON)) {
data->mActiveScrolledRootPosition = activeScrolledRootTopLeft;
InvalidateEntireThebesLayer(layer, aActiveScrolledRoot);
} else if (didResetScrollPositionForLayerPixelAlignment) {
data->mActiveScrolledRootPosition = activeScrolledRootTopLeft;
}
#endif
return layer.forget();
}
#ifdef MOZ_DUMP_PAINTING
/**
* Returns the appunits per dev pixel for the item's frame
*/
static int32_t
AppUnitsPerDevPixel(nsDisplayItem* aItem)
{
// The underlying frame for zoom items is the root frame of the subdocument.
// But zoom display items report their bounds etc using the parent document's
// APD because zoom items act as a conversion layer between the two different
// APDs.
if (aItem->GetType() == nsDisplayItem::TYPE_ZOOM) {
return static_cast<nsDisplayZoom*>(aItem)->GetParentAppUnitsPerDevPixel();
}
return aItem->Frame()->PresContext()->AppUnitsPerDevPixel();
}
#endif
/**
* Restrict the visible region of aLayer to the region that is actually visible.
* Because we only reduce the visible region here, we don't need to worry
* about whether CONTENT_OPAQUE is set; if layer was opaque in the old
* visible region, it will still be opaque in the new one.
* @param aLayerVisibleRegion the visible region of the layer, in the layer's
* coordinate space
* @param aRestrictToRect the rect to restrict the visible region to, in the
* parent's coordinate system
*/
static void
SetVisibleRegionForLayer(Layer* aLayer, const nsIntRegion& aLayerVisibleRegion,
const nsIntRect& aRestrictToRect)
{
gfx3DMatrix transform = aLayer->GetTransform();
// if 'transform' is not invertible, then nothing will be displayed
// for the layer, so it doesn't really matter what we do here
gfxRect itemVisible(aRestrictToRect.x, aRestrictToRect.y,
aRestrictToRect.width, aRestrictToRect.height);
gfxRect layerVisible = transform.Inverse().ProjectRectBounds(itemVisible);
layerVisible.RoundOut();
nsIntRect visibleRect;
if (!gfxUtils::GfxRectToIntRect(layerVisible, &visibleRect)) {
aLayer->SetVisibleRegion(nsIntRegion());
} else {
nsIntRegion rgn;
rgn.And(aLayerVisibleRegion, visibleRect);
aLayer->SetVisibleRegion(rgn);
}
}
nscolor
ContainerState::FindOpaqueBackgroundColorFor(int32_t aThebesLayerIndex)
{
ThebesLayerData* target = mThebesLayerDataStack[aThebesLayerIndex];
for (int32_t i = aThebesLayerIndex - 1; i >= 0; --i) {
ThebesLayerData* candidate = mThebesLayerDataStack[i];
nsIntRegion visibleAboveIntersection;
visibleAboveIntersection.And(candidate->mVisibleAboveRegion, target->mVisibleRegion);
if (!visibleAboveIntersection.IsEmpty()) {
// Some non-Thebes content between target and candidate; this is
// hopeless
break;
}
nsIntRegion intersection;
intersection.And(candidate->mVisibleRegion, target->mVisibleRegion);
if (intersection.IsEmpty()) {
// The layer doesn't intersect our target, ignore it and move on
continue;
}
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
// The candidate intersects our target. If any layer has a solid-color
// area behind our target, this must be it. Scan its display items.
nsIntRect deviceRect = target->mVisibleRegion.GetBounds();
nsRect appUnitRect = deviceRect.ToAppUnits(mAppUnitsPerDevPixel);
appUnitRect.ScaleInverseRoundOut(mParameters.mXScale, mParameters.mYScale);
FrameLayerBuilder::ThebesLayerItemsEntry* entry =
mLayerBuilder->GetThebesLayerItemsEntry(candidate->mLayer);
NS_ASSERTION(entry, "Must know about this layer!");
for (int32_t j = entry->mItems.Length() - 1; j >= 0; --j) {
nsDisplayItem* item = entry->mItems[j].mItem;
bool snap;
nsRect bounds = item->GetBounds(mBuilder, &snap);
if (snap && mSnappingEnabled) {
nsIntRect snappedBounds = ScaleToNearestPixels(bounds);
if (!snappedBounds.Intersects(deviceRect))
continue;
if (!snappedBounds.Contains(deviceRect))
break;
} else {
// The layer's visible rect is already (close enough to) pixel
// aligned, so no need to round out and in here.
if (!bounds.Intersects(appUnitRect))
continue;
if (!bounds.Contains(appUnitRect))
break;
}
nscolor color;
if (item->IsUniform(mBuilder, &color) && NS_GET_A(color) == 255)
return color;
break;
}
break;
}
return NS_RGBA(0,0,0,0);
}
void
ContainerState::ThebesLayerData::UpdateCommonClipCount(
const DisplayItemClip& aCurrentClip)
{
if (mCommonClipCount >= 0) {
mCommonClipCount = mItemClip.GetCommonRoundedRectCount(aCurrentClip, mCommonClipCount);
} else {
// first item in the layer
mCommonClipCount = aCurrentClip.GetRoundedRectCount();
}
}
already_AddRefed<ImageContainer>
ContainerState::ThebesLayerData::CanOptimizeImageLayer(nsDisplayListBuilder* aBuilder)
{
if (!mImage) {
return nullptr;
}
return mImage->GetContainer(mLayer->Manager(), aBuilder);
}
void
ContainerState::PopThebesLayerData()
{
NS_ASSERTION(!mThebesLayerDataStack.IsEmpty(), "Can't pop");
int32_t lastIndex = mThebesLayerDataStack.Length() - 1;
ThebesLayerData* data = mThebesLayerDataStack[lastIndex];
nsRefPtr<Layer> layer;
nsRefPtr<ImageContainer> imageContainer = data->CanOptimizeImageLayer(mBuilder);
if ((data->mIsSolidColorInVisibleRegion || imageContainer) &&
data->mLayer->GetValidRegion().IsEmpty()) {
NS_ASSERTION(!(data->mIsSolidColorInVisibleRegion && imageContainer),
"Can't be a solid color as well as an image!");
if (imageContainer) {
nsRefPtr<ImageLayer> imageLayer = CreateOrRecycleImageLayer(data->mLayer);
imageLayer->SetContainer(imageContainer);
data->mImage->ConfigureLayer(imageLayer, mParameters.mOffset);
imageLayer->SetPostScale(mParameters.mXScale,
mParameters.mYScale);
if (data->mItemClip.HasClip()) {
nsIntRect clip = ScaleToNearestPixels(data->mItemClip.GetClipRect());
clip.MoveBy(mParameters.mOffset);
imageLayer->SetClipRect(&clip);
} else {
imageLayer->SetClipRect(nullptr);
}
layer = imageLayer;
mLayerBuilder->StoreOptimizedLayerForFrame(data->mImage,
imageLayer);
} else {
nsRefPtr<ColorLayer> colorLayer = CreateOrRecycleColorLayer(data->mLayer);
colorLayer->SetIsFixedPosition(data->mLayer->GetIsFixedPosition());
colorLayer->SetColor(data->mSolidColor);
// Copy transform
colorLayer->SetBaseTransform(data->mLayer->GetBaseTransform());
colorLayer->SetPostScale(data->mLayer->GetPostXScale(), data->mLayer->GetPostYScale());
// Clip colorLayer to its visible region, since ColorLayers are
// allowed to paint outside the visible region. Here we rely on the
// fact that uniform display items fill rectangles; obviously the
// area to fill must contain the visible region, and because it's
// a rectangle, it must therefore contain the visible region's GetBounds.
// Note that the visible region is already clipped appropriately.
nsIntRect visibleRect = data->mVisibleRegion.GetBounds();
visibleRect.MoveBy(mParameters.mOffset);
colorLayer->SetClipRect(&visibleRect);
layer = colorLayer;
}
NS_ASSERTION(!mNewChildLayers.Contains(layer), "Layer already in list???");
AutoLayersArray::index_type index = mNewChildLayers.IndexOf(data->mLayer);
NS_ASSERTION(index != AutoLayersArray::NoIndex, "Thebes layer not found?");
mNewChildLayers.InsertElementAt(index + 1, layer);
// Hide the ThebesLayer. We leave it in the layer tree so that we
// can find and recycle it later.
nsIntRect emptyRect;
data->mLayer->SetClipRect(&emptyRect);
data->mLayer->SetVisibleRegion(nsIntRegion());
} else {
layer = data->mLayer;
imageContainer = nullptr;
layer->SetClipRect(nullptr);
}
gfxMatrix transform;
if (!layer->GetTransform().Is2D(&transform)) {
NS_ERROR("Only 2D transformations currently supported");
}
// ImageLayers are already configured with a visible region
if (!imageContainer) {
NS_ASSERTION(!transform.HasNonIntegerTranslation(),
"Matrix not just an integer translation?");
// Convert from relative to the container to relative to the
// ThebesLayer itself.
nsIntRegion rgn = data->mVisibleRegion;
rgn.MoveBy(-GetTranslationForThebesLayer(data->mLayer));
layer->SetVisibleRegion(rgn);
}
nsIntRegion transparentRegion;
transparentRegion.Sub(data->mVisibleRegion, data->mOpaqueRegion);
bool isOpaque = transparentRegion.IsEmpty();
// For translucent ThebesLayers, try to find an opaque background
// color that covers the entire area beneath it so we can pull that
// color into this layer to make it opaque.
if (layer == data->mLayer) {
nscolor backgroundColor = NS_RGBA(0,0,0,0);
if (!isOpaque) {
backgroundColor = FindOpaqueBackgroundColorFor(lastIndex);
if (NS_GET_A(backgroundColor) == 255) {
isOpaque = true;
}
}
// Store the background color
ThebesDisplayItemLayerUserData* userData =
GetThebesDisplayItemLayerUserData(data->mLayer);
NS_ASSERTION(userData, "where did our user data go?");
if (userData->mForcedBackgroundColor != backgroundColor) {
// Invalidate the entire target ThebesLayer since we're changing
// the background color
data->mLayer->InvalidateRegion(data->mLayer->GetValidRegion());
}
userData->mForcedBackgroundColor = backgroundColor;
// use a mask layer for rounded rect clipping
int32_t commonClipCount = data->mCommonClipCount;
NS_ASSERTION(commonClipCount >= 0, "Inconsistent clip count.");
SetupMaskLayer(layer, data->mItemClip, commonClipCount);
// copy commonClipCount to the entry
FrameLayerBuilder::ThebesLayerItemsEntry* entry = mLayerBuilder->
GetThebesLayerItemsEntry(static_cast<ThebesLayer*>(layer.get()));
entry->mCommonClipCount = commonClipCount;
} else {
// mask layer for image and color layers
SetupMaskLayer(layer, data->mItemClip);
}
uint32_t flags;
if (isOpaque && !data->mForceTransparentSurface) {
flags = Layer::CONTENT_OPAQUE;
} else if (data->mNeedComponentAlpha) {
flags = Layer::CONTENT_COMPONENT_ALPHA;
} else {
flags = 0;
}
layer->SetContentFlags(flags);
if (lastIndex > 0) {
// Since we're going to pop off the last ThebesLayerData, the
// mVisibleAboveRegion of the second-to-last item will need to include
// the regions of the last item.
ThebesLayerData* nextData = mThebesLayerDataStack[lastIndex - 1];
nextData->mVisibleAboveRegion.Or(nextData->mVisibleAboveRegion,
data->mVisibleAboveRegion);
nextData->mVisibleAboveRegion.Or(nextData->mVisibleAboveRegion,
data->mVisibleRegion);
nextData->mVisibleAboveRegion.SimplifyOutward(4);
nextData->mDrawAboveRegion.Or(nextData->mDrawAboveRegion,
data->mDrawAboveRegion);
nextData->mDrawAboveRegion.Or(nextData->mDrawAboveRegion,
data->mDrawRegion);
nextData->mDrawAboveRegion.SimplifyOutward(4);
}
mThebesLayerDataStack.RemoveElementAt(lastIndex);
}
static bool
SuppressComponentAlpha(nsDisplayListBuilder* aBuilder,
nsDisplayItem* aItem,
const nsRect& aComponentAlphaBounds)
{
const nsRegion* windowTransparentRegion = aBuilder->GetFinalTransparentRegion();
if (!windowTransparentRegion || windowTransparentRegion->IsEmpty())
return false;
// Suppress component alpha for items in the toplevel window that are over
// the window translucent area
nsIFrame* f = aItem->Frame();
nsIFrame* ref = aBuilder->RootReferenceFrame();
if (f->PresContext() != ref->PresContext())
return false;
for (nsIFrame* t = f; t; t = t->GetParent()) {
if (t->IsTransformed())
return false;
}
return windowTransparentRegion->Intersects(aComponentAlphaBounds);
}
static bool
WindowHasTransparency(nsDisplayListBuilder* aBuilder)
{
const nsRegion* windowTransparentRegion = aBuilder->GetFinalTransparentRegion();
return windowTransparentRegion && !windowTransparentRegion->IsEmpty();
}
void
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
ContainerState::ThebesLayerData::Accumulate(ContainerState* aState,
nsDisplayItem* aItem,
const nsIntRect& aVisibleRect,
const nsIntRect& aDrawRect,
const DisplayItemClip& aClip)
{
if (aState->mBuilder->NeedToForceTransparentSurfaceForItem(aItem)) {
mForceTransparentSurface = true;
}
if (aState->mParameters.mDisableSubpixelAntialiasingInDescendants) {
// Disable component alpha.
// Note that the transform (if any) on the ThebesLayer is always an integer translation so
// we don't have to factor that in here.
aItem->DisableComponentAlpha();
}
/* Mark as available for conversion to image layer if this is a nsDisplayImage and
* we are the first visible item in the ThebesLayerData object.
*/
if (mVisibleRegion.IsEmpty() &&
aItem->SupportsOptimizingToImage()) {
mImage = static_cast<nsDisplayImageContainer*>(aItem);
} else {
mImage = nullptr;
}
mItemClip = aClip;
if (!mIsSolidColorInVisibleRegion && mOpaqueRegion.Contains(aDrawRect) &&
mVisibleRegion.Contains(aVisibleRect)) {
// A very common case! Most pages have a ThebesLayer with the page
// background (opaque) visible and most or all of the page content over the
// top of that background.
// The rest of this method won't do anything. mVisibleRegion, mOpaqueRegion
// and mDrawRegion don't need updating. mVisibleRegion contains aVisibleRect
// already, mOpaqueRegion contains aDrawRect and therefore whatever
// the opaque region of the item is. mDrawRegion must contain mOpaqueRegion
// and therefore aDrawRect.
NS_ASSERTION(mDrawRegion.Contains(aDrawRect), "Draw region not covered");
return;
}
nscolor uniformColor;
bool isUniform = aItem->IsUniform(aState->mBuilder, &uniformColor);
// Some display items have to exist (so they can set forceTransparentSurface
// below) but don't draw anything. They'll return true for isUniform but
// a color with opacity 0.
if (!isUniform || NS_GET_A(uniformColor) > 0) {
// Make sure that the visible area is covered by uniform pixels. In
// particular this excludes cases where the edges of the item are not
// pixel-aligned (thus the item will not be truly uniform).
if (isUniform) {
bool snap;
nsRect bounds = aItem->GetBounds(aState->mBuilder, &snap);
if (!aState->ScaleToInsidePixels(bounds, snap).Contains(aVisibleRect)) {
isUniform = false;
}
}
if (isUniform && aClip.GetRoundedRectCount() == 0) {
if (mVisibleRegion.IsEmpty()) {
// This color is all we have
mSolidColor = uniformColor;
mIsSolidColorInVisibleRegion = true;
} else if (mIsSolidColorInVisibleRegion &&
mVisibleRegion.IsEqual(nsIntRegion(aVisibleRect))) {
// we can just blend the colors together
mSolidColor = NS_ComposeColors(mSolidColor, uniformColor);
} else {
mIsSolidColorInVisibleRegion = false;
}
} else {
mIsSolidColorInVisibleRegion = false;
}
mVisibleRegion.Or(mVisibleRegion, aVisibleRect);
mVisibleRegion.SimplifyOutward(4);
mDrawRegion.Or(mDrawRegion, aDrawRect);
mDrawRegion.SimplifyOutward(4);
}
bool snap;
nsRegion opaque = aItem->GetOpaqueRegion(aState->mBuilder, &snap);
if (!opaque.IsEmpty()) {
nsRegion opaqueClipped;
nsRegionRectIterator iter(opaque);
for (const nsRect* r = iter.Next(); r; r = iter.Next()) {
opaqueClipped.Or(opaqueClipped, aClip.ApproximateIntersectInward(*r));
}
nsIntRegion opaquePixels = aState->ScaleRegionToInsidePixels(opaqueClipped, snap);
nsIntRegionRectIterator iter2(opaquePixels);
for (const nsIntRect* r = iter2.Next(); r; r = iter2.Next()) {
// We don't use SimplifyInward here since it's not defined exactly
// what it will discard. For our purposes the most important case
// is a large opaque background at the bottom of z-order (e.g.,
// a canvas background), so we need to make sure that the first rect
// we see doesn't get discarded.
nsIntRegion tmp;
tmp.Or(mOpaqueRegion, *r);
// Opaque display items in chrome documents whose window is partially
// transparent are always added to the opaque region. This helps ensure
// that we get as much subpixel-AA as possible in the chrome.
if (tmp.GetNumRects() <= 4 ||
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
(WindowHasTransparency(aState->mBuilder) &&
aItem->Frame()->PresContext()->IsChrome())) {
mOpaqueRegion = tmp;
}
}
}
if (!aState->mParameters.mDisableSubpixelAntialiasingInDescendants) {
nsRect componentAlpha = aItem->GetComponentAlphaBounds(aState->mBuilder);
if (!componentAlpha.IsEmpty()) {
nsIntRect componentAlphaRect =
aState->ScaleToOutsidePixels(componentAlpha, false).Intersect(aVisibleRect);
if (!mOpaqueRegion.Contains(componentAlphaRect)) {
if (SuppressComponentAlpha(aState->mBuilder, aItem, componentAlpha)) {
aItem->DisableComponentAlpha();
} else {
mNeedComponentAlpha = true;
}
}
}
}
}
ContainerState::ThebesLayerData*
ContainerState::FindThebesLayerFor(nsDisplayItem* aItem,
const nsIntRect& aVisibleRect,
const nsIntRect& aDrawRect,
const DisplayItemClip& aClip,
const nsIFrame* aActiveScrolledRoot,
const nsPoint& aTopLeft)
{
int32_t i;
int32_t lowestUsableLayerWithScrolledRoot = -1;
int32_t topmostLayerWithScrolledRoot = -1;
for (i = mThebesLayerDataStack.Length() - 1; i >= 0; --i) {
ThebesLayerData* data = mThebesLayerDataStack[i];
if (data->mDrawAboveRegion.Intersects(aVisibleRect)) {
++i;
break;
}
if (data->mActiveScrolledRoot == aActiveScrolledRoot) {
lowestUsableLayerWithScrolledRoot = i;
if (topmostLayerWithScrolledRoot < 0) {
topmostLayerWithScrolledRoot = i;
}
}
if (data->mDrawRegion.Intersects(aVisibleRect))
break;
}
if (topmostLayerWithScrolledRoot < 0) {
--i;
for (; i >= 0; --i) {
ThebesLayerData* data = mThebesLayerDataStack[i];
if (data->mActiveScrolledRoot == aActiveScrolledRoot) {
topmostLayerWithScrolledRoot = i;
break;
}
}
}
if (topmostLayerWithScrolledRoot >= 0) {
while (uint32_t(topmostLayerWithScrolledRoot + 1) < mThebesLayerDataStack.Length()) {
PopThebesLayerData();
}
}
nsRefPtr<ThebesLayer> layer;
ThebesLayerData* thebesLayerData = nullptr;
if (lowestUsableLayerWithScrolledRoot < 0) {
layer = CreateOrRecycleThebesLayer(aActiveScrolledRoot, aItem->ReferenceFrame(), aTopLeft);
NS_ASSERTION(!mNewChildLayers.Contains(layer), "Layer already in list???");
mNewChildLayers.AppendElement(layer);
thebesLayerData = new ThebesLayerData();
mThebesLayerDataStack.AppendElement(thebesLayerData);
thebesLayerData->mLayer = layer;
thebesLayerData->mActiveScrolledRoot = aActiveScrolledRoot;
} else {
thebesLayerData = mThebesLayerDataStack[lowestUsableLayerWithScrolledRoot];
layer = thebesLayerData->mLayer;
}
// check to see if the new item has rounded rect clips in common with
// other items in the layer
thebesLayerData->UpdateCommonClipCount(aClip);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
thebesLayerData->Accumulate(this, aItem, aVisibleRect, aDrawRect, aClip);
return thebesLayerData;
}
#ifdef MOZ_DUMP_PAINTING
static void
DumpPaintedImage(nsDisplayItem* aItem, gfxASurface* aSurf)
{
nsCString string(aItem->Name());
string.Append("-");
string.AppendInt((uint64_t)aItem);
fprintf(gfxUtils::sDumpPaintFile, "array[\"%s\"]=\"", string.BeginReading());
aSurf->DumpAsDataURL(gfxUtils::sDumpPaintFile);
fprintf(gfxUtils::sDumpPaintFile, "\";");
}
#endif
static void
PaintInactiveLayer(nsDisplayListBuilder* aBuilder,
LayerManager* aManager,
nsDisplayItem* aItem,
gfxContext* aContext,
nsRenderingContext* aCtx)
{
// This item has an inactive layer. Render it to a ThebesLayer
// using a temporary BasicLayerManager.
BasicLayerManager* basic = static_cast<BasicLayerManager*>(aManager);
nsRefPtr<gfxContext> context = aContext;
#ifdef MOZ_DUMP_PAINTING
int32_t appUnitsPerDevPixel = AppUnitsPerDevPixel(aItem);
nsIntRect itemVisibleRect =
aItem->GetVisibleRect().ToOutsidePixels(appUnitsPerDevPixel);
nsRefPtr<gfxASurface> surf;
if (gfxUtils::sDumpPainting) {
surf = gfxPlatform::GetPlatform()->CreateOffscreenSurface(itemVisibleRect.Size(),
gfxASurface::CONTENT_COLOR_ALPHA);
surf->SetDeviceOffset(-itemVisibleRect.TopLeft());
context = new gfxContext(surf);
}
#endif
basic->SetTarget(context);
if (aItem->GetType() == nsDisplayItem::TYPE_SVG_EFFECTS) {
static_cast<nsDisplaySVGEffects*>(aItem)->PaintAsLayer(aBuilder, aCtx, basic);
if (basic->InTransaction()) {
basic->AbortTransaction();
}
} else {
basic->EndTransaction(FrameLayerBuilder::DrawThebesLayer, aBuilder);
}
FrameLayerBuilder *builder = static_cast<FrameLayerBuilder*>(basic->GetUserData(&gLayerManagerLayerBuilder));
if (builder) {
builder->DidEndTransaction();
}
basic->SetTarget(nullptr);
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPainting) {
DumpPaintedImage(aItem, surf);
surf->SetDeviceOffset(gfxPoint(0, 0));
aContext->SetSource(surf, itemVisibleRect.TopLeft());
aContext->Rectangle(itemVisibleRect);
aContext->Fill();
aItem->SetPainted();
}
#endif
}
/**
* Chooses a single active scrolled root for the entire display list, used
* when we are flattening layers.
*/
bool
ContainerState::ChooseActiveScrolledRoot(const nsDisplayList& aList,
const nsIFrame **aActiveScrolledRoot)
{
for (nsDisplayItem* item = aList.GetBottom(); item; item = item->GetAbove()) {
LayerState layerState = item->GetLayerState(mBuilder, mManager, mParameters);
// Don't use an item that won't be part of any ThebesLayers to pick the
// active scrolled root.
if (layerState == LAYER_ACTIVE_FORCE) {
continue;
}
// Try using the actual active scrolled root of the backmost item, as that
// should result in the least invalidation when scrolling.
mBuilder->IsFixedItem(item, aActiveScrolledRoot);
if (*aActiveScrolledRoot) {
return true;
}
}
return false;
}
/*
* Iterate through the non-clip items in aList and its descendants.
* For each item we compute the effective clip rect. Each item is assigned
* to a layer. We invalidate the areas in ThebesLayers where an item
* has moved from one ThebesLayer to another. Also,
* aState->mInvalidThebesContent is invalidated in every ThebesLayer.
* We set the clip rect for items that generated their own layer, and
* create a mask layer to do any rounded rect clipping.
* (ThebesLayers don't need a clip rect on the layer, we clip the items
* individually when we draw them.)
* We set the visible rect for all layers, although the actual setting
* of visible rects for some ThebesLayers is deferred until the calling
* of ContainerState::Finish.
*/
void
ContainerState::ProcessDisplayItems(const nsDisplayList& aList,
uint32_t aFlags)
{
PROFILER_LABEL("ContainerState", "ProcessDisplayItems");
const nsIFrame* lastActiveScrolledRoot = nullptr;
nsPoint topLeft;
// When NO_COMPONENT_ALPHA is set, items will be flattened into a single
// layer, so we need to choose which active scrolled root to use for all
// items.
if (aFlags & NO_COMPONENT_ALPHA) {
if (!ChooseActiveScrolledRoot(aList, &lastActiveScrolledRoot)) {
lastActiveScrolledRoot = mContainerReferenceFrame;
}
topLeft = lastActiveScrolledRoot->GetOffsetToCrossDoc(mContainerReferenceFrame);
}
for (nsDisplayItem* item = aList.GetBottom(); item; item = item->GetAbove()) {
NS_ASSERTION(mAppUnitsPerDevPixel == AppUnitsPerDevPixel(item),
"items in a container layer should all have the same app units per dev pixel");
2011-10-25 19:55:51 -07:00
nsIntRect itemVisibleRect =
ScaleToOutsidePixels(item->GetVisibleRect(), false);
bool snap;
nsRect itemContent = item->GetBounds(mBuilder, &snap);
nsIntRect itemDrawRect = ScaleToOutsidePixels(itemContent, snap);
nsIntRect clipRect;
const DisplayItemClip& itemClip = item->GetClip();
if (itemClip.HasClip()) {
itemContent.IntersectRect(itemContent, itemClip.GetClipRect());
clipRect = ScaleToNearestPixels(itemClip.GetClipRect());
itemDrawRect.IntersectRect(itemDrawRect, clipRect);
clipRect.MoveBy(mParameters.mOffset);
}
mBounds.UnionRect(mBounds, itemContent);
itemVisibleRect.IntersectRect(itemVisibleRect, itemDrawRect);
LayerState layerState = item->GetLayerState(mBuilder, mManager, mParameters);
if (layerState == LAYER_INACTIVE &&
nsDisplayItem::ForceActiveLayers()) {
layerState = LAYER_ACTIVE;
}
bool isFixed;
bool forceInactive;
const nsIFrame* activeScrolledRoot;
if (aFlags & NO_COMPONENT_ALPHA) {
forceInactive = true;
activeScrolledRoot = lastActiveScrolledRoot;
isFixed = mBuilder->IsFixedItem(item, nullptr, activeScrolledRoot);
} else {
forceInactive = false;
isFixed = mBuilder->IsFixedItem(item, &activeScrolledRoot);
if (activeScrolledRoot != lastActiveScrolledRoot) {
lastActiveScrolledRoot = activeScrolledRoot;
topLeft = activeScrolledRoot->GetOffsetToCrossDoc(mContainerReferenceFrame);
}
}
// Assign the item to a layer
if (layerState == LAYER_ACTIVE_FORCE ||
(layerState == LAYER_INACTIVE && !mManager->IsWidgetLayerManager()) ||
(!forceInactive &&
(layerState == LAYER_ACTIVE_EMPTY ||
layerState == LAYER_ACTIVE))) {
// LAYER_ACTIVE_EMPTY means the layer is created just for its metadata.
// We should never see an empty layer with any visible content!
NS_ASSERTION(layerState != LAYER_ACTIVE_EMPTY ||
2011-10-25 19:55:51 -07:00
itemVisibleRect.IsEmpty(),
"State is LAYER_ACTIVE_EMPTY but visible rect is not.");
// As long as the new layer isn't going to be a ThebesLayer,
// InvalidateForLayerChange doesn't need the new layer pointer.
// We also need to check the old data now, because BuildLayer
// can overwrite it.
InvalidateForLayerChange(item, nullptr, itemClip, topLeft, nullptr);
// If the item would have its own layer but is invisible, just hide it.
// Note that items without their own layers can't be skipped this
// way, since their ThebesLayer may decide it wants to draw them
// into its buffer even if they're currently covered.
if (itemVisibleRect.IsEmpty() &&
!item->ShouldBuildLayerEvenIfInvisible(mBuilder)) {
continue;
}
nsDisplayItem::Type type = item->GetType();
bool setVisibleRegion = type != nsDisplayItem::TYPE_TRANSFORM;
if (setVisibleRegion) {
mParameters.mAncestorClipRect = nullptr;
} else {
mParameters.mAncestorClipRect = itemClip.HasClip() ? &clipRect : nullptr;
}
// Just use its layer.
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
nsRefPtr<Layer> ownLayer = item->BuildLayer(mBuilder, mManager, mParameters);
if (!ownLayer) {
continue;
}
NS_ASSERTION(!ownLayer->AsThebesLayer(),
"Should never have created a dedicated Thebes layer!");
nsRect invalid;
if (item->IsInvalid(invalid)) {
ownLayer->SetInvalidRectToVisibleRegion();
}
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
// If it's not a ContainerLayer, we need to apply the scale transform
// ourselves.
if (!ownLayer->AsContainerLayer()) {
ownLayer->SetPostScale(mParameters.mXScale,
mParameters.mYScale);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
}
ownLayer->SetIsFixedPosition(isFixed);
// Update that layer's clip and visible rects.
NS_ASSERTION(ownLayer->Manager() == mManager, "Wrong manager");
NS_ASSERTION(!ownLayer->HasUserData(&gLayerManagerUserData),
"We shouldn't have a FrameLayerBuilder-managed layer here!");
NS_ASSERTION(itemClip.HasClip() ||
itemClip.GetRoundedRectCount() == 0,
"If we have rounded rects, we must have a clip rect");
// It has its own layer. Update that layer's clip and visible rects.
if (itemClip.HasClip()) {
ownLayer->SetClipRect(&clipRect);
} else {
ownLayer->SetClipRect(nullptr);
}
ThebesLayerData* data = GetTopThebesLayerData();
if (data) {
2011-10-25 19:55:51 -07:00
data->mVisibleAboveRegion.Or(data->mVisibleAboveRegion, itemVisibleRect);
data->mVisibleAboveRegion.SimplifyOutward(4);
// Add the entire bounds rect to the mDrawAboveRegion.
// The visible region may be excluding opaque content above the
// item, and we need to ensure that that content is not placed
// in a ThebesLayer below the item!
data->mDrawAboveRegion.Or(data->mDrawAboveRegion, itemDrawRect);
data->mDrawAboveRegion.SimplifyOutward(4);
}
itemVisibleRect.MoveBy(mParameters.mOffset);
if (setVisibleRegion) {
SetVisibleRegionForLayer(ownLayer, ownLayer->GetVisibleRegion(), itemVisibleRect);
}
// rounded rectangle clipping using mask layers
// (must be done after visible rect is set on layer)
if (itemClip.IsRectClippedByRoundedCorner(itemContent)) {
SetupMaskLayer(ownLayer, itemClip);
}
ContainerLayer* oldContainer = ownLayer->GetParent();
if (oldContainer && oldContainer != mContainerLayer) {
oldContainer->RemoveChild(ownLayer);
}
NS_ASSERTION(!mNewChildLayers.Contains(ownLayer),
"Layer already in list???");
mNewChildLayers.AppendElement(ownLayer);
/**
* No need to allocate geometry for items that aren't
* part of a ThebesLayer.
*/
nsAutoPtr<nsDisplayItemGeometry> dummy;
mLayerBuilder->AddLayerDisplayItem(ownLayer, item,
itemClip, layerState,
topLeft, nullptr,
dummy);
} else {
ThebesLayerData* data =
FindThebesLayerFor(item, itemVisibleRect, itemDrawRect, itemClip,
activeScrolledRoot, topLeft);
data->mLayer->SetIsFixedPosition(isFixed);
nsAutoPtr<nsDisplayItemGeometry> geometry(item->AllocateGeometry(mBuilder));
InvalidateForLayerChange(item, data->mLayer, itemClip, topLeft, geometry);
mLayerBuilder->AddThebesDisplayItem(data->mLayer, item, itemClip,
mContainerFrame,
layerState, topLeft,
geometry);
// check to see if the new item has rounded rect clips in common with
// other items in the layer
data->UpdateCommonClipCount(itemClip);
}
}
}
void
ContainerState::InvalidateForLayerChange(nsDisplayItem* aItem,
Layer* aNewLayer,
const DisplayItemClip& aClip,
const nsPoint& aTopLeft,
nsDisplayItemGeometry *aGeometry)
{
NS_ASSERTION(aItem->GetPerFrameKey(),
"Display items that render using Thebes must have a key");
nsDisplayItemGeometry *oldGeometry = NULL;
DisplayItemClip* oldClip = NULL;
nsAutoTArray<nsIFrame*,4> changedFrames;
bool isInvalid = false;
Layer* oldLayer = mLayerBuilder->GetOldLayerFor(aItem, &oldGeometry, &oldClip, &changedFrames, &isInvalid);
if (aNewLayer != oldLayer && oldLayer) {
// The item has changed layers.
// Invalidate the old bounds in the old layer and new bounds in the new layer.
ThebesLayer* t = oldLayer->AsThebesLayer();
if (t) {
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
// Note that whenever the layer's scale changes, we invalidate the whole thing,
// so it doesn't matter whether we are using the old scale at last paint
// or a new scale here
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Display item type %s(%p) changed layers %p to %p!\n", aItem->Name(), aItem->Frame(), t, aNewLayer);
}
#endif
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
InvalidatePostTransformRegion(t,
oldGeometry->ComputeInvalidationRegion(),
*oldClip,
mLayerBuilder->GetLastPaintOffset(t));
}
if (aNewLayer) {
ThebesLayer* newThebesLayer = aNewLayer->AsThebesLayer();
if (newThebesLayer) {
InvalidatePostTransformRegion(newThebesLayer,
aGeometry->ComputeInvalidationRegion(),
aClip,
GetTranslationForThebesLayer(newThebesLayer));
}
}
aItem->NotifyRenderingChanged();
return;
}
if (!aNewLayer) {
return;
}
ThebesLayer* newThebesLayer = aNewLayer->AsThebesLayer();
if (!newThebesLayer) {
return;
}
ThebesDisplayItemLayerUserData* data =
static_cast<ThebesDisplayItemLayerUserData*>(newThebesLayer->GetUserData(&gThebesDisplayItemLayerUserData));
// If the frame is marked as invalidated, and didn't specify a rect to invalidate then we want to
// invalidate both the old and new bounds, otherwise we only want to invalidate the changed areas.
// If we do get an invalid rect, then we want to add this on top of the change areas.
nsRect invalid;
nsRegion combined;
nsPoint shift = aTopLeft - data->mLastActiveScrolledRootOrigin;
if (!oldLayer) {
// This item is being added for the first time, invalidate its entire area.
//TODO: We call GetGeometry again in AddThebesDisplayItem, we should reuse this.
combined = aClip.ApplyNonRoundedIntersection(aGeometry->ComputeInvalidationRegion());
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Display item type %s(%p) added to layer %p!\n", aItem->Name(), aItem->Frame(), aNewLayer);
}
#endif
} else if (isInvalid || (aItem->IsInvalid(invalid) && invalid.IsEmpty())) {
// Either layout marked item as needing repainting, invalidate the entire old and new areas.
combined = oldClip->ApplyNonRoundedIntersection(oldGeometry->ComputeInvalidationRegion());
combined.MoveBy(shift);
combined.Or(combined, aClip.ApplyNonRoundedIntersection(aGeometry->ComputeInvalidationRegion()));
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Display item type %s(%p) (in layer %p) belongs to an invalidated frame!\n", aItem->Name(), aItem->Frame(), aNewLayer);
}
#endif
} else {
// Let the display item check for geometry changes and decide what needs to be
// repainted.
oldGeometry->MoveBy(shift);
aItem->ComputeInvalidationRegion(mBuilder, oldGeometry, &combined);
oldClip->AddOffsetAndComputeDifference(shift, oldGeometry->ComputeInvalidationRegion(),
aClip, aGeometry->ComputeInvalidationRegion(),
&combined);
// Add in any rect that the frame specified
combined.Or(combined, invalid);
for (uint32_t i = 0; i < changedFrames.Length(); i++) {
combined.Or(combined, changedFrames[i]->GetVisualOverflowRect());
}
// Restrict invalidation to the clipped region
nsRegion clip;
if (aClip.ComputeRegionInClips(oldClip, shift, &clip)) {
combined.And(combined, clip);
}
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
if (!combined.IsEmpty()) {
printf("Display item type %s(%p) (in layer %p) changed geometry!\n", aItem->Name(), aItem->Frame(), aNewLayer);
}
}
#endif
}
if (!combined.IsEmpty()) {
aItem->NotifyRenderingChanged();
InvalidatePostTransformRegion(newThebesLayer,
combined.ScaleToOutsidePixels(data->mXScale, data->mYScale, mAppUnitsPerDevPixel),
GetTranslationForThebesLayer(newThebesLayer));
}
}
void
FrameLayerBuilder::AddThebesDisplayItem(ThebesLayer* aLayer,
nsDisplayItem* aItem,
const DisplayItemClip& aClip,
nsIFrame* aContainerLayerFrame,
LayerState aLayerState,
const nsPoint& aTopLeft,
nsAutoPtr<nsDisplayItemGeometry> aGeometry)
{
ThebesDisplayItemLayerUserData* thebesData =
static_cast<ThebesDisplayItemLayerUserData*>(aLayer->GetUserData(&gThebesDisplayItemLayerUserData));
nsRefPtr<LayerManager> tempManager;
nsIntRect intClip;
bool hasClip = false;
if (aLayerState != LAYER_NONE) {
DisplayItemData *data = GetDisplayItemDataForManager(aItem, aLayer->Manager());
if (data) {
tempManager = data->mInactiveManager;
}
if (!tempManager) {
tempManager = new BasicLayerManager();
}
// We need to grab these before calling AddLayerDisplayItem because it will overwrite them.
nsRegion clip;
DisplayItemClip* oldClip = nullptr;
GetOldLayerFor(aItem, nullptr, &oldClip);
hasClip = aClip.ComputeRegionInClips(oldClip,
aTopLeft - thebesData->mLastActiveScrolledRootOrigin,
&clip);
if (hasClip) {
intClip = clip.GetBounds().ScaleToOutsidePixels(thebesData->mXScale,
thebesData->mYScale,
thebesData->mAppUnitsPerDevPixel);
}
}
AddLayerDisplayItem(aLayer, aItem, aClip, aLayerState, aTopLeft, tempManager, aGeometry);
ThebesLayerItemsEntry* entry = mThebesLayerItems.PutEntry(aLayer);
if (entry) {
entry->mContainerLayerFrame = aContainerLayerFrame;
if (entry->mContainerLayerGeneration == 0) {
entry->mContainerLayerGeneration = mContainerLayerGeneration;
}
if (tempManager) {
FrameLayerBuilder* layerBuilder = new FrameLayerBuilder();
layerBuilder->Init(mDisplayListBuilder, tempManager);
tempManager->BeginTransaction();
if (mRetainingManager) {
layerBuilder->DidBeginRetainedLayerTransaction(tempManager);
}
nsAutoPtr<LayerProperties> props(LayerProperties::CloneFrom(tempManager->GetRoot()));
nsRefPtr<Layer> layer =
aItem->BuildLayer(mDisplayListBuilder, tempManager, FrameLayerBuilder::ContainerParameters());
// We have no easy way of detecting if this transaction will ever actually get finished.
// For now, I've just silenced the warning with nested transactions in BasicLayers.cpp
if (!layer) {
tempManager->EndTransaction(nullptr, nullptr);
tempManager->SetUserData(&gLayerManagerLayerBuilder, nullptr);
return;
}
// If BuildLayer didn't call BuildContainerLayerFor, then our new layer won't have been
// stored in layerBuilder. Manually add it now.
if (mRetainingManager) {
#ifdef DEBUG_DISPLAY_ITEM_DATA
LayerManagerData* parentLmd = static_cast<LayerManagerData*>
(aLayer->Manager()->GetUserData(&gLayerManagerUserData));
LayerManagerData* lmd = static_cast<LayerManagerData*>
(tempManager->GetUserData(&gLayerManagerUserData));
lmd->mParent = parentLmd;
#endif
layerBuilder->StoreDataForFrame(aItem, layer, LAYER_ACTIVE);
}
tempManager->SetRoot(layer);
layerBuilder->WillEndTransaction();
nsIntPoint offset = GetLastPaintOffset(aLayer) - GetTranslationForThebesLayer(aLayer);
props->MoveBy(-offset);
nsIntRegion invalid = props->ComputeDifferences(layer, nullptr);
if (aLayerState == LAYER_SVG_EFFECTS) {
invalid = nsSVGIntegrationUtils::AdjustInvalidAreaForSVGEffects(aItem->Frame(),
aItem->ToReferenceFrame(),
invalid.GetBounds());
}
if (!invalid.IsEmpty()) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf("Inactive LayerManager(%p) for display item %s(%p) has an invalid region - invalidating layer %p\n", tempManager.get(), aItem->Name(), aItem->Frame(), aLayer);
}
#endif
if (hasClip) {
invalid.And(invalid, intClip);
}
invalid.ScaleRoundOut(thebesData->mXScale, thebesData->mYScale);
InvalidatePostTransformRegion(aLayer, invalid,
GetTranslationForThebesLayer(aLayer));
}
}
ClippedDisplayItem* cdi =
entry->mItems.AppendElement(ClippedDisplayItem(aItem,
mContainerLayerGeneration));
cdi->mInactiveLayerManager = tempManager;
}
}
FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::StoreDataForFrame(nsDisplayItem* aItem, Layer* aLayer, LayerState aState)
{
DisplayItemData* oldData = GetDisplayItemDataForManager(aItem, mRetainingManager);
if (oldData) {
if (!oldData->mUsed) {
oldData->UpdateContents(aLayer, aState, mContainerLayerGeneration, aItem);
}
return oldData;
}
LayerManagerData* lmd = static_cast<LayerManagerData*>
(mRetainingManager->GetUserData(&gLayerManagerUserData));
nsRefPtr<DisplayItemData> data =
new DisplayItemData(lmd, aItem->GetPerFrameKey(),
aLayer, aState, mContainerLayerGeneration);
data->AddFrame(aItem->Frame());
nsAutoTArray<nsIFrame*,4> mergedFrames;
aItem->GetMergedFrames(&mergedFrames);
for (uint32_t i = 0; i < mergedFrames.Length(); ++i) {
data->AddFrame(mergedFrames[i]);
}
lmd->mDisplayItems.PutEntry(data);
return data;
}
void
FrameLayerBuilder::StoreDataForFrame(nsIFrame* aFrame,
uint32_t aDisplayItemKey,
Layer* aLayer,
LayerState aState)
{
DisplayItemData* oldData = GetDisplayItemData(aFrame, aDisplayItemKey);
if (oldData && oldData->mFrameList.Length() == 1) {
oldData->UpdateContents(aLayer, aState, mContainerLayerGeneration);
return;
}
LayerManagerData* lmd = static_cast<LayerManagerData*>
(mRetainingManager->GetUserData(&gLayerManagerUserData));
nsRefPtr<DisplayItemData> data =
new DisplayItemData(lmd, aDisplayItemKey, aLayer,
aState, mContainerLayerGeneration);
data->AddFrame(aFrame);
lmd->mDisplayItems.PutEntry(data);
}
FrameLayerBuilder::ClippedDisplayItem::~ClippedDisplayItem()
{
if (mInactiveLayerManager) {
// We always start a transaction during layer construction for all inactive
// layers, but we don't necessarily call EndTransaction during painting.
// If the transaaction is still open, end it to avoid assertions.
BasicLayerManager* basic = static_cast<BasicLayerManager*>(mInactiveLayerManager.get());
if (basic->InTransaction()) {
basic->EndTransaction(nullptr, nullptr);
}
basic->SetUserData(&gLayerManagerLayerBuilder, nullptr);
}
}
void
FrameLayerBuilder::AddLayerDisplayItem(Layer* aLayer,
nsDisplayItem* aItem,
const DisplayItemClip& aClip,
LayerState aLayerState,
const nsPoint& aTopLeft,
LayerManager* aManager,
nsAutoPtr<nsDisplayItemGeometry> aGeometry)
{
if (aLayer->Manager() != mRetainingManager)
return;
DisplayItemData *data = StoreDataForFrame(aItem, aLayer, aLayerState);
ThebesLayer *t = aLayer->AsThebesLayer();
if (t) {
data->mGeometry = aGeometry;
data->mClip = aClip;
}
data->mInactiveManager = aManager;
}
nsIntPoint
FrameLayerBuilder::GetLastPaintOffset(ThebesLayer* aLayer)
{
ThebesLayerItemsEntry* entry = mThebesLayerItems.PutEntry(aLayer);
if (entry) {
if (entry->mContainerLayerGeneration == 0) {
entry->mContainerLayerGeneration = mContainerLayerGeneration;
}
if (entry->mHasExplicitLastPaintOffset)
return entry->mLastPaintOffset;
}
return GetTranslationForThebesLayer(aLayer);
}
void
FrameLayerBuilder::SaveLastPaintOffset(ThebesLayer* aLayer)
{
ThebesLayerItemsEntry* entry = mThebesLayerItems.PutEntry(aLayer);
if (entry) {
if (entry->mContainerLayerGeneration == 0) {
entry->mContainerLayerGeneration = mContainerLayerGeneration;
}
entry->mLastPaintOffset = GetTranslationForThebesLayer(aLayer);
entry->mHasExplicitLastPaintOffset = true;
}
}
void
ContainerState::CollectOldLayers()
{
for (Layer* layer = mContainerLayer->GetFirstChild(); layer;
layer = layer->GetNextSibling()) {
NS_ASSERTION(!layer->HasUserData(&gMaskLayerUserData),
"Mask layer in layer tree; could not be recycled.");
if (layer->HasUserData(&gThebesDisplayItemLayerUserData)) {
NS_ASSERTION(layer->AsThebesLayer(), "Wrong layer type");
mRecycledThebesLayers.AppendElement(static_cast<ThebesLayer*>(layer));
}
if (Layer* maskLayer = layer->GetMaskLayer()) {
NS_ASSERTION(maskLayer->GetType() == Layer::TYPE_IMAGE,
"Could not recycle mask layer, unsupported layer type.");
mRecycledMaskImageLayers.Put(layer, static_cast<ImageLayer*>(maskLayer));
}
}
}
void
ContainerState::Finish(uint32_t* aTextContentFlags, LayerManagerData* aData)
{
while (!mThebesLayerDataStack.IsEmpty()) {
PopThebesLayerData();
}
uint32_t textContentFlags = 0;
// Make sure that current/existing layers are added to the parent and are
// in the correct order.
Layer* layer = nullptr;
for (uint32_t i = 0; i < mNewChildLayers.Length(); ++i) {
Layer* prevChild = i == 0 ? nullptr : mNewChildLayers[i - 1].get();
layer = mNewChildLayers[i];
if (!layer->GetVisibleRegion().IsEmpty()) {
textContentFlags |= layer->GetContentFlags() & Layer::CONTENT_COMPONENT_ALPHA;
}
if (!layer->GetParent()) {
// This is not currently a child of the container, so just add it
// now.
mContainerLayer->InsertAfter(layer, prevChild);
continue;
}
NS_ASSERTION(layer->GetParent() == mContainerLayer,
"Layer shouldn't be the child of some other container");
if (layer->GetPrevSibling() != prevChild) {
mContainerLayer->RepositionChild(layer, prevChild);
}
}
// Remove old layers that have become unused.
if (!layer) {
layer = mContainerLayer->GetFirstChild();
} else {
layer = layer->GetNextSibling();
}
while (layer) {
Layer *layerToRemove = layer;
layer = layer->GetNextSibling();
mContainerLayer->RemoveChild(layerToRemove);
}
*aTextContentFlags = textContentFlags;
}
static inline gfxSize RoundToFloatPrecision(const gfxSize& aSize)
{
return gfxSize(float(aSize.width), float(aSize.height));
}
static bool
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
ChooseScaleAndSetTransform(FrameLayerBuilder* aLayerBuilder,
nsDisplayListBuilder* aDisplayListBuilder,
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
nsIFrame* aContainerFrame,
const gfx3DMatrix* aTransform,
const FrameLayerBuilder::ContainerParameters& aIncomingScale,
ContainerLayer* aLayer,
LayerState aState,
FrameLayerBuilder::ContainerParameters& aOutgoingScale)
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
{
nsIntPoint offset;
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
gfx3DMatrix transform =
gfx3DMatrix::ScalingMatrix(aIncomingScale.mXScale, aIncomingScale.mYScale, 1.0);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
if (aTransform) {
// aTransform is applied first, then the scale is applied to the result
transform = (*aTransform)*transform;
// Set any matrix entries close to integers to be those exact integers.
// This protects against floating-point inaccuracies causing problems
// in the checks below.
transform.NudgeToIntegers();
}
gfxMatrix transform2d;
if (aContainerFrame &&
aState == LAYER_INACTIVE &&
(!aTransform || (aTransform->Is2D(&transform2d) &&
!transform2d.HasNonTranslation()))) {
// When we have an inactive ContainerLayer, translate the container by the offset to the
// reference frame (and offset all child layers by the reverse) so that the coordinate
// space of the child layers isn't affected by scrolling.
// This gets confusing for complicated transform (since we'd have to compute the scale
// factors for the matrix), so we don't bother. Any frames that are building an nsDisplayTransform
// for a css transform would have 0,0 as their offset to the reference frame, so this doesn't
// matter.
nsPoint appUnitOffset = aDisplayListBuilder->ToReferenceFrame(aContainerFrame);
nscoord appUnitsPerDevPixel = aContainerFrame->PresContext()->AppUnitsPerDevPixel();
offset = nsIntPoint(
int32_t(NSAppUnitsToDoublePixels(appUnitOffset.x, appUnitsPerDevPixel)*aIncomingScale.mXScale),
int32_t(NSAppUnitsToDoublePixels(appUnitOffset.y, appUnitsPerDevPixel)*aIncomingScale.mYScale));
}
transform = transform * gfx3DMatrix::Translation(offset.x + aIncomingScale.mOffset.x, offset.y + aIncomingScale.mOffset.y, 0);
if (transform.IsSingular()) {
return false;
}
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
bool canDraw2D = transform.CanDraw2D(&transform2d);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
gfxSize scale;
bool isRetained = aLayer->Manager()->IsWidgetLayerManager();
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
// Only fiddle with scale factors for the retaining layer manager, since
// it only matters for retained layers
// XXX Should we do something for 3D transforms?
if (canDraw2D && isRetained) {
// If the container's transform is animated off main thread, then use the
// maximum scale.
if (aContainerFrame->GetContent() &&
nsLayoutUtils::HasAnimationsForCompositor(
aContainerFrame->GetContent(), eCSSProperty_transform)) {
scale = nsLayoutUtils::GetMaximumAnimatedScale(aContainerFrame->GetContent());
} else {
//Scale factors are normalized to a power of 2 to reduce the number of resolution changes
scale = RoundToFloatPrecision(transform2d.ScaleFactors(true));
// For frames with a changing transform that's not just a translation,
// round scale factors up to nearest power-of-2 boundary so that we don't
// keep having to redraw the content as it scales up and down. Rounding up to nearest
// power-of-2 boundary ensures we never scale up, only down --- avoiding
// jaggies. It also ensures we never scale down by more than a factor of 2,
// avoiding bad downscaling quality.
gfxMatrix frameTransform;
if (aContainerFrame->AreLayersMarkedActive(nsChangeHint_UpdateTransformLayer) &&
aTransform &&
(!aTransform->Is2D(&frameTransform) || frameTransform.HasNonTranslationOrFlip())) {
// Don't clamp the scale factor when the new desired scale factor matches the old one
// or it was previously unscaled.
bool clamp = true;
gfxMatrix oldFrameTransform2d;
if (aLayer->GetBaseTransform().Is2D(&oldFrameTransform2d)) {
gfxSize oldScale = RoundToFloatPrecision(oldFrameTransform2d.ScaleFactors(true));
if (oldScale == scale || oldScale == gfxSize(1.0, 1.0)) {
clamp = false;
}
}
if (clamp) {
scale.width = gfxUtils::ClampToScaleFactor(scale.width);
scale.height = gfxUtils::ClampToScaleFactor(scale.height);
}
} else {
// XXX Do we need to move nearly-integer values to integers here?
}
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
}
// If the scale factors are too small, just use 1.0. The content is being
// scaled out of sight anyway.
if (fabs(scale.width) < 1e-8 || fabs(scale.height) < 1e-8) {
scale = gfxSize(1.0, 1.0);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
}
} else {
scale = gfxSize(1.0, 1.0);
}
// Store the inverse of our resolution-scale on the layer
aLayer->SetBaseTransform(transform);
aLayer->SetPreScale(1.0f/float(scale.width),
1.0f/float(scale.height));
aLayer->SetInheritedScale(aIncomingScale.mXScale,
aIncomingScale.mYScale);
aOutgoingScale =
FrameLayerBuilder::ContainerParameters(scale.width, scale.height, -offset, aIncomingScale);
if (aTransform) {
aOutgoingScale.mInTransformedSubtree = true;
if (aContainerFrame->AreLayersMarkedActive(nsChangeHint_UpdateTransformLayer)) {
aOutgoingScale.mInActiveTransformedSubtree = true;
}
}
if (isRetained && (!canDraw2D || transform2d.HasNonIntegerTranslation())) {
aOutgoingScale.mDisableSubpixelAntialiasingInDescendants = true;
}
return true;
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
}
/* static */ PLDHashOperator
FrameLayerBuilder::RestoreDisplayItemData(nsRefPtrHashKey<DisplayItemData>* aEntry, void* aUserArg)
{
DisplayItemData* data = aEntry->GetKey();
uint32_t *generation = static_cast<uint32_t*>(aUserArg);
if (data->mUsed && data->mContainerLayerGeneration >= *generation) {
return PL_DHASH_REMOVE;
}
return PL_DHASH_NEXT;
}
/* static */ PLDHashOperator
FrameLayerBuilder::RestoreThebesLayerItemEntries(ThebesLayerItemsEntry* aEntry, void* aUserArg)
{
uint32_t *generation = static_cast<uint32_t*>(aUserArg);
if (aEntry->mContainerLayerGeneration >= *generation) {
// We can just remove these items rather than attempting to revert them
// because we're going to want to invalidate everything when transitioning
// to component alpha flattening.
return PL_DHASH_REMOVE;
}
for (uint32_t i = 0; i < aEntry->mItems.Length(); i++) {
if (aEntry->mItems[i].mContainerLayerGeneration >= *generation) {
aEntry->mItems.TruncateLength(i);
return PL_DHASH_NEXT;
}
}
return PL_DHASH_NEXT;
}
already_AddRefed<ContainerLayer>
FrameLayerBuilder::BuildContainerLayerFor(nsDisplayListBuilder* aBuilder,
LayerManager* aManager,
nsIFrame* aContainerFrame,
nsDisplayItem* aContainerItem,
const nsDisplayList& aChildren,
const ContainerParameters& aParameters,
const gfx3DMatrix* aTransform,
uint32_t aFlags)
{
uint32_t containerDisplayItemKey =
aContainerItem ? aContainerItem->GetPerFrameKey() : nsDisplayItem::TYPE_ZERO;
NS_ASSERTION(aContainerFrame, "Container display items here should have a frame");
NS_ASSERTION(!aContainerItem ||
aContainerItem->Frame() == aContainerFrame,
"Container display item must match given frame");
if (!aParameters.mXScale || !aParameters.mYScale) {
return nullptr;
}
nsRefPtr<ContainerLayer> containerLayer;
if (aManager == mRetainingManager) {
// Using GetOldLayerFor will search merged frames, as well as the underlying
// frame. The underlying frame can change when a page scrolls, so this
// avoids layer recreation in the situation that a new underlying frame is
// picked for a layer.
Layer* oldLayer = nullptr;
if (aContainerItem) {
oldLayer = GetOldLayerFor(aContainerItem);
} else {
DisplayItemData *data = GetOldLayerForFrame(aContainerFrame, containerDisplayItemKey);
if (data) {
oldLayer = data->mLayer;
}
}
if (oldLayer) {
NS_ASSERTION(oldLayer->Manager() == aManager, "Wrong manager");
if (oldLayer->HasUserData(&gThebesDisplayItemLayerUserData)) {
// The old layer for this item is actually our ThebesLayer
// because we rendered its layer into that ThebesLayer. So we
// don't actually have a retained container layer.
} else {
NS_ASSERTION(oldLayer->GetType() == Layer::TYPE_CONTAINER,
"Wrong layer type");
containerLayer = static_cast<ContainerLayer*>(oldLayer);
containerLayer->SetMaskLayer(nullptr);
}
}
}
if (!containerLayer) {
// No suitable existing layer was found.
containerLayer = aManager->CreateContainerLayer();
if (!containerLayer)
return nullptr;
}
LayerState state = aContainerItem ? aContainerItem->GetLayerState(aBuilder, aManager, aParameters) : LAYER_ACTIVE;
if (state == LAYER_INACTIVE &&
nsDisplayItem::ForceActiveLayers()) {
state = LAYER_ACTIVE;
}
if (aContainerItem && state == LAYER_ACTIVE_EMPTY) {
// Empty layers only have metadata and should never have display items. We
// early exit because later, invalidation will walk up the frame tree to
// determine which thebes layer gets invalidated. Since an empty layer
// should never have anything to paint, it should never be invalidated.
NS_ASSERTION(aChildren.IsEmpty(), "Should have no children");
return containerLayer.forget();
}
ContainerParameters scaleParameters;
if (!ChooseScaleAndSetTransform(this, aBuilder, aContainerFrame, aTransform, aParameters,
containerLayer, state, scaleParameters)) {
return nullptr;
}
uint32_t oldGeneration = mContainerLayerGeneration;
mContainerLayerGeneration = ++mMaxContainerLayerGeneration;
nsRefPtr<RefCountedRegion> thebesLayerInvalidRegion = nullptr;
if (mRetainingManager) {
if (aContainerItem) {
StoreDataForFrame(aContainerItem, containerLayer, LAYER_ACTIVE);
} else {
StoreDataForFrame(aContainerFrame, containerDisplayItemKey, containerLayer, LAYER_ACTIVE);
}
}
LayerManagerData* data = static_cast<LayerManagerData*>
(aManager->GetUserData(&gLayerManagerUserData));
nsRect bounds;
nsIntRect pixBounds;
int32_t appUnitsPerDevPixel;
uint32_t stateFlags = 0;
if ((aContainerFrame->GetStateBits() & NS_FRAME_NO_COMPONENT_ALPHA) &&
mRetainingManager && !mRetainingManager->AreComponentAlphaLayersEnabled()) {
stateFlags = ContainerState::NO_COMPONENT_ALPHA;
}
uint32_t flags;
while (true) {
ContainerState state(aBuilder, aManager, aManager->GetLayerBuilder(),
aContainerFrame, aContainerItem,
containerLayer, scaleParameters);
state.ProcessDisplayItems(aChildren, stateFlags);
// Set CONTENT_COMPONENT_ALPHA if any of our children have it.
// This is suboptimal ... a child could have text that's over transparent
// pixels in its own layer, but over opaque parts of previous siblings.
state.Finish(&flags, data);
bounds = state.GetChildrenBounds();
pixBounds = state.ScaleToOutsidePixels(bounds, false);
appUnitsPerDevPixel = state.GetAppUnitsPerDevPixel();
if ((flags & Layer::CONTENT_COMPONENT_ALPHA) &&
mRetainingManager &&
!mRetainingManager->AreComponentAlphaLayersEnabled() &&
!stateFlags) {
// Since we don't want any component alpha layers on BasicLayers, we repeat
// the layer building process with this explicitely forced off.
// We restore the previous FrameLayerBuilder state since the first set
// of layer building will have changed it.
stateFlags = ContainerState::NO_COMPONENT_ALPHA;
data->mDisplayItems.EnumerateEntries(RestoreDisplayItemData,
&mContainerLayerGeneration);
mThebesLayerItems.EnumerateEntries(RestoreThebesLayerItemEntries,
&mContainerLayerGeneration);
aContainerFrame->AddStateBits(NS_FRAME_NO_COMPONENT_ALPHA);
continue;
}
break;
}
NS_ASSERTION(bounds.IsEqualInterior(aChildren.GetBounds(aBuilder)), "Wrong bounds");
pixBounds.MoveBy(nsIntPoint(scaleParameters.mOffset.x, scaleParameters.mOffset.y));
if (aParameters.mAncestorClipRect && !(aFlags & CONTAINER_NOT_CLIPPED_BY_ANCESTORS)) {
SetVisibleRegionForLayer(containerLayer, nsIntRegion(pixBounds),
*aParameters.mAncestorClipRect);
} else {
containerLayer->SetVisibleRegion(pixBounds);
}
// Make sure that rounding the visible region out didn't add any area
// we won't paint
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
if (aChildren.IsOpaque() && !aChildren.NeedsTransparentSurface()) {
bounds.ScaleRoundIn(scaleParameters.mXScale, scaleParameters.mYScale);
if (bounds.Contains(pixBounds.ToAppUnits(appUnitsPerDevPixel))) {
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
// Clear CONTENT_COMPONENT_ALPHA
flags = Layer::CONTENT_OPAQUE;
}
}
containerLayer->SetContentFlags(flags);
mContainerLayerGeneration = oldGeneration;
containerLayer->SetUserData(&gNotifySubDocInvalidationData, nullptr);
return containerLayer.forget();
}
Layer*
FrameLayerBuilder::GetLeafLayerFor(nsDisplayListBuilder* aBuilder,
nsDisplayItem* aItem)
{
Layer* layer = GetOldLayerFor(aItem);
if (!layer)
return nullptr;
if (layer->HasUserData(&gThebesDisplayItemLayerUserData)) {
// This layer was created to render Thebes-rendered content for this
// display item. The display item should not use it for its own
// layer rendering.
return nullptr;
}
layer->SetMaskLayer(nullptr);
return layer;
}
/* static */ void
FrameLayerBuilder::InvalidateAllLayers(LayerManager* aManager)
{
LayerManagerData* data = static_cast<LayerManagerData*>
(aManager->GetUserData(&gLayerManagerUserData));
if (data) {
data->mInvalidateAllLayers = true;
}
}
/* static */ void
FrameLayerBuilder::InvalidateAllLayersForFrame(nsIFrame *aFrame)
{
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
array->ElementAt(i)->mParent->mInvalidateAllLayers = true;
}
}
}
/* static */
Layer*
FrameLayerBuilder::GetDedicatedLayer(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
//TODO: This isn't completely correct, since a frame could exist as a layer
// in the normal widget manager, and as a different layer (or no layer)
// in the secondary manager
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData *element = array->ElementAt(i);
if (!element->mParent->mLayerManager->IsWidgetLayerManager()) {
continue;
}
if (element->mDisplayItemKey == aDisplayItemKey) {
if (element->mOptLayer) {
return element->mOptLayer;
}
Layer* layer = element->mLayer;
if (!layer->HasUserData(&gColorLayerUserData) &&
!layer->HasUserData(&gImageLayerUserData) &&
!layer->HasUserData(&gThebesDisplayItemLayerUserData)) {
return layer;
}
}
}
}
return nullptr;
}
static gfxSize
PredictScaleForContent(nsIFrame* aFrame, nsIFrame* aAncestorWithScale,
const gfxSize& aScale)
{
gfx3DMatrix transform =
gfx3DMatrix::ScalingMatrix(aScale.width, aScale.height, 1.0);
if (aFrame != aAncestorWithScale) {
// aTransform is applied first, then the scale is applied to the result
transform = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestorWithScale)*transform;
}
gfxMatrix transform2d;
if (transform.CanDraw2D(&transform2d)) {
return transform2d.ScaleFactors(true);
}
return gfxSize(1.0, 1.0);
}
gfxSize
FrameLayerBuilder::GetThebesLayerScaleForFrame(nsIFrame* aFrame)
{
nsIFrame* last;
for (nsIFrame* f = aFrame; f; f = nsLayoutUtils::GetCrossDocParentFrame(f)) {
last = f;
if (nsLayoutUtils::IsPopup(f)) {
// Don't examine ancestors of a popup. It won't make sense to check
// the transform from some content inside the popup to some content
// which is an ancestor of the popup.
break;
}
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (!array) {
continue;
}
for (uint32_t i = 0; i < array->Length(); i++) {
Layer* layer = array->ElementAt(i)->mLayer;
ContainerLayer* container = layer->AsContainerLayer();
if (!container ||
!layer->Manager()->IsWidgetLayerManager()) {
continue;
}
for (Layer* l = container->GetFirstChild(); l; l = l->GetNextSibling()) {
ThebesDisplayItemLayerUserData* data =
static_cast<ThebesDisplayItemLayerUserData*>
(l->GetUserData(&gThebesDisplayItemLayerUserData));
if (data) {
return PredictScaleForContent(aFrame, f, gfxSize(data->mXScale, data->mYScale));
}
}
}
}
return PredictScaleForContent(aFrame, last,
last->PresContext()->PresShell()->GetResolution());
}
#ifdef MOZ_DUMP_PAINTING
static void DebugPaintItem(nsRenderingContext* aDest, nsDisplayItem *aItem, nsDisplayListBuilder* aBuilder)
{
bool snap;
nsRect appUnitBounds = aItem->GetBounds(aBuilder, &snap);
gfxRect bounds(appUnitBounds.x, appUnitBounds.y, appUnitBounds.width, appUnitBounds.height);
bounds.ScaleInverse(aDest->AppUnitsPerDevPixel());
nsRefPtr<gfxASurface> surf =
gfxPlatform::GetPlatform()->CreateOffscreenSurface(gfxIntSize(bounds.width, bounds.height),
gfxASurface::CONTENT_COLOR_ALPHA);
surf->SetDeviceOffset(-bounds.TopLeft());
nsRefPtr<gfxContext> context = new gfxContext(surf);
nsRefPtr<nsRenderingContext> ctx = new nsRenderingContext();
ctx->Init(aDest->DeviceContext(), context);
aItem->Paint(aBuilder, ctx);
DumpPaintedImage(aItem, surf);
aItem->SetPainted();
surf->SetDeviceOffset(gfxPoint(0, 0));
aDest->ThebesContext()->SetSource(surf, bounds.TopLeft());
aDest->ThebesContext()->Rectangle(bounds);
aDest->ThebesContext()->Fill();
}
#endif
/*
* A note on residual transforms:
*
* In a transformed subtree we sometimes apply the ThebesLayer's
* "residual transform" when drawing content into the ThebesLayer.
* This is a translation by components in the range [-0.5,0.5) provided
* by the layer system; applying the residual transform followed by the
* transforms used by layer compositing ensures that the subpixel alignment
* of the content of the ThebesLayer exactly matches what it would be if
* we used cairo/Thebes to draw directly to the screen without going through
* retained layer buffers.
*
* The visible and valid regions of the ThebesLayer are computed without
* knowing the residual transform (because we don't know what the residual
* transform is going to be until we've built the layer tree!). So we have to
* consider whether content painted in the range [x, xmost) might be painted
* outside the visible region we computed for that content. The visible region
* would be [floor(x), ceil(xmost)). The content would be rendered at
* [x + r, xmost + r), where -0.5 <= r < 0.5. So some half-rendered pixels could
* indeed fall outside the computed visible region, which is not a big deal;
* similar issues already arise when we snap cliprects to nearest pixels.
* Note that if the rendering of the content is snapped to nearest pixels ---
* which it often is --- then the content is actually rendered at
* [snap(x + r), snap(xmost + r)). It turns out that floor(x) <= snap(x + r)
* and ceil(xmost) >= snap(xmost + r), so the rendering of snapped content
* always falls within the visible region we computed.
*/
/* static */ void
FrameLayerBuilder::DrawThebesLayer(ThebesLayer* aLayer,
gfxContext* aContext,
const nsIntRegion& aRegionToDraw,
const nsIntRegion& aRegionToInvalidate,
void* aCallbackData)
{
PROFILER_LABEL("gfx", "DrawThebesLayer");
nsDisplayListBuilder* builder = static_cast<nsDisplayListBuilder*>
(aCallbackData);
FrameLayerBuilder *layerBuilder = aLayer->Manager()->GetLayerBuilder();
NS_ASSERTION(layerBuilder, "Unexpectedly null layer builder!");
if (layerBuilder->CheckDOMModified())
return;
nsTArray<ClippedDisplayItem> items;
uint32_t commonClipCount;
nsIFrame* containerLayerFrame;
{
ThebesLayerItemsEntry* entry = layerBuilder->mThebesLayerItems.GetEntry(aLayer);
NS_ASSERTION(entry, "We shouldn't be drawing into a layer with no items!");
items.SwapElements(entry->mItems);
commonClipCount = entry->mCommonClipCount;
containerLayerFrame = entry->mContainerLayerFrame;
// Later after this point, due to calls to DidEndTransaction
// for temporary layer managers, mThebesLayerItems can change,
// so 'entry' could become invalid.
}
if (!containerLayerFrame) {
return;
}
ThebesDisplayItemLayerUserData* userData =
static_cast<ThebesDisplayItemLayerUserData*>
(aLayer->GetUserData(&gThebesDisplayItemLayerUserData));
NS_ASSERTION(userData, "where did our user data go?");
if (NS_GET_A(userData->mForcedBackgroundColor) > 0) {
nsIntRect r = aLayer->GetVisibleRegion().GetBounds();
aContext->NewPath();
aContext->Rectangle(gfxRect(r.x, r.y, r.width, r.height));
aContext->SetColor(gfxRGBA(userData->mForcedBackgroundColor));
aContext->Fill();
}
// make the origin of the context coincide with the origin of the
// ThebesLayer
gfxContextMatrixAutoSaveRestore saveMatrix(aContext);
nsIntPoint offset = GetTranslationForThebesLayer(aLayer);
// Apply the residual transform if it has been enabled, to ensure that
// snapping when we draw into aContext exactly matches the ideal transform.
// See above for why this is OK.
aContext->Translate(aLayer->GetResidualTranslation() - gfxPoint(offset.x, offset.y));
aContext->Scale(userData->mXScale, userData->mYScale);
nsPresContext* presContext = containerLayerFrame->PresContext();
int32_t appUnitsPerDevPixel = presContext->AppUnitsPerDevPixel();
uint32_t i;
// Update visible regions. We need perform visibility analysis again
// because we may be asked to draw into part of a ThebesLayer that
// isn't actually visible in the window (e.g., because a ThebesLayer
// expanded its visible region to a rectangle internally), in which
// case the mVisibleRect stored in the display item may be wrong.
nsRegion visible = aRegionToDraw.ToAppUnits(appUnitsPerDevPixel);
visible.MoveBy(NSIntPixelsToAppUnits(offset.x, appUnitsPerDevPixel),
NSIntPixelsToAppUnits(offset.y, appUnitsPerDevPixel));
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 05:11:27 -07:00
visible.ScaleInverseRoundOut(userData->mXScale, userData->mYScale);
for (i = items.Length(); i > 0; --i) {
ClippedDisplayItem* cdi = &items[i - 1];
const DisplayItemClip& clip = cdi->mItem->GetClip();
NS_ASSERTION(AppUnitsPerDevPixel(cdi->mItem) == appUnitsPerDevPixel,
"a thebes layer should contain items only at the same zoom");
NS_ABORT_IF_FALSE(clip.HasClip() ||
clip.GetRoundedRectCount() == 0,
"If we have rounded rects, we must have a clip rect");
if (!clip.IsRectAffectedByClip(visible.GetBounds())) {
cdi->mItem->RecomputeVisibility(builder, &visible);
continue;
}
// Do a little dance to account for the fact that we're clipping
// to cdi->mClipRect
nsRegion clipped;
clipped.And(visible, clip.NonRoundedIntersection());
nsRegion finalClipped = clipped;
cdi->mItem->RecomputeVisibility(builder, &finalClipped);
// If we have rounded clip rects, don't subtract from the visible
// region since we aren't displaying everything inside the rect.
if (clip.GetRoundedRectCount() == 0) {
nsRegion removed;
removed.Sub(clipped, finalClipped);
nsRegion newVisible;
newVisible.Sub(visible, removed);
// Don't let the visible region get too complex.
if (newVisible.GetNumRects() <= 15) {
visible = newVisible;
}
}
}
nsRefPtr<nsRenderingContext> rc = new nsRenderingContext();
rc->Init(presContext->DeviceContext(), aContext);
DisplayItemClip currentClip;
bool currentClipIsSetInContext = false;
DisplayItemClip tmpClip;
for (i = 0; i < items.Length(); ++i) {
ClippedDisplayItem* cdi = &items[i];
if (cdi->mItem->GetVisibleRect().IsEmpty())
continue;
// If the new desired clip state is different from the current state,
// update the clip.
const DisplayItemClip* clip = &cdi->mItem->GetClip();
if (clip->GetRoundedRectCount() > 0 &&
!clip->IsRectClippedByRoundedCorner(cdi->mItem->GetVisibleRect())) {
tmpClip = *clip;
tmpClip.RemoveRoundedCorners();
clip = &tmpClip;
}
if (currentClipIsSetInContext != clip->HasClip() ||
(clip->HasClip() && *clip != currentClip)) {
if (currentClipIsSetInContext) {
aContext->Restore();
}
currentClipIsSetInContext = clip->HasClip();
if (currentClipIsSetInContext) {
currentClip = *clip;
aContext->Save();
NS_ASSERTION(commonClipCount < 100,
"Maybe you really do have more than a hundred clipping rounded rects, or maybe something has gone wrong.");
currentClip.ApplyTo(aContext, presContext, commonClipCount);
}
}
if (cdi->mInactiveLayerManager) {
PaintInactiveLayer(builder, cdi->mInactiveLayerManager, cdi->mItem, aContext, rc);
} else {
nsIFrame* frame = cdi->mItem->Frame();
frame->AddStateBits(NS_FRAME_PAINTED_THEBES);
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPainting) {
DebugPaintItem(rc, cdi->mItem, builder);
} else {
#else
{
#endif
cdi->mItem->Paint(builder, rc);
}
}
if (layerBuilder->CheckDOMModified())
break;
}
{
ThebesLayerItemsEntry* entry =
layerBuilder->mThebesLayerItems.GetEntry(aLayer);
items.SwapElements(entry->mItems);
}
if (currentClipIsSetInContext) {
aContext->Restore();
}
if (presContext->RefreshDriver()->GetPaintFlashing()) {
FlashPaint(aContext);
}
if (!aRegionToInvalidate.IsEmpty()) {
aLayer->AddInvalidRect(aRegionToInvalidate.GetBounds());
}
}
bool
FrameLayerBuilder::CheckDOMModified()
{
if (!mRootPresContext ||
mInitialDOMGeneration == mRootPresContext->GetDOMGeneration())
return false;
if (mDetectedDOMModification) {
// Don't spam the console with extra warnings
return true;
}
mDetectedDOMModification = true;
// Painting is not going to complete properly. There's not much
// we can do here though. Invalidating the window to get another repaint
// is likely to lead to an infinite repaint loop.
NS_WARNING("Detected DOM modification during paint, bailing out!");
return true;
}
#ifdef MOZ_DUMP_PAINTING
/* static */ void
FrameLayerBuilder::DumpRetainedLayerTree(LayerManager* aManager, FILE* aFile, bool aDumpHtml)
{
aManager->Dump(aFile, "", aDumpHtml);
}
#endif
gfxRect
CalculateBounds(const nsTArray<DisplayItemClip::RoundedRect>& aRects, int32_t A2D)
{
nsRect bounds = aRects[0].mRect;
for (uint32_t i = 1; i < aRects.Length(); ++i) {
bounds.UnionRect(bounds, aRects[i].mRect);
}
return nsLayoutUtils::RectToGfxRect(bounds, A2D);
}
static void
SetClipCount(ThebesDisplayItemLayerUserData* aThebesData,
uint32_t aClipCount)
{
if (aThebesData) {
aThebesData->mMaskClipCount = aClipCount;
}
}
void
ContainerState::SetupMaskLayer(Layer *aLayer, const DisplayItemClip& aClip,
uint32_t aRoundedRectClipCount)
{
// if the number of clips we are going to mask has decreased, then aLayer might have
// cached graphics which assume the existence of a soon-to-be non-existent mask layer
// in that case, invalidate the whole layer.
ThebesDisplayItemLayerUserData* thebesData = GetThebesDisplayItemLayerUserData(aLayer);
if (thebesData &&
aRoundedRectClipCount < thebesData->mMaskClipCount) {
ThebesLayer* thebes = aLayer->AsThebesLayer();
thebes->InvalidateRegion(thebes->GetValidRegion().GetBounds());
}
// don't build an unnecessary mask
nsIntRect layerBounds = aLayer->GetVisibleRegion().GetBounds();
if (aClip.GetRoundedRectCount() == 0 ||
aRoundedRectClipCount == 0 ||
layerBounds.IsEmpty()) {
SetClipCount(thebesData, 0);
return;
}
// check if we can re-use the mask layer
nsRefPtr<ImageLayer> maskLayer = CreateOrRecycleMaskImageLayerFor(aLayer);
MaskLayerUserData* userData = GetMaskLayerUserData(maskLayer);
MaskLayerUserData newData;
aClip.AppendRoundedRects(&newData.mRoundedClipRects, aRoundedRectClipCount);
newData.mScaleX = mParameters.mXScale;
newData.mScaleY = mParameters.mYScale;
newData.mOffset = mParameters.mOffset;
if (*userData == newData) {
aLayer->SetMaskLayer(maskLayer);
SetClipCount(thebesData, aRoundedRectClipCount);
return;
}
// calculate a more precise bounding rect
const int32_t A2D = mContainerFrame->PresContext()->AppUnitsPerDevPixel();
gfxRect boundingRect = CalculateBounds(newData.mRoundedClipRects, A2D);
boundingRect.Scale(mParameters.mXScale, mParameters.mYScale);
uint32_t maxSize = mManager->GetMaxTextureSize();
NS_ASSERTION(maxSize > 0, "Invalid max texture size");
gfxSize surfaceSize(std::min<float>(boundingRect.Width(), maxSize),
std::min<float>(boundingRect.Height(), maxSize));
// maskTransform is applied to the clip when it is painted into the mask (as a
// component of imageTransform), and its inverse used when the mask is used for
// masking.
// It is the transform from the masked layer's space to mask space
gfxMatrix maskTransform;
maskTransform.Scale(surfaceSize.width/boundingRect.Width(),
surfaceSize.height/boundingRect.Height());
maskTransform.Translate(-boundingRect.TopLeft());
// imageTransform is only used when the clip is painted to the mask
gfxMatrix imageTransform = maskTransform;
imageTransform.Scale(mParameters.mXScale, mParameters.mYScale);
nsAutoPtr<MaskLayerImageCache::MaskLayerImageKey> newKey(
new MaskLayerImageCache::MaskLayerImageKey());
// copy and transform the rounded rects
for (uint32_t i = 0; i < newData.mRoundedClipRects.Length(); ++i) {
newKey->mRoundedClipRects.AppendElement(
MaskLayerImageCache::PixelRoundedRect(newData.mRoundedClipRects[i],
mContainerFrame->PresContext()));
newKey->mRoundedClipRects[i].ScaleAndTranslate(imageTransform);
}
const MaskLayerImageCache::MaskLayerImageKey* lookupKey = newKey;
2012-09-03 03:47:51 -07:00
// check to see if we can reuse a mask image
nsRefPtr<ImageContainer> container =
GetMaskLayerImageCache()->FindImageFor(&lookupKey);
if (!container) {
nsIntSize surfaceSizeInt = nsIntSize(NSToIntCeil(surfaceSize.width),
NSToIntCeil(surfaceSize.height));
// no existing mask image, so build a new one
nsRefPtr<gfxASurface> surface =
aLayer->Manager()->CreateOptimalMaskSurface(surfaceSizeInt);
// fail if we can't get the right surface
if (!surface || surface->CairoStatus()) {
NS_WARNING("Could not create surface for mask layer.");
SetClipCount(thebesData, 0);
return;
}
nsRefPtr<gfxContext> context = new gfxContext(surface);
context->Multiply(imageTransform);
// paint the clipping rects with alpha to create the mask
context->SetColor(gfxRGBA(1, 1, 1, 1));
aClip.DrawRoundedRectsTo(context, A2D, 0, aRoundedRectClipCount);
// build the image and container
container = aLayer->Manager()->CreateImageContainer();
NS_ASSERTION(container, "Could not create image container for mask layer.");
2012-08-19 19:39:10 -07:00
static const ImageFormat format = CAIRO_SURFACE;
nsRefPtr<Image> image = container->CreateImage(&format, 1);
NS_ASSERTION(image, "Could not create image container for mask layer.");
CairoImage::Data data;
data.mSurface = surface;
data.mSize = surfaceSizeInt;
static_cast<CairoImage*>(image.get())->SetData(data);
container->SetCurrentImageInTransaction(image);
GetMaskLayerImageCache()->PutImage(newKey.forget(), container);
}
maskLayer->SetContainer(container);
gfx3DMatrix matrix = gfx3DMatrix::From2D(maskTransform.Invert());
matrix.Translate(gfxPoint3D(mParameters.mOffset.x, mParameters.mOffset.y, 0));
maskLayer->SetBaseTransform(matrix);
// save the details of the clip in user data
userData->mScaleX = newData.mScaleX;
userData->mScaleY = newData.mScaleY;
userData->mRoundedClipRects.SwapElements(newData.mRoundedClipRects);
userData->mImageKey = lookupKey;
aLayer->SetMaskLayer(maskLayer);
SetClipCount(thebesData, aRoundedRectClipCount);
return;
}
} // namespace mozilla