Xamarin Public Jenkins (auto-signing) 64ac736ec5 Imported Upstream version 6.0.0.172
Former-commit-id: f3cc9b82f3e5bd8f0fd3ebc098f789556b44e9cd
2019-04-12 14:10:50 +00:00

194 lines
6.8 KiB
C#

//
// System.Threading.WaitHandle.cs
//
// Author:
// Dick Porter (dick@ximian.com)
// Gonzalo Paniagua Javier (gonzalo@ximian.com
//
// (C) 2002,2003 Ximian, Inc. (http://www.ximian.com)
// Copyright (C) 2004-2005 Novell, Inc (http://www.novell.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Reflection;
using System.Runtime.CompilerServices;
#if !DISABLE_REMOTING
using System.Runtime.Remoting.Contexts;
#endif
using System.Runtime.InteropServices;
using Microsoft.Win32.SafeHandles;
using System.Runtime.ConstrainedExecution;
namespace System.Threading
{
[StructLayout (LayoutKind.Sequential)]
public abstract partial class WaitHandle
{
protected static readonly IntPtr InvalidHandle = (IntPtr) (-1);
internal const int MaxWaitHandles = 64;
// We rely on the reference source implementation of WaitHandle, and it delegates to a function named
// WaitOneNative to perform the actual operation of waiting on a handle.
// This native operation actually has to call back into managed code and invoke .Wait
// on the current SynchronizationContext. As such, our implementation of this "native" method
// is actually managed code, and the real native icall being used is Wait_internal.
static int WaitOneNative (SafeHandle waitableSafeHandle, uint millisecondsTimeout, bool hasThreadAffinity, bool exitContext)
{
bool release = false;
#if !MONODROID
var context = SynchronizationContext.Current;
#endif
try {
waitableSafeHandle.DangerousAddRef (ref release);
#if !DISABLE_REMOTING
if (exitContext)
SynchronizationAttribute.ExitContext ();
#endif
#if !MONODROID
// HACK: Documentation (and public posts by experts like Joe Duffy) suggests that
// users must first call SetWaitNotificationRequired to flag that a given synchronization
// context overrides .Wait. Because invoking the Wait method is somewhat expensive, we use
// the notification-required flag to determine whether or not we should invoke the managed
// wait method.
// Another option would be to check whether this context uses the default Wait implementation,
// but I don't know of a cheap way to do this that handles derived types correctly.
// If the thread does not have a synchronization context set at all, we can safely just
// jump directly to invoking Wait_internal.
if ((context != null) && context.IsWaitNotificationRequired ()) {
return context.Wait (
new IntPtr[] { waitableSafeHandle.DangerousGetHandle () },
false,
(int)millisecondsTimeout
);
} else
#endif
{
unsafe {
IntPtr handle = waitableSafeHandle.DangerousGetHandle ();
return Wait_internal (&handle, 1, false, (int)millisecondsTimeout);
}
}
} finally {
if (release)
waitableSafeHandle.DangerousRelease ();
#if !DISABLE_REMOTING
if (exitContext)
SynchronizationAttribute.EnterContext ();
#endif
}
}
static int WaitMultiple(WaitHandle[] waitHandles, int millisecondsTimeout, bool exitContext, bool WaitAll)
{
if (waitHandles.Length > MaxWaitHandles)
return WAIT_FAILED;
int release_last = -1;
var context = SynchronizationContext.Current;
try {
#if !DISABLE_REMOTING
if (exitContext)
SynchronizationAttribute.ExitContext ();
#endif
for (int i = 0; i < waitHandles.Length; ++i) {
try {} finally {
/* we have to put it in a finally block, to avoid having a ThreadAbortException
* between the return from DangerousAddRef and the assignement to release_last */
bool release = false;
waitHandles [i].SafeWaitHandle.DangerousAddRef (ref release);
release_last = i;
}
}
if ((context != null) && context.IsWaitNotificationRequired ()) {
IntPtr[] handles = new IntPtr[waitHandles.Length];
for (int i = 0; i < waitHandles.Length; ++i)
handles[i] = waitHandles[i].SafeWaitHandle.DangerousGetHandle ();
return context.Wait (
handles,
false,
(int)millisecondsTimeout
);
} else {
unsafe {
IntPtr* handles = stackalloc IntPtr[waitHandles.Length];
for (int i = 0; i < waitHandles.Length; ++i)
handles[i] = waitHandles[i].SafeWaitHandle.DangerousGetHandle ();
return Wait_internal (handles, waitHandles.Length, WaitAll, millisecondsTimeout);
}
}
} finally {
for (int i = release_last; i >= 0; --i) {
waitHandles [i].SafeWaitHandle.DangerousRelease ();
}
#if !DISABLE_REMOTING
if (exitContext)
SynchronizationAttribute.EnterContext ();
#endif
}
}
[MethodImplAttribute(MethodImplOptions.InternalCall)]
internal unsafe static extern int Wait_internal(IntPtr* handles, int numHandles, bool waitAll, int ms);
static int SignalAndWaitOne (SafeWaitHandle waitHandleToSignal,SafeWaitHandle waitHandleToWaitOn, int millisecondsTimeout, bool hasThreadAffinity, bool exitContext)
{
bool releaseHandleToSignal = false, releaseHandleToWaitOn = false;
try {
waitHandleToSignal.DangerousAddRef (ref releaseHandleToSignal);
waitHandleToWaitOn.DangerousAddRef (ref releaseHandleToWaitOn);
return SignalAndWait_Internal (waitHandleToSignal.DangerousGetHandle (), waitHandleToWaitOn.DangerousGetHandle (), millisecondsTimeout);
} finally {
if (releaseHandleToSignal)
waitHandleToSignal.DangerousRelease ();
if (releaseHandleToWaitOn)
waitHandleToWaitOn.DangerousRelease ();
}
}
[MethodImplAttribute(MethodImplOptions.InternalCall)]
static extern int SignalAndWait_Internal (IntPtr toSignal, IntPtr toWaitOn, int ms);
internal static int ToTimeoutMilliseconds(TimeSpan timeout)
{
var timeoutMilliseconds = (long)timeout.TotalMilliseconds;
if (timeoutMilliseconds < -1 || timeoutMilliseconds > int.MaxValue)
{
throw new ArgumentOutOfRangeException(nameof(timeout), SR.ArgumentOutOfRange_NeedNonNegOrNegative1);
}
return (int)timeoutMilliseconds;
}
}
}