mirror of
https://gitlab.com/xCrystal/pokecrystal-board.git
synced 2024-09-09 09:51:34 -07:00
Merge pull request #587 from Rangi42/master
Remove dependency on 'extras' submodule
This commit is contained in:
commit
9f82304186
3
.gitmodules
vendored
3
.gitmodules
vendored
@ -1,3 +0,0 @@
|
||||
[submodule "extras"]
|
||||
path = extras
|
||||
url = git://github.com/pret/pokemon-reverse-engineering-tools.git
|
29
Makefile
29
Makefile
@ -1,15 +1,3 @@
|
||||
ifeq (,$(shell which sha1sum))
|
||||
SHA1 := shasum
|
||||
else
|
||||
SHA1 := sha1sum
|
||||
endif
|
||||
|
||||
RGBDS ?=
|
||||
RGBASM ?= $(RGBDS)rgbasm
|
||||
RGBFIX ?= $(RGBDS)rgbfix
|
||||
RGBGFX ?= $(RGBDS)rgbgfx
|
||||
RGBLINK ?= $(RGBDS)rgblink
|
||||
|
||||
roms := pokecrystal.gbc pokecrystal11.gbc
|
||||
|
||||
crystal_obj := \
|
||||
@ -31,10 +19,25 @@ lib/mobile/main.o
|
||||
crystal11_obj := $(crystal_obj:.o=11.o)
|
||||
|
||||
|
||||
### Build tools
|
||||
|
||||
ifeq (,$(shell which sha1sum))
|
||||
SHA1 := shasum
|
||||
else
|
||||
SHA1 := sha1sum
|
||||
endif
|
||||
|
||||
RGBDS ?=
|
||||
RGBASM ?= $(RGBDS)rgbasm
|
||||
RGBFIX ?= $(RGBDS)rgbfix
|
||||
RGBGFX ?= $(RGBDS)rgbgfx
|
||||
RGBLINK ?= $(RGBDS)rgblink
|
||||
|
||||
|
||||
### Build targets
|
||||
|
||||
.SUFFIXES:
|
||||
.PHONY: all crystal crystal11 clean compare tools tidy
|
||||
.PHONY: all crystal crystal11 clean tidy compare tools
|
||||
.SECONDEXPANSION:
|
||||
.PRECIOUS:
|
||||
.SECONDARY:
|
||||
|
1
extras
1
extras
@ -1 +0,0 @@
|
||||
Subproject commit 2ae1ae2f19c842da965cd3db1b0da8bf108ac235
|
@ -3,7 +3,7 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
from extras.pokemontools import gfx, lz
|
||||
from pokemontools import gfx, lz
|
||||
|
||||
|
||||
# Graphics with inverted tilemaps that aren't covered by filepath_rules.
|
||||
@ -146,7 +146,7 @@ def filepath_rules(filepath):
|
||||
|
||||
pokemon_name = ''
|
||||
|
||||
if 'gfx/pics/' in filedir:
|
||||
if 'gfx/pokemon/' in filedir:
|
||||
pokemon_name = filedir.split('/')[-1]
|
||||
if pokemon_name.startswith('unown_'):
|
||||
index = filedir.find(pokemon_name)
|
1
tools/pokemontools/__init__.py
Normal file
1
tools/pokemontools/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
# A subset of https://github.com/pret/pokemon-reverse-engineering-tools
|
938
tools/pokemontools/gfx.py
Normal file
938
tools/pokemontools/gfx.py
Normal file
@ -0,0 +1,938 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
import png
|
||||
from math import sqrt, floor, ceil
|
||||
import argparse
|
||||
import operator
|
||||
|
||||
from lz import Compressed, Decompressed
|
||||
|
||||
|
||||
def split(list_, interval):
|
||||
"""
|
||||
Split a list by length.
|
||||
"""
|
||||
for i in xrange(0, len(list_), interval):
|
||||
j = min(i + interval, len(list_))
|
||||
yield list_[i:j]
|
||||
|
||||
|
||||
def hex_dump(data, length=0x10):
|
||||
"""
|
||||
just use hexdump -C
|
||||
"""
|
||||
margin = len('%x' % len(data))
|
||||
output = []
|
||||
address = 0
|
||||
for line in split(data, length):
|
||||
output += [
|
||||
hex(address)[2:].zfill(margin) +
|
||||
' | ' +
|
||||
' '.join('%.2x' % byte for byte in line)
|
||||
]
|
||||
address += length
|
||||
return '\n'.join(output)
|
||||
|
||||
|
||||
def get_tiles(image):
|
||||
"""
|
||||
Split a 2bpp image into 8x8 tiles.
|
||||
"""
|
||||
return list(split(image, 0x10))
|
||||
|
||||
def connect(tiles):
|
||||
"""
|
||||
Combine 8x8 tiles into a 2bpp image.
|
||||
"""
|
||||
return [byte for tile in tiles for byte in tile]
|
||||
|
||||
def transpose(tiles, width=None):
|
||||
"""
|
||||
Transpose a tile arrangement along line y=-x.
|
||||
|
||||
00 01 02 03 04 05 00 06 0c 12 18 1e
|
||||
06 07 08 09 0a 0b 01 07 0d 13 19 1f
|
||||
0c 0d 0e 0f 10 11 <-> 02 08 0e 14 1a 20
|
||||
12 13 14 15 16 17 03 09 0f 15 1b 21
|
||||
18 19 1a 1b 1c 1d 04 0a 10 16 1c 22
|
||||
1e 1f 20 21 22 23 05 0b 11 17 1d 23
|
||||
|
||||
00 01 02 03 00 04 08
|
||||
04 05 06 07 <-> 01 05 09
|
||||
08 09 0a 0b 02 06 0a
|
||||
03 07 0b
|
||||
"""
|
||||
if width == None:
|
||||
width = int(sqrt(len(tiles))) # assume square image
|
||||
tiles = sorted(enumerate(tiles), key= lambda (i, tile): i % width)
|
||||
return [tile for i, tile in tiles]
|
||||
|
||||
def transpose_tiles(image, width=None):
|
||||
return connect(transpose(get_tiles(image), width))
|
||||
|
||||
def interleave(tiles, width):
|
||||
"""
|
||||
00 01 02 03 04 05 00 02 04 06 08 0a
|
||||
06 07 08 09 0a 0b 01 03 05 07 09 0b
|
||||
0c 0d 0e 0f 10 11 --> 0c 0e 10 12 14 16
|
||||
12 13 14 15 16 17 0d 0f 11 13 15 17
|
||||
18 19 1a 1b 1c 1d 18 1a 1c 1e 20 22
|
||||
1e 1f 20 21 22 23 19 1b 1d 1f 21 23
|
||||
"""
|
||||
interleaved = []
|
||||
left, right = split(tiles[::2], width), split(tiles[1::2], width)
|
||||
for l, r in zip(left, right):
|
||||
interleaved += l + r
|
||||
return interleaved
|
||||
|
||||
def deinterleave(tiles, width):
|
||||
"""
|
||||
00 02 04 06 08 0a 00 01 02 03 04 05
|
||||
01 03 05 07 09 0b 06 07 08 09 0a 0b
|
||||
0c 0e 10 12 14 16 --> 0c 0d 0e 0f 10 11
|
||||
0d 0f 11 13 15 17 12 13 14 15 16 17
|
||||
18 1a 1c 1e 20 22 18 19 1a 1b 1c 1d
|
||||
19 1b 1d 1f 21 23 1e 1f 20 21 22 23
|
||||
"""
|
||||
deinterleaved = []
|
||||
rows = list(split(tiles, width))
|
||||
for left, right in zip(rows[::2], rows[1::2]):
|
||||
for l, r in zip(left, right):
|
||||
deinterleaved += [l, r]
|
||||
return deinterleaved
|
||||
|
||||
def interleave_tiles(image, width):
|
||||
return connect(interleave(get_tiles(image), width))
|
||||
|
||||
def deinterleave_tiles(image, width):
|
||||
return connect(deinterleave(get_tiles(image), width))
|
||||
|
||||
|
||||
def condense_image_to_map(image, pic=0):
|
||||
"""
|
||||
Reduce an image of adjacent frames to an image containing a base frame and any unrepeated tiles.
|
||||
Returns the new image and the corresponding tilemap used to reconstruct the input image.
|
||||
|
||||
If <pic> is 0, ignore the concept of frames. This behavior might be better off as another function.
|
||||
"""
|
||||
tiles = get_tiles(image)
|
||||
new_tiles, tilemap = condense_tiles_to_map(tiles, pic)
|
||||
new_image = connect(new_tiles)
|
||||
return new_image, tilemap
|
||||
|
||||
def condense_tiles_to_map(tiles, pic=0):
|
||||
"""
|
||||
Reduce a sequence of tiles representing adjacent frames to a base frame and any unrepeated tiles.
|
||||
Returns the new tiles and the corresponding tilemap used to reconstruct the input tile sequence.
|
||||
|
||||
If <pic> is 0, ignore the concept of frames. This behavior might be better off as another function.
|
||||
"""
|
||||
|
||||
# Leave the first frame intact for pics.
|
||||
new_tiles = tiles[:pic]
|
||||
tilemap = range(pic)
|
||||
|
||||
for i, tile in enumerate(tiles[pic:]):
|
||||
if tile not in new_tiles:
|
||||
new_tiles.append(tile)
|
||||
|
||||
if pic:
|
||||
# Match the first frame exactly where possible.
|
||||
# This reduces the space needed to replace tiles in pic animations.
|
||||
# For example, if a tile is repeated twice in the first frame,
|
||||
# but at the same relative index as the second tile, use the second index.
|
||||
# When creating a bitmask later, the second index would not require a replacement, but the first index would have.
|
||||
pic_i = i % pic
|
||||
if tile == new_tiles[pic_i]:
|
||||
tilemap.append(pic_i)
|
||||
else:
|
||||
tilemap.append(new_tiles.index(tile))
|
||||
else:
|
||||
tilemap.append(new_tiles.index(tile))
|
||||
return new_tiles, tilemap
|
||||
|
||||
def test_condense_tiles_to_map():
|
||||
test = condense_tiles_to_map(list('abcadbae'))
|
||||
if test != (list('abcde'), [0, 1, 2, 0, 3, 1, 0, 4]):
|
||||
raise Exception(test)
|
||||
test = condense_tiles_to_map(list('abcadbae'), 2)
|
||||
if test != (list('abcde'), [0, 1, 2, 0, 3, 1, 0, 4]):
|
||||
raise Exception(test)
|
||||
test = condense_tiles_to_map(list('abcadbae'), 4)
|
||||
if test != (list('abcade'), [0, 1, 2, 3, 4, 1, 0, 5]):
|
||||
raise Exception(test)
|
||||
test = condense_tiles_to_map(list('abcadbea'), 4)
|
||||
if test != (list('abcade'), [0, 1, 2, 3, 4, 1, 5, 3]):
|
||||
raise Exception(test)
|
||||
|
||||
|
||||
def to_file(filename, data):
|
||||
"""
|
||||
Apparently open(filename, 'wb').write(bytearray(data)) won't work.
|
||||
"""
|
||||
file = open(filename, 'wb')
|
||||
for byte in data:
|
||||
file.write('%c' % byte)
|
||||
file.close()
|
||||
|
||||
|
||||
def decompress_file(filein, fileout=None):
|
||||
image = bytearray(open(filein).read())
|
||||
de = Decompressed(image)
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filein)[0]
|
||||
to_file(fileout, de.output)
|
||||
|
||||
|
||||
def compress_file(filein, fileout=None):
|
||||
image = bytearray(open(filein).read())
|
||||
lz = Compressed(image)
|
||||
|
||||
if fileout == None:
|
||||
fileout = filein + '.lz'
|
||||
to_file(fileout, lz.output)
|
||||
|
||||
|
||||
def bin_to_rgb(word):
|
||||
red = word & 0b11111
|
||||
word >>= 5
|
||||
green = word & 0b11111
|
||||
word >>= 5
|
||||
blue = word & 0b11111
|
||||
return (red, green, blue)
|
||||
|
||||
def convert_binary_pal_to_text_by_filename(filename):
|
||||
pal = bytearray(open(filename).read())
|
||||
return convert_binary_pal_to_text(pal)
|
||||
|
||||
def convert_binary_pal_to_text(pal):
|
||||
output = ''
|
||||
words = [hi * 0x100 + lo for lo, hi in zip(pal[::2], pal[1::2])]
|
||||
for word in words:
|
||||
red, green, blue = ['%.2d' % c for c in bin_to_rgb(word)]
|
||||
output += '\tRGB ' + ', '.join((red, green, blue))
|
||||
output += '\n'
|
||||
return output
|
||||
|
||||
def read_rgb_macros(lines):
|
||||
colors = []
|
||||
for line in lines:
|
||||
macro = line.split(" ")[0].strip()
|
||||
if macro == 'RGB':
|
||||
params = ' '.join(line.split(" ")[1:]).split(',')
|
||||
red, green, blue = [int(v) for v in params]
|
||||
colors += [[red, green, blue]]
|
||||
return colors
|
||||
|
||||
|
||||
def rewrite_binary_pals_to_text(filenames):
|
||||
for filename in filenames:
|
||||
pal_text = convert_binary_pal_to_text_by_filename(filename)
|
||||
with open(filename, 'w') as out:
|
||||
out.write(pal_text)
|
||||
|
||||
|
||||
def flatten(planar):
|
||||
"""
|
||||
Flatten planar 2bpp image data into a quaternary pixel map.
|
||||
"""
|
||||
strips = []
|
||||
for bottom, top in split(planar, 2):
|
||||
bottom = bottom
|
||||
top = top
|
||||
strip = []
|
||||
for i in xrange(7,-1,-1):
|
||||
color = (
|
||||
(bottom >> i & 1) +
|
||||
(top *2 >> i & 2)
|
||||
)
|
||||
strip += [color]
|
||||
strips += strip
|
||||
return strips
|
||||
|
||||
def to_lines(image, width):
|
||||
"""
|
||||
Convert a tiled quaternary pixel map to lines of quaternary pixels.
|
||||
"""
|
||||
tile_width = 8
|
||||
tile_height = 8
|
||||
num_columns = width / tile_width
|
||||
height = len(image) / width
|
||||
|
||||
lines = []
|
||||
for cur_line in xrange(height):
|
||||
tile_row = cur_line / tile_height
|
||||
line = []
|
||||
for column in xrange(num_columns):
|
||||
anchor = (
|
||||
num_columns * tile_row * tile_width * tile_height +
|
||||
column * tile_width * tile_height +
|
||||
cur_line % tile_height * tile_width
|
||||
)
|
||||
line += image[anchor : anchor + tile_width]
|
||||
lines += [line]
|
||||
return lines
|
||||
|
||||
|
||||
def dmg2rgb(word):
|
||||
"""
|
||||
For PNGs.
|
||||
"""
|
||||
def shift(value):
|
||||
while True:
|
||||
yield value & (2**5 - 1)
|
||||
value >>= 5
|
||||
word = shift(word)
|
||||
# distribution is less even w/ << 3
|
||||
red, green, blue = [int(color * 8.25) for color in [word.next() for _ in xrange(3)]]
|
||||
alpha = 255
|
||||
return (red, green, blue, alpha)
|
||||
|
||||
|
||||
def rgb_to_dmg(color):
|
||||
"""
|
||||
For PNGs.
|
||||
"""
|
||||
word = (color['r'] / 8)
|
||||
word += (color['g'] / 8) << 5
|
||||
word += (color['b'] / 8) << 10
|
||||
return word
|
||||
|
||||
|
||||
def pal_to_png(filename):
|
||||
"""
|
||||
Interpret a .pal file as a png palette.
|
||||
"""
|
||||
with open(filename) as rgbs:
|
||||
colors = read_rgb_macros(rgbs.readlines())
|
||||
a = 255
|
||||
palette = []
|
||||
for color in colors:
|
||||
# even distribution over 000-255
|
||||
r, g, b = [int(hue * 8.25) for hue in color]
|
||||
palette += [(r, g, b, a)]
|
||||
white = (255,255,255,255)
|
||||
black = (000,000,000,255)
|
||||
if white not in palette and len(palette) < 4:
|
||||
palette = [white] + palette
|
||||
if black not in palette and len(palette) < 4:
|
||||
palette = palette + [black]
|
||||
return palette
|
||||
|
||||
|
||||
def png_to_rgb(palette):
|
||||
"""
|
||||
Convert a png palette to rgb macros.
|
||||
"""
|
||||
output = ''
|
||||
for color in palette:
|
||||
r, g, b = [color[c] / 8 for c in 'rgb']
|
||||
output += '\tRGB ' + ', '.join(['%.2d' % hue for hue in (r, g, b)])
|
||||
output += '\n'
|
||||
return output
|
||||
|
||||
|
||||
def read_filename_arguments(filename):
|
||||
"""
|
||||
Infer graphics conversion arguments given a filename.
|
||||
|
||||
Arguments are separated with '.'.
|
||||
"""
|
||||
parsed_arguments = {}
|
||||
|
||||
int_arguments = {
|
||||
'w': 'width',
|
||||
'h': 'height',
|
||||
't': 'tile_padding',
|
||||
}
|
||||
arguments = os.path.splitext(filename)[0].lstrip('.').split('.')[1:]
|
||||
for argument in arguments:
|
||||
|
||||
# Check for integer arguments first (i.e. "w128").
|
||||
arg = argument[0]
|
||||
param = argument[1:]
|
||||
if param.isdigit():
|
||||
arg = int_arguments.get(arg, False)
|
||||
if arg:
|
||||
parsed_arguments[arg] = int(param)
|
||||
|
||||
elif argument == 'arrange':
|
||||
parsed_arguments['norepeat'] = True
|
||||
parsed_arguments['tilemap'] = True
|
||||
|
||||
# Pic dimensions (i.e. "6x6").
|
||||
elif 'x' in argument and any(map(str.isdigit, argument)):
|
||||
w, h = argument.split('x')
|
||||
if w.isdigit() and h.isdigit():
|
||||
parsed_arguments['pic_dimensions'] = (int(w), int(h))
|
||||
|
||||
else:
|
||||
parsed_arguments[argument] = True
|
||||
|
||||
return parsed_arguments
|
||||
|
||||
|
||||
def export_2bpp_to_png(filein, fileout=None, pal_file=None, height=0, width=0, tile_padding=0, pic_dimensions=None, **kwargs):
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filein)[0] + '.png'
|
||||
|
||||
image = open(filein, 'rb').read()
|
||||
|
||||
arguments = {
|
||||
'width': width,
|
||||
'height': height,
|
||||
'pal_file': pal_file,
|
||||
'tile_padding': tile_padding,
|
||||
'pic_dimensions': pic_dimensions,
|
||||
}
|
||||
arguments.update(read_filename_arguments(filein))
|
||||
|
||||
if pal_file == None:
|
||||
if os.path.exists(os.path.splitext(fileout)[0]+'.pal'):
|
||||
arguments['pal_file'] = os.path.splitext(fileout)[0]+'.pal'
|
||||
|
||||
result = convert_2bpp_to_png(image, **arguments)
|
||||
width, height, palette, greyscale, bitdepth, px_map = result
|
||||
|
||||
w = png.Writer(
|
||||
width,
|
||||
height,
|
||||
palette=palette,
|
||||
compression=9,
|
||||
greyscale=greyscale,
|
||||
bitdepth=bitdepth
|
||||
)
|
||||
with open(fileout, 'wb') as f:
|
||||
w.write(f, px_map)
|
||||
|
||||
|
||||
def convert_2bpp_to_png(image, **kwargs):
|
||||
"""
|
||||
Convert a planar 2bpp graphic to png.
|
||||
"""
|
||||
|
||||
image = bytearray(image)
|
||||
|
||||
pad_color = bytearray([0])
|
||||
|
||||
width = kwargs.get('width', 0)
|
||||
height = kwargs.get('height', 0)
|
||||
tile_padding = kwargs.get('tile_padding', 0)
|
||||
pic_dimensions = kwargs.get('pic_dimensions', None)
|
||||
pal_file = kwargs.get('pal_file', None)
|
||||
interleave = kwargs.get('interleave', False)
|
||||
|
||||
# Width must be specified to interleave.
|
||||
if interleave and width:
|
||||
image = interleave_tiles(image, width / 8)
|
||||
|
||||
# Pad the image by a given number of tiles if asked.
|
||||
image += pad_color * 0x10 * tile_padding
|
||||
|
||||
# Some images are transposed in blocks.
|
||||
if pic_dimensions:
|
||||
w, h = pic_dimensions
|
||||
if not width: width = w * 8
|
||||
|
||||
pic_length = w * h * 0x10
|
||||
|
||||
trailing = len(image) % pic_length
|
||||
|
||||
pic = []
|
||||
for i in xrange(0, len(image) - trailing, pic_length):
|
||||
pic += transpose_tiles(image[i:i+pic_length], h)
|
||||
image = bytearray(pic) + image[len(image) - trailing:]
|
||||
|
||||
# Pad out trailing lines.
|
||||
image += pad_color * 0x10 * ((w - (len(image) / 0x10) % h) % w)
|
||||
|
||||
def px_length(img):
|
||||
return len(img) * 4
|
||||
def tile_length(img):
|
||||
return len(img) * 4 / (8*8)
|
||||
|
||||
if width and height:
|
||||
tile_width = width / 8
|
||||
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
|
||||
image += pad_color * 0x10 * more_tile_padding
|
||||
|
||||
elif width and not height:
|
||||
tile_width = width / 8
|
||||
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
|
||||
image += pad_color * 0x10 * more_tile_padding
|
||||
height = px_length(image) / width
|
||||
|
||||
elif height and not width:
|
||||
tile_height = height / 8
|
||||
more_tile_padding = (tile_height - (tile_length(image) % tile_height or tile_height))
|
||||
image += pad_color * 0x10 * more_tile_padding
|
||||
width = px_length(image) / height
|
||||
|
||||
# at least one dimension should be given
|
||||
if width * height != px_length(image):
|
||||
# look for possible combos of width/height that would form a rectangle
|
||||
matches = []
|
||||
# Height need not be divisible by 8, but width must.
|
||||
# See pokered gfx/minimize_pic.1bpp.
|
||||
for w in range(8, px_length(image) / 2 + 1, 8):
|
||||
h = px_length(image) / w
|
||||
if w * h == px_length(image):
|
||||
matches += [(w, h)]
|
||||
# go for the most square image
|
||||
if len(matches):
|
||||
width, height = sorted(matches, key= lambda (w, h): (h % 8 != 0, w + h))[0] # favor height
|
||||
else:
|
||||
raise Exception, 'Image can\'t be divided into tiles (%d px)!' % (px_length(image))
|
||||
|
||||
# convert tiles to lines
|
||||
lines = to_lines(flatten(image), width)
|
||||
|
||||
if pal_file == None:
|
||||
palette = None
|
||||
greyscale = True
|
||||
bitdepth = 2
|
||||
px_map = [[3 - pixel for pixel in line] for line in lines]
|
||||
|
||||
else: # gbc color
|
||||
palette = pal_to_png(pal_file)
|
||||
greyscale = False
|
||||
bitdepth = 8
|
||||
px_map = [[pixel for pixel in line] for line in lines]
|
||||
|
||||
return width, height, palette, greyscale, bitdepth, px_map
|
||||
|
||||
|
||||
def get_pic_animation(tmap, w, h):
|
||||
"""
|
||||
Generate pic animation data from a combined tilemap of each frame.
|
||||
"""
|
||||
frame_text = ''
|
||||
bitmask_text = ''
|
||||
|
||||
frames = list(split(tmap, w * h))
|
||||
base = frames.pop(0)
|
||||
bitmasks = []
|
||||
|
||||
for i in xrange(len(frames)):
|
||||
frame_text += '\tdw .frame{}\n'.format(i + 1)
|
||||
|
||||
for i, frame in enumerate(frames):
|
||||
bitmask = map(operator.ne, frame, base)
|
||||
if bitmask not in bitmasks:
|
||||
bitmasks.append(bitmask)
|
||||
which_bitmask = bitmasks.index(bitmask)
|
||||
|
||||
mask = iter(bitmask)
|
||||
masked_frame = filter(lambda _: mask.next(), frame)
|
||||
|
||||
frame_text += '.frame{}\n'.format(i + 1)
|
||||
frame_text += '\tdb ${:02x} ; bitmask\n'.format(which_bitmask)
|
||||
if masked_frame:
|
||||
frame_text += '\tdb {}\n'.format(', '.join(
|
||||
map('${:02x}'.format, masked_frame)
|
||||
))
|
||||
|
||||
for i, bitmask in enumerate(bitmasks):
|
||||
bitmask_text += '; {}\n'.format(i)
|
||||
for byte in split(bitmask, 8):
|
||||
byte = int(''.join(map(int.__repr__, reversed(byte))), 2)
|
||||
bitmask_text += '\tdb %{:08b}\n'.format(byte)
|
||||
|
||||
return frame_text, bitmask_text
|
||||
|
||||
|
||||
def export_png_to_2bpp(filein, fileout=None, palout=None, **kwargs):
|
||||
|
||||
arguments = {
|
||||
'tile_padding': 0,
|
||||
'pic_dimensions': None,
|
||||
'animate': False,
|
||||
'stupid_bitmask_hack': [],
|
||||
}
|
||||
arguments.update(kwargs)
|
||||
arguments.update(read_filename_arguments(filein))
|
||||
|
||||
image, arguments = png_to_2bpp(filein, **arguments)
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filein)[0] + '.2bpp'
|
||||
to_file(fileout, image)
|
||||
|
||||
tmap = arguments.get('tmap')
|
||||
|
||||
if tmap != None and arguments['animate'] and arguments['pic_dimensions']:
|
||||
# Generate pic animation data.
|
||||
frame_text, bitmask_text = get_pic_animation(tmap, *arguments['pic_dimensions'])
|
||||
|
||||
frames_path = os.path.join(os.path.split(fileout)[0], 'frames.asm')
|
||||
with open(frames_path, 'w') as out:
|
||||
out.write(frame_text)
|
||||
|
||||
bitmask_path = os.path.join(os.path.split(fileout)[0], 'bitmask.asm')
|
||||
|
||||
# The following Pokemon have a bitmask dummied out.
|
||||
for exception in arguments['stupid_bitmask_hack']:
|
||||
if exception in bitmask_path:
|
||||
bitmasks = bitmask_text.split(';')
|
||||
bitmasks[-1] = bitmasks[-1].replace('1', '0')
|
||||
bitmask_text = ';'.join(bitmasks)
|
||||
|
||||
with open(bitmask_path, 'w') as out:
|
||||
out.write(bitmask_text)
|
||||
|
||||
elif tmap != None and arguments.get('tilemap', False):
|
||||
tilemap_path = os.path.splitext(fileout)[0] + '.tilemap'
|
||||
to_file(tilemap_path, tmap)
|
||||
|
||||
palette = arguments.get('palette')
|
||||
if palout == None:
|
||||
palout = os.path.splitext(fileout)[0] + '.pal'
|
||||
export_palette(palette, palout)
|
||||
|
||||
|
||||
def get_image_padding(width, height, wstep=8, hstep=8):
|
||||
|
||||
padding = {
|
||||
'left': 0,
|
||||
'right': 0,
|
||||
'top': 0,
|
||||
'bottom': 0,
|
||||
}
|
||||
|
||||
if width % wstep and width >= wstep:
|
||||
pad = float(width % wstep) / 2
|
||||
padding['left'] = int(ceil(pad))
|
||||
padding['right'] = int(floor(pad))
|
||||
|
||||
if height % hstep and height >= hstep:
|
||||
pad = float(height % hstep) / 2
|
||||
padding['top'] = int(ceil(pad))
|
||||
padding['bottom'] = int(floor(pad))
|
||||
|
||||
return padding
|
||||
|
||||
|
||||
def png_to_2bpp(filein, **kwargs):
|
||||
"""
|
||||
Convert a png image to planar 2bpp.
|
||||
"""
|
||||
|
||||
arguments = {
|
||||
'tile_padding': 0,
|
||||
'pic_dimensions': False,
|
||||
'interleave': False,
|
||||
'norepeat': False,
|
||||
'tilemap': False,
|
||||
}
|
||||
arguments.update(kwargs)
|
||||
|
||||
if type(filein) is str:
|
||||
filein = open(filein)
|
||||
|
||||
assert type(filein) is file
|
||||
|
||||
width, height, rgba, info = png.Reader(filein).asRGBA8()
|
||||
|
||||
# png.Reader returns flat pixel data. Nested is easier to work with
|
||||
len_px = len('rgba')
|
||||
image = []
|
||||
palette = []
|
||||
for line in rgba:
|
||||
newline = []
|
||||
for px in xrange(0, len(line), len_px):
|
||||
color = dict(zip('rgba', line[px:px+len_px]))
|
||||
if color not in palette:
|
||||
if len(palette) < 4:
|
||||
palette += [color]
|
||||
else:
|
||||
# TODO Find the nearest match
|
||||
print 'WARNING: %s: Color %s truncated to' % (filein, color),
|
||||
color = sorted(palette, key=lambda x: sum(x.values()))[0]
|
||||
print color
|
||||
newline += [color]
|
||||
image += [newline]
|
||||
|
||||
assert len(palette) <= 4, '%s: palette should be 4 colors, is really %d (%s)' % (filein, len(palette), palette)
|
||||
|
||||
# Pad out smaller palettes with greyscale colors
|
||||
greyscale = {
|
||||
'black': { 'r': 0x00, 'g': 0x00, 'b': 0x00, 'a': 0xff },
|
||||
'grey': { 'r': 0x55, 'g': 0x55, 'b': 0x55, 'a': 0xff },
|
||||
'gray': { 'r': 0xaa, 'g': 0xaa, 'b': 0xaa, 'a': 0xff },
|
||||
'white': { 'r': 0xff, 'g': 0xff, 'b': 0xff, 'a': 0xff },
|
||||
}
|
||||
preference = 'white', 'black', 'grey', 'gray'
|
||||
for hue in map(greyscale.get, preference):
|
||||
if len(palette) >= 4:
|
||||
break
|
||||
if hue not in palette:
|
||||
palette += [hue]
|
||||
|
||||
palette.sort(key=lambda x: sum(x.values()))
|
||||
|
||||
# Game Boy palette order
|
||||
palette.reverse()
|
||||
|
||||
# Map pixels to quaternary color ids
|
||||
padding = get_image_padding(width, height)
|
||||
width += padding['left'] + padding['right']
|
||||
height += padding['top'] + padding['bottom']
|
||||
pad = bytearray([0])
|
||||
|
||||
qmap = []
|
||||
qmap += pad * width * padding['top']
|
||||
for line in image:
|
||||
qmap += pad * padding['left']
|
||||
for color in line:
|
||||
qmap += [palette.index(color)]
|
||||
qmap += pad * padding['right']
|
||||
qmap += pad * width * padding['bottom']
|
||||
|
||||
# Graphics are stored in tiles instead of lines
|
||||
tile_width = 8
|
||||
tile_height = 8
|
||||
num_columns = max(width, tile_width) / tile_width
|
||||
num_rows = max(height, tile_height) / tile_height
|
||||
image = []
|
||||
|
||||
for row in xrange(num_rows):
|
||||
for column in xrange(num_columns):
|
||||
|
||||
# Split it up into strips to convert to planar data
|
||||
for strip in xrange(min(tile_height, height)):
|
||||
anchor = (
|
||||
row * num_columns * tile_width * tile_height +
|
||||
column * tile_width +
|
||||
strip * width
|
||||
)
|
||||
line = qmap[anchor : anchor + tile_width]
|
||||
bottom, top = 0, 0
|
||||
for bit, quad in enumerate(line):
|
||||
bottom += (quad & 1) << (7 - bit)
|
||||
top += (quad /2 & 1) << (7 - bit)
|
||||
image += [bottom, top]
|
||||
|
||||
dim = arguments['pic_dimensions']
|
||||
if dim:
|
||||
if type(dim) in (tuple, list):
|
||||
w, h = dim
|
||||
else:
|
||||
# infer dimensions based on width.
|
||||
w = width / tile_width
|
||||
h = height / tile_height
|
||||
if h % w == 0:
|
||||
h = w
|
||||
|
||||
tiles = get_tiles(image)
|
||||
pic_length = w * h
|
||||
tile_width = width / 8
|
||||
trailing = len(tiles) % pic_length
|
||||
new_image = []
|
||||
for block in xrange(len(tiles) / pic_length):
|
||||
offset = (h * tile_width) * ((block * w) / tile_width) + ((block * w) % tile_width)
|
||||
pic = []
|
||||
for row in xrange(h):
|
||||
index = offset + (row * tile_width)
|
||||
pic += tiles[index:index + w]
|
||||
new_image += transpose(pic, w)
|
||||
new_image += tiles[len(tiles) - trailing:]
|
||||
image = connect(new_image)
|
||||
|
||||
# Remove any tile padding used to make the png rectangular.
|
||||
image = image[:len(image) - arguments['tile_padding'] * 0x10]
|
||||
|
||||
tmap = None
|
||||
|
||||
if arguments['interleave']:
|
||||
image = deinterleave_tiles(image, num_columns)
|
||||
|
||||
if arguments['pic_dimensions']:
|
||||
image, tmap = condense_image_to_map(image, w * h)
|
||||
elif arguments['norepeat']:
|
||||
image, tmap = condense_image_to_map(image)
|
||||
if not arguments['tilemap']:
|
||||
tmap = None
|
||||
|
||||
arguments.update({ 'palette': palette, 'tmap': tmap, })
|
||||
|
||||
return image, arguments
|
||||
|
||||
|
||||
def export_palette(palette, filename):
|
||||
"""
|
||||
Export a palette from png to rgb macros in a .pal file.
|
||||
"""
|
||||
|
||||
if os.path.exists(filename):
|
||||
|
||||
# Pic palettes are 2 colors (black/white are added later).
|
||||
with open(filename) as rgbs:
|
||||
colors = read_rgb_macros(rgbs.readlines())
|
||||
|
||||
if len(colors) == 2:
|
||||
palette = palette[1:3]
|
||||
|
||||
text = png_to_rgb(palette)
|
||||
with open(filename, 'w') as out:
|
||||
out.write(text)
|
||||
|
||||
|
||||
def png_to_lz(filein):
|
||||
|
||||
name = os.path.splitext(filein)[0]
|
||||
|
||||
export_png_to_2bpp(filein)
|
||||
image = open(name+'.2bpp', 'rb').read()
|
||||
to_file(name+'.2bpp'+'.lz', Compressed(image).output)
|
||||
|
||||
|
||||
def convert_2bpp_to_1bpp(data):
|
||||
"""
|
||||
Convert planar 2bpp image data to 1bpp. Assume images are two colors.
|
||||
"""
|
||||
return data[::2]
|
||||
|
||||
def convert_1bpp_to_2bpp(data):
|
||||
"""
|
||||
Convert 1bpp image data to planar 2bpp (black/white).
|
||||
"""
|
||||
output = []
|
||||
for i in data:
|
||||
output += [i, i]
|
||||
return output
|
||||
|
||||
|
||||
def export_2bpp_to_1bpp(filename):
|
||||
name, extension = os.path.splitext(filename)
|
||||
image = open(filename, 'rb').read()
|
||||
image = convert_2bpp_to_1bpp(image)
|
||||
to_file(name + '.1bpp', image)
|
||||
|
||||
def export_1bpp_to_2bpp(filename):
|
||||
name, extension = os.path.splitext(filename)
|
||||
image = open(filename, 'rb').read()
|
||||
image = convert_1bpp_to_2bpp(image)
|
||||
to_file(name + '.2bpp', image)
|
||||
|
||||
|
||||
def export_1bpp_to_png(filename, fileout=None):
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filename)[0] + '.png'
|
||||
|
||||
arguments = read_filename_arguments(filename)
|
||||
|
||||
image = open(filename, 'rb').read()
|
||||
image = convert_1bpp_to_2bpp(image)
|
||||
|
||||
result = convert_2bpp_to_png(image, **arguments)
|
||||
width, height, palette, greyscale, bitdepth, px_map = result
|
||||
|
||||
w = png.Writer(width, height, palette=palette, compression=9, greyscale=greyscale, bitdepth=bitdepth)
|
||||
with open(fileout, 'wb') as f:
|
||||
w.write(f, px_map)
|
||||
|
||||
|
||||
def export_png_to_1bpp(filename, fileout=None):
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filename)[0] + '.1bpp'
|
||||
|
||||
arguments = read_filename_arguments(filename)
|
||||
image = png_to_1bpp(filename, **arguments)
|
||||
|
||||
to_file(fileout, image)
|
||||
|
||||
def png_to_1bpp(filename, **kwargs):
|
||||
image, kwargs = png_to_2bpp(filename, **kwargs)
|
||||
return convert_2bpp_to_1bpp(image)
|
||||
|
||||
|
||||
def convert_to_2bpp(filenames=[]):
|
||||
for filename in filenames:
|
||||
filename, name, extension = try_decompress(filename)
|
||||
if extension == '.1bpp':
|
||||
export_1bpp_to_2bpp(filename)
|
||||
elif extension == '.2bpp':
|
||||
pass
|
||||
elif extension == '.png':
|
||||
export_png_to_2bpp(filename)
|
||||
else:
|
||||
raise Exception, "Don't know how to convert {} to 2bpp!".format(filename)
|
||||
|
||||
def convert_to_1bpp(filenames=[]):
|
||||
for filename in filenames:
|
||||
filename, name, extension = try_decompress(filename)
|
||||
if extension == '.1bpp':
|
||||
pass
|
||||
elif extension == '.2bpp':
|
||||
export_2bpp_to_1bpp(filename)
|
||||
elif extension == '.png':
|
||||
export_png_to_1bpp(filename)
|
||||
else:
|
||||
raise Exception, "Don't know how to convert {} to 1bpp!".format(filename)
|
||||
|
||||
def convert_to_png(filenames=[]):
|
||||
for filename in filenames:
|
||||
filename, name, extension = try_decompress(filename)
|
||||
if extension == '.1bpp':
|
||||
export_1bpp_to_png(filename)
|
||||
elif extension == '.2bpp':
|
||||
export_2bpp_to_png(filename)
|
||||
elif extension == '.png':
|
||||
pass
|
||||
else:
|
||||
raise Exception, "Don't know how to convert {} to png!".format(filename)
|
||||
|
||||
def compress(filenames=[]):
|
||||
for filename in filenames:
|
||||
data = open(filename, 'rb').read()
|
||||
lz_data = Compressed(data).output
|
||||
to_file(filename + '.lz', lz_data)
|
||||
|
||||
def decompress(filenames=[]):
|
||||
for filename in filenames:
|
||||
name, extension = os.path.splitext(filename)
|
||||
lz_data = open(filename, 'rb').read()
|
||||
data = Decompressed(lz_data).output
|
||||
to_file(name, data)
|
||||
|
||||
def try_decompress(filename):
|
||||
"""
|
||||
Try to decompress a graphic when determining the filetype.
|
||||
This skips the manual unlz step when attempting
|
||||
to convert lz-compressed graphics to png.
|
||||
"""
|
||||
name, extension = os.path.splitext(filename)
|
||||
if extension == '.lz':
|
||||
decompress([filename])
|
||||
filename = name
|
||||
name, extension = os.path.splitext(filename)
|
||||
return filename, name, extension
|
||||
|
||||
|
||||
def main():
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument('mode')
|
||||
ap.add_argument('filenames', nargs='*')
|
||||
args = ap.parse_args()
|
||||
|
||||
method = {
|
||||
'2bpp': convert_to_2bpp,
|
||||
'1bpp': convert_to_1bpp,
|
||||
'png': convert_to_png,
|
||||
'lz': compress,
|
||||
'unlz': decompress,
|
||||
}.get(args.mode, None)
|
||||
|
||||
if method == None:
|
||||
raise Exception, "Unknown conversion method!"
|
||||
|
||||
method(args.filenames)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
580
tools/pokemontools/lz.py
Normal file
580
tools/pokemontools/lz.py
Normal file
@ -0,0 +1,580 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Pokemon Crystal data de/compression.
|
||||
"""
|
||||
|
||||
"""
|
||||
A rundown of Pokemon Crystal's compression scheme:
|
||||
|
||||
Control commands occupy bits 5-7.
|
||||
Bits 0-4 serve as the first parameter <n> for each command.
|
||||
"""
|
||||
lz_commands = {
|
||||
'literal': 0, # n values for n bytes
|
||||
'iterate': 1, # one value for n bytes
|
||||
'alternate': 2, # alternate two values for n bytes
|
||||
'blank': 3, # zero for n bytes
|
||||
}
|
||||
|
||||
"""
|
||||
Repeater commands repeat any data that was just decompressed.
|
||||
They take an additional signed parameter <s> to mark a relative starting point.
|
||||
These wrap around (positive from the start, negative from the current position).
|
||||
"""
|
||||
lz_commands.update({
|
||||
'repeat': 4, # n bytes starting from s
|
||||
'flip': 5, # n bytes in reverse bit order starting from s
|
||||
'reverse': 6, # n bytes backwards starting from s
|
||||
})
|
||||
|
||||
"""
|
||||
The long command is used when 5 bits aren't enough. Bits 2-4 contain a new control code.
|
||||
Bits 0-1 are appended to a new byte as 8-9, allowing a 10-bit parameter.
|
||||
"""
|
||||
lz_commands.update({
|
||||
'long': 7, # n is now 10 bits for a new control code
|
||||
})
|
||||
max_length = 1 << 10 # can't go higher than 10 bits
|
||||
lowmax = 1 << 5 # standard 5-bit param
|
||||
|
||||
"""
|
||||
If 0xff is encountered instead of a command, decompression ends.
|
||||
"""
|
||||
lz_end = 0xff
|
||||
|
||||
|
||||
bit_flipped = [
|
||||
sum(((byte >> i) & 1) << (7 - i) for i in xrange(8))
|
||||
for byte in xrange(0x100)
|
||||
]
|
||||
|
||||
|
||||
class Compressed:
|
||||
|
||||
"""
|
||||
Usage:
|
||||
lz = Compressed(data).output
|
||||
or
|
||||
lz = Compressed().compress(data)
|
||||
or
|
||||
c = Compressed()
|
||||
c.data = data
|
||||
lz = c.compress()
|
||||
|
||||
There are some issues with reproducing the target compressor.
|
||||
Some notes are listed here:
|
||||
- the criteria for detecting a lookback is inconsistent
|
||||
- sometimes lookbacks that are mostly 0s are pruned, sometimes not
|
||||
- target appears to skip ahead if it can use a lookback soon, stopping the current command short or in some cases truncating it with literals.
|
||||
- this has been implemented, but the specifics are unknown
|
||||
- self.min_scores: It's unknown if blank's minimum score should be 1 or 2. Most likely it's 1, with some other hack to account for edge cases.
|
||||
- may be related to the above
|
||||
- target does not appear to compress backwards
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
||||
self.min_scores = {
|
||||
'blank': 1,
|
||||
'iterate': 2,
|
||||
'alternate': 3,
|
||||
'repeat': 3,
|
||||
'reverse': 3,
|
||||
'flip': 3,
|
||||
}
|
||||
|
||||
self.preference = [
|
||||
'repeat',
|
||||
'blank',
|
||||
'flip',
|
||||
'reverse',
|
||||
'iterate',
|
||||
'alternate',
|
||||
#'literal',
|
||||
]
|
||||
|
||||
self.lookback_methods = 'repeat', 'reverse', 'flip'
|
||||
|
||||
self.__dict__.update({
|
||||
'data': None,
|
||||
'commands': lz_commands,
|
||||
'debug': False,
|
||||
'literal_only': False,
|
||||
})
|
||||
|
||||
self.arg_names = 'data', 'commands', 'debug', 'literal_only'
|
||||
|
||||
self.__dict__.update(kwargs)
|
||||
self.__dict__.update(dict(zip(self.arg_names, args)))
|
||||
|
||||
if self.data is not None:
|
||||
self.compress()
|
||||
|
||||
def compress(self, data=None):
|
||||
if data is not None:
|
||||
self.data = data
|
||||
|
||||
self.data = list(bytearray(self.data))
|
||||
|
||||
self.indexes = {}
|
||||
self.lookbacks = {}
|
||||
for method in self.lookback_methods:
|
||||
self.lookbacks[method] = {}
|
||||
|
||||
self.address = 0
|
||||
self.end = len(self.data)
|
||||
self.output = []
|
||||
self.literal = None
|
||||
|
||||
while self.address < self.end:
|
||||
|
||||
if self.score():
|
||||
self.do_literal()
|
||||
self.do_winner()
|
||||
|
||||
else:
|
||||
if self.literal == None:
|
||||
self.literal = self.address
|
||||
self.address += 1
|
||||
|
||||
self.do_literal()
|
||||
|
||||
self.output += [lz_end]
|
||||
return self.output
|
||||
|
||||
def reset_scores(self):
|
||||
self.scores = {}
|
||||
self.offsets = {}
|
||||
self.helpers = {}
|
||||
for method in self.min_scores.iterkeys():
|
||||
self.scores[method] = 0
|
||||
|
||||
def bit_flip(self, byte):
|
||||
return bit_flipped[byte]
|
||||
|
||||
def do_literal(self):
|
||||
if self.literal != None:
|
||||
length = abs(self.address - self.literal)
|
||||
start = min(self.literal, self.address + 1)
|
||||
self.helpers['literal'] = self.data[start:start+length]
|
||||
self.do_cmd('literal', length)
|
||||
self.literal = None
|
||||
|
||||
def score(self):
|
||||
self.reset_scores()
|
||||
|
||||
map(self.score_literal, ['iterate', 'alternate', 'blank'])
|
||||
|
||||
for method in self.lookback_methods:
|
||||
self.scores[method], self.offsets[method] = self.find_lookback(method, self.address)
|
||||
|
||||
self.stop_short()
|
||||
|
||||
return any(
|
||||
score
|
||||
> self.min_scores[method] + int(score > lowmax)
|
||||
for method, score in self.scores.iteritems()
|
||||
)
|
||||
|
||||
def stop_short(self):
|
||||
"""
|
||||
If a lookback is close, reduce the scores of other commands.
|
||||
"""
|
||||
best_method, best_score = max(
|
||||
self.scores.items(),
|
||||
key = lambda x: (
|
||||
x[1],
|
||||
-self.preference.index(x[0])
|
||||
)
|
||||
)
|
||||
for method in self.lookback_methods:
|
||||
min_score = self.min_scores[method]
|
||||
for address in xrange(self.address+1, self.address+best_score):
|
||||
length, index = self.find_lookback(method, address)
|
||||
if length > max(min_score, best_score):
|
||||
# BUG: lookbacks can reduce themselves. This appears to be a bug in the target also.
|
||||
for m, score in self.scores.items():
|
||||
self.scores[m] = min(score, address - self.address)
|
||||
|
||||
|
||||
def read(self, address=None):
|
||||
if address is None:
|
||||
address = self.address
|
||||
if 0 <= address < len(self.data):
|
||||
return self.data[address]
|
||||
return None
|
||||
|
||||
def find_all_lookbacks(self):
|
||||
for method in self.lookback_methods:
|
||||
for address, byte in enumerate(self.data):
|
||||
self.find_lookback(method, address)
|
||||
|
||||
def find_lookback(self, method, address=None):
|
||||
"""Temporarily stubbed, because the real function doesn't run in polynomial time."""
|
||||
return 0, None
|
||||
|
||||
def broken_find_lookback(self, method, address=None):
|
||||
if address is None:
|
||||
address = self.address
|
||||
|
||||
existing = self.lookbacks.get(method, {}).get(address)
|
||||
if existing != None:
|
||||
return existing
|
||||
|
||||
lookback = 0, None
|
||||
|
||||
# Better to not carelessly optimize at the moment.
|
||||
"""
|
||||
if address < 2:
|
||||
return lookback
|
||||
"""
|
||||
|
||||
byte = self.read(address)
|
||||
if byte is None:
|
||||
return lookback
|
||||
|
||||
direction, mutate = {
|
||||
'repeat': ( 1, int),
|
||||
'reverse': (-1, int),
|
||||
'flip': ( 1, self.bit_flip),
|
||||
}[method]
|
||||
|
||||
# Doesn't seem to help
|
||||
"""
|
||||
if mutate == self.bit_flip:
|
||||
if byte == 0:
|
||||
self.lookbacks[method][address] = lookback
|
||||
return lookback
|
||||
"""
|
||||
|
||||
data_len = len(self.data)
|
||||
is_two_byte_index = lambda index: int(index < address - 0x7f)
|
||||
|
||||
for index in self.get_indexes(mutate(byte)):
|
||||
|
||||
if index >= address:
|
||||
break
|
||||
|
||||
old_length, old_index = lookback
|
||||
if direction == 1:
|
||||
if old_length > data_len - index: break
|
||||
else:
|
||||
if old_length > index: continue
|
||||
|
||||
if self.read(index) in [None]: continue
|
||||
|
||||
length = 1 # we know there's at least one match, or we wouldn't be checking this index
|
||||
while 1:
|
||||
this_byte = self.read(address + length)
|
||||
that_byte = self.read(index + length * direction)
|
||||
if that_byte == None or this_byte != mutate(that_byte):
|
||||
break
|
||||
length += 1
|
||||
|
||||
score = length - is_two_byte_index(index)
|
||||
old_score = old_length - is_two_byte_index(old_index)
|
||||
if score >= old_score or (score == old_score and length > old_length):
|
||||
# XXX maybe avoid two-byte indexes when possible
|
||||
if score >= lookback[0] - is_two_byte_index(lookback[1]):
|
||||
lookback = length, index
|
||||
|
||||
self.lookbacks[method][address] = lookback
|
||||
return lookback
|
||||
|
||||
def get_indexes(self, byte):
|
||||
if not self.indexes.has_key(byte):
|
||||
self.indexes[byte] = []
|
||||
index = -1
|
||||
while 1:
|
||||
try:
|
||||
index = self.data.index(byte, index + 1)
|
||||
except ValueError:
|
||||
break
|
||||
self.indexes[byte].append(index)
|
||||
return self.indexes[byte]
|
||||
|
||||
def score_literal(self, method):
|
||||
address = self.address
|
||||
|
||||
compare = {
|
||||
'blank': [0],
|
||||
'iterate': [self.read(address)],
|
||||
'alternate': [self.read(address), self.read(address + 1)],
|
||||
}[method]
|
||||
|
||||
# XXX may or may not be correct
|
||||
if method == 'alternate' and compare[0] == 0:
|
||||
return
|
||||
|
||||
length = 0
|
||||
while self.read(address + length) == compare[length % len(compare)]:
|
||||
length += 1
|
||||
|
||||
self.scores[method] = length
|
||||
self.helpers[method] = compare
|
||||
|
||||
def do_winner(self):
|
||||
winners = filter(
|
||||
lambda (method, score):
|
||||
score
|
||||
> self.min_scores[method] + int(score > lowmax),
|
||||
self.scores.iteritems()
|
||||
)
|
||||
winners.sort(
|
||||
key = lambda (method, score): (
|
||||
-(score - self.min_scores[method] - int(score > lowmax)),
|
||||
self.preference.index(method)
|
||||
)
|
||||
)
|
||||
winner, score = winners[0]
|
||||
|
||||
length = min(score, max_length)
|
||||
self.do_cmd(winner, length)
|
||||
self.address += length
|
||||
|
||||
def do_cmd(self, cmd, length):
|
||||
start_address = self.address
|
||||
|
||||
cmd_length = length - 1
|
||||
|
||||
output = []
|
||||
|
||||
if length > lowmax:
|
||||
output.append(
|
||||
(self.commands['long'] << 5)
|
||||
+ (self.commands[cmd] << 2)
|
||||
+ (cmd_length >> 8)
|
||||
)
|
||||
output.append(
|
||||
cmd_length & 0xff
|
||||
)
|
||||
else:
|
||||
output.append(
|
||||
(self.commands[cmd] << 5)
|
||||
+ cmd_length
|
||||
)
|
||||
|
||||
self.helpers['blank'] = [] # quick hack
|
||||
output += self.helpers.get(cmd, [])
|
||||
|
||||
if cmd in self.lookback_methods:
|
||||
offset = self.offsets[cmd]
|
||||
# Negative offsets are one byte.
|
||||
# Positive offsets are two.
|
||||
if 0 < start_address - offset - 1 <= 0x7f:
|
||||
offset = (start_address - offset - 1) | 0x80
|
||||
output += [offset]
|
||||
else:
|
||||
output += [offset / 0x100, offset % 0x100] # big endian
|
||||
|
||||
if self.debug:
|
||||
print ' '.join(map(str, [
|
||||
cmd, length, '\t',
|
||||
' '.join(map('{:02x}'.format, output)),
|
||||
self.data[start_address:start_address+length] if cmd in self.lookback_methods else '',
|
||||
]))
|
||||
|
||||
self.output += output
|
||||
|
||||
|
||||
|
||||
class Decompressed:
|
||||
"""
|
||||
Interpret and decompress lz-compressed data, usually 2bpp.
|
||||
"""
|
||||
|
||||
"""
|
||||
Usage:
|
||||
data = Decompressed(lz).output
|
||||
or
|
||||
data = Decompressed().decompress(lz)
|
||||
or
|
||||
d = Decompressed()
|
||||
d.lz = lz
|
||||
data = d.decompress()
|
||||
|
||||
To decompress from offset 0x80000 in a rom:
|
||||
data = Decompressed(rom, start=0x80000).output
|
||||
"""
|
||||
|
||||
lz = None
|
||||
start = 0
|
||||
commands = lz_commands
|
||||
debug = False
|
||||
|
||||
arg_names = 'lz', 'start', 'commands', 'debug'
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.__dict__.update(dict(zip(self.arg_names, args)))
|
||||
self.__dict__.update(kwargs)
|
||||
|
||||
self.command_names = dict(map(reversed, self.commands.items()))
|
||||
self.address = self.start
|
||||
|
||||
if self.lz is not None:
|
||||
self.decompress()
|
||||
|
||||
if self.debug: print self.command_list()
|
||||
|
||||
|
||||
def command_list(self):
|
||||
"""
|
||||
Print a list of commands that were used. Useful for debugging.
|
||||
"""
|
||||
|
||||
text = ''
|
||||
|
||||
output_address = 0
|
||||
for name, attrs in self.used_commands:
|
||||
length = attrs['length']
|
||||
address = attrs['address']
|
||||
offset = attrs['offset']
|
||||
direction = attrs['direction']
|
||||
|
||||
text += '{2:03x} {0}: {1}'.format(name, length, output_address)
|
||||
text += '\t' + ' '.join(
|
||||
'{:02x}'.format(int(byte))
|
||||
for byte in self.lz[ address : address + attrs['cmd_length'] ]
|
||||
)
|
||||
|
||||
if offset is not None:
|
||||
repeated_data = self.output[ offset : offset + length * direction : direction ]
|
||||
if name == 'flip':
|
||||
repeated_data = map(bit_flipped.__getitem__, repeated_data)
|
||||
text += ' [' + ' '.join(map('{:02x}'.format, repeated_data)) + ']'
|
||||
|
||||
text += '\n'
|
||||
output_address += length
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def decompress(self, lz=None):
|
||||
|
||||
if lz is not None:
|
||||
self.lz = lz
|
||||
|
||||
self.lz = bytearray(self.lz)
|
||||
|
||||
self.used_commands = []
|
||||
self.output = []
|
||||
|
||||
while 1:
|
||||
|
||||
cmd_address = self.address
|
||||
self.offset = None
|
||||
self.direction = None
|
||||
|
||||
if (self.byte == lz_end):
|
||||
self.next()
|
||||
break
|
||||
|
||||
self.cmd = (self.byte & 0b11100000) >> 5
|
||||
|
||||
if self.cmd_name == 'long':
|
||||
# 10-bit length
|
||||
self.cmd = (self.byte & 0b00011100) >> 2
|
||||
self.length = (self.next() & 0b00000011) * 0x100
|
||||
self.length += self.next() + 1
|
||||
else:
|
||||
# 5-bit length
|
||||
self.length = (self.next() & 0b00011111) + 1
|
||||
|
||||
self.__class__.__dict__[self.cmd_name](self)
|
||||
|
||||
self.used_commands += [(
|
||||
self.cmd_name,
|
||||
{
|
||||
'length': self.length,
|
||||
'address': cmd_address,
|
||||
'offset': self.offset,
|
||||
'cmd_length': self.address - cmd_address,
|
||||
'direction': self.direction,
|
||||
}
|
||||
)]
|
||||
|
||||
# Keep track of the data we just decompressed.
|
||||
self.compressed_data = self.lz[self.start : self.address]
|
||||
|
||||
|
||||
@property
|
||||
def byte(self):
|
||||
return self.lz[ self.address ]
|
||||
|
||||
def next(self):
|
||||
byte = self.byte
|
||||
self.address += 1
|
||||
return byte
|
||||
|
||||
@property
|
||||
def cmd_name(self):
|
||||
return self.command_names.get(self.cmd)
|
||||
|
||||
|
||||
def get_offset(self):
|
||||
|
||||
if self.byte >= 0x80: # negative
|
||||
# negative
|
||||
offset = self.next() & 0x7f
|
||||
offset = len(self.output) - offset - 1
|
||||
else:
|
||||
# positive
|
||||
offset = self.next() * 0x100
|
||||
offset += self.next()
|
||||
|
||||
self.offset = offset
|
||||
|
||||
|
||||
def literal(self):
|
||||
"""
|
||||
Copy data directly.
|
||||
"""
|
||||
self.output += self.lz[ self.address : self.address + self.length ]
|
||||
self.address += self.length
|
||||
|
||||
def iterate(self):
|
||||
"""
|
||||
Write one byte repeatedly.
|
||||
"""
|
||||
self.output += [self.next()] * self.length
|
||||
|
||||
def alternate(self):
|
||||
"""
|
||||
Write alternating bytes.
|
||||
"""
|
||||
alts = [self.next(), self.next()]
|
||||
self.output += [ alts[x & 1] for x in xrange(self.length) ]
|
||||
|
||||
def blank(self):
|
||||
"""
|
||||
Write zeros.
|
||||
"""
|
||||
self.output += [0] * self.length
|
||||
|
||||
def flip(self):
|
||||
"""
|
||||
Repeat flipped bytes from output.
|
||||
|
||||
Example: 11100100 -> 00100111
|
||||
"""
|
||||
self._repeat(table=bit_flipped)
|
||||
|
||||
def reverse(self):
|
||||
"""
|
||||
Repeat reversed bytes from output.
|
||||
"""
|
||||
self._repeat(direction=-1)
|
||||
|
||||
def repeat(self):
|
||||
"""
|
||||
Repeat bytes from output.
|
||||
"""
|
||||
self._repeat()
|
||||
|
||||
def _repeat(self, direction=1, table=None):
|
||||
self.get_offset()
|
||||
self.direction = direction
|
||||
# Note: appends must be one at a time (this way, repeats can draw from themselves if required)
|
||||
for i in xrange(self.length):
|
||||
byte = self.output[ self.offset + i * direction ]
|
||||
self.output.append( table[byte] if table else byte )
|
2650
tools/pokemontools/png.py
Normal file
2650
tools/pokemontools/png.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user