1223 lines
38 KiB
C#
Raw Normal View History

//-------------------------------------------------------------
// <copyright company=<3D>Microsoft Corporation<6F>>
// Copyright <20> Microsoft Corporation. All Rights Reserved.
// </copyright>
//-------------------------------------------------------------
// @owner=alexgor, deliant
//=================================================================
// File: Matrix3D.cs
//
// Namespace: DataVisualization.Charting
//
// Classes: Matrix3D
//
// Purpose: Matrix3D class is used during the 3D drawings to
// transform plotting area 3D coordinates into the 2D
// projection coordinates based on rotation and
// perspective settings.
//
// Reviewed: AG - Dec 4, 2002
// AG - Microsoft 14, 2007
//
//===================================================================
#region Used namespaces
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Text;
using System.Drawing.Imaging;
using System.ComponentModel;
using System.Collections;
#if Microsoft_CONTROL
using System.Windows.Forms.DataVisualization.Charting;
using System.Windows.Forms.DataVisualization.Charting.Data;
using System.Windows.Forms.DataVisualization.Charting.ChartTypes;
using System.Windows.Forms.DataVisualization.Charting.Utilities;
using System.Windows.Forms.DataVisualization.Charting.Borders3D;
#else
//using System.Web.UI.DataVisualization.Charting.Utilities;
//using System.Web.UI.DataVisualization.Charting.Borders3D;
#endif
#endregion
#if Microsoft_CONTROL
namespace System.Windows.Forms.DataVisualization.Charting
#else
namespace System.Web.UI.DataVisualization.Charting
#endif
{
/// <summary>
/// This class is responsible for all 3D coordinates transformations: Translation,
/// Rotation, Scale, Perspective and RightAngle Projection. Translation
/// and rotation are stored in composite matrix (mainMatrix), and scaling,
/// projection and non-composite translation are stored in private fields.
/// Matrix is initialized with Chart Area 3D cube, which is invisible boundary
/// cube of 3D Chart area. The matrix has to be initialized every time
/// when angles, position or perspective parameters are changed. Method
/// TransformPoints will apply 3D Transformation on points using
/// Initialization values: Main matrix and other initialization values.
/// </summary>
internal class Matrix3D
{
#region Enumerations
/// <summary>
/// 3D Axis used for rotation
/// </summary>
private enum RotationAxis
{
/// <summary>
/// Rotation around X axis.
/// </summary>
X,
/// <summary>
/// Rotation around Y axis.
/// </summary>
Y,
/// <summary>
/// Rotation around Z axis.
/// </summary>
Z
}
#endregion // Enumerations
#region Fields
/// <summary>
/// Composite matrix.
/// </summary>
private float [][] _mainMatrix;
/// <summary>
/// Default translation for chart area cube ( without composition ).
/// </summary>
private float _translateX;
/// <summary>
/// Default translation for chart area cube ( without composition ).
/// </summary>
private float _translateY;
/// <summary>
/// Default translation for chart area cube ( without composition ).
/// </summary>
private float _translateZ;
/// <summary>
/// The value, which is used to rescale chart area.
/// </summary>
private float _scale;
/// <summary>
/// The value used for Isometric Shift.
/// </summary>
private float _shiftX;
/// <summary>
/// The value used for Isometric Shift.
/// </summary>
private float _shiftY;
/// <summary>
/// Perspective value.
/// </summary>
internal float _perspective;
/// <summary>
/// Isometric projection.
/// </summary>
private bool _rightAngleAxis;
/// <summary>
/// The value, which is used for perspective.
/// </summary>
private float _perspectiveFactor = float.NaN;
/// <summary>
/// The value, which is used to set projection plane.
/// </summary>
private float _perspectiveZ;
/// <summary>
/// X Angle.
/// </summary>
private float _angleX;
/// <summary>
/// Y Angle.
/// </summary>
private float _angleY;
/// <summary>
/// Private fields used for lighting
/// </summary>
Point3D [] _lightVectors = new Point3D[7];
/// <summary>
/// LightStyle Style
/// </summary>
LightStyle _lightStyle;
#endregion // Fields
#region Properties
/// <summary>
/// Gets the X Angle.
/// </summary>
internal float AngleX
{
get { return _angleX; }
}
/// <summary>
/// Gets the Y Angle.
/// </summary>
internal float AngleY
{
get { return _angleY; }
}
/// <summary>
/// Get perspective value.
/// </summary>
internal float Perspective
{
get { return _perspective; }
}
#endregion // Properties
#region Internal and Public Methods
/// <summary>
/// Constructor for Matrix 3D
/// </summary>
public Matrix3D()
{
}
/// <summary>
/// Checks if 3D matrix was initialized.
/// </summary>
/// <returns>True if matrix was initialized.</returns>
public bool IsInitialized()
{
return (this._mainMatrix != null);
}
/// <summary>
/// Initialize Matrix 3D. This method calculates how much a chart area
/// cube has to be resized to fit Inner Plotting Area rectangle. Order
/// of operation is following: Translation for X and Y axes, Rotation
/// by X-axis, Rotation by Y-axis and same scaling for all axes. All
/// other elements, which belongs to this chart area cube (Data points,
/// grid lines etc.) has to follow same order. Translation and rotation
/// form composite matrix mainMatrix. Scale has to be allied separately.
/// </summary>
/// <param name="innerPlotRectangle">Inner Plotting Area position. Chart area cube has to be inside this rectangle</param>
/// <param name="depth">Depth of chart area cube</param>
/// <param name="angleX">Angle of rotation by X axis.</param>
/// <param name="angleY">Angle of rotation by Y axis.</param>
/// <param name="perspective">Perspective in percentages</param>
/// <param name="rightAngleAxis">Right angle flag.</param>
internal void Initialize(
RectangleF innerPlotRectangle,
float depth,
float angleX,
float angleY,
float perspective,
bool rightAngleAxis )
{
// Initialization for mainMatrix
Reset();
// Remember non-composite translation
_translateX = innerPlotRectangle.X+innerPlotRectangle.Width/2;
_translateY = innerPlotRectangle.Y+innerPlotRectangle.Height/2;
_translateZ = depth / 2F;
float width = innerPlotRectangle.Width;
float height = innerPlotRectangle.Height;
this._perspective = perspective;
this._rightAngleAxis = rightAngleAxis;
// Remember Angles
this._angleX = angleX;
this._angleY = angleY;
// Change Degrees to radians.
angleX = angleX / 180F * (float)Math.PI;
angleY = angleY / 180F * (float)Math.PI;
// Set points for 3D Bar which represents 3D Chart Area Cube.
Point3D [] points = Set3DBarPoints( width, height, depth );
// Translate Chart Area Cube WITH CENTER OF ROTATION - COMPOSITE TRANSLATION.
Translate( _translateX, _translateY, 0 );
// Non Isometric projection
if( !rightAngleAxis )
{
// Rotate Chart Area Cube by X axis.
Rotate( angleX, RotationAxis.X );
// Rotate Chart Area Cube by Y axis.
Rotate( angleY, RotationAxis.Y );
}
else
{
if( this._angleY >= 45 )
{
// Rotate Chart Area Cube by Y axis.
Rotate( Math.PI / 2, RotationAxis.Y );
}
else if( this._angleY <= -45 )
{
// Rotate Chart Area Cube by Y axis.
Rotate( -Math.PI / 2, RotationAxis.Y );
}
}
// Apply composed transformation ( Translation and rotation ).
GetValues( points );
float maxZ = float.MinValue;
if( perspective != 0F || rightAngleAxis )
{
// Find projection plane
foreach( Point3D point in points )
{
if( point.Z > maxZ )
maxZ = point.Z;
}
// Set Projection plane
_perspectiveZ = maxZ;
}
if( perspective != 0F )
{
_perspectiveFactor = perspective / 2000F;
// Apply perspective
ApplyPerspective( points );
}
// Isometric projection is active
if( rightAngleAxis )
{
RightAngleProjection( points );
float minX = 0F;
float minY = 0F;
float maxX = 0F;
float maxY = 0F;
// Point loop
foreach( Point3D point in points )
{
if( point.X - _translateX < 0F && Math.Abs( point.X - _translateX ) > minX )
minX = Math.Abs( point.X - _translateX );
if( point.X - _translateX >=0F && Math.Abs( point.X - _translateX ) > maxX )
maxX = Math.Abs( point.X - _translateX );
if( point.Y - _translateY < 0F && Math.Abs( point.Y - _translateY ) > minY )
minY = Math.Abs( point.Y - _translateY );
if( point.Y - _translateY >=0F && Math.Abs( point.Y - _translateY ) > maxY )
maxY = Math.Abs( point.Y - _translateY );
}
_shiftX = (maxX - minX)/2F;
_shiftY = (maxY - minY)/2F;
RightAngleShift( points );
}
// This code searches for value, which will be used for scaling.
float maxXScale = float.MinValue;
float maxYScale = float.MinValue;
foreach( Point3D point in points )
{
// Find maximum relative distance for X axis.
// Relative distance is (distance from the center of plotting area
// position) / (distance from the edge of rectangle to
// the center of the rectangle).
if( maxXScale < Math.Abs(point.X - _translateX) / width * 2 )
maxXScale = Math.Abs(point.X - _translateX) / width * 2;
// Find maximum relative distance for Y axis.
if( maxYScale < Math.Abs(point.Y - _translateY) / height * 2 )
maxYScale = Math.Abs(point.Y - _translateY) / height * 2;
}
// Remember scale factor
_scale = (maxYScale > maxXScale ) ? maxYScale : maxXScale;
// Apply scaling
Scale( points );
}
/// <summary>
/// Apply transformations on array od 3D Points. Order of operation is
/// following: Translation ( Set coordinate system for 0:100 to -50:50
/// Center of rotation is always 0), Composite Translation for X and Y
/// axes ( Moving center of rotation ), Rotation by X-axis, Rotation
/// by Y-axis, perspective and same scaling for all axes.
/// </summary>
/// <param name="points">3D Points array.</param>
public void TransformPoints( Point3D[] points )
{
TransformPoints( points, true );
}
#if RS_DEADCODE
/// <summary>
/// This Method returns scale factor
/// </summary>
/// <returns></returns>
internal float GetScale()
{
return scale;
}
#endif //RS_DEADCODE
#endregion // Internal and Public Methods
#region Private Methods
/// <summary>
/// Apply transformations on array od 3D Points. Order of operation is
/// following: Translation ( Set coordinate system for 0:100 to -50:50
/// Center of rotation is always 0), Composite Translation for X and Y
/// axes ( Moving center of rotation ), Rotation by X-axis, Rotation
/// by Y-axis, perspective and same scaling for all axes.
/// </summary>
/// <param name="points">3D Points array.</param>
/// <param name="withPerspective">Applay Perspective</param>
private void TransformPoints( Point3D[] points, bool withPerspective )
{
// Matrix is not initialized.
if( _mainMatrix == null )
{
throw new InvalidOperationException(SR.ExceptionMatrix3DNotinitialized);
}
// Translate point. CENTER OF ROTATION is 0 and that center is in
// the middle of chart area 3D CUBE. Translate method cannot
// be used because composite translation WILL MOVE
// CENTER OF ROTATION.
foreach( Point3D point in points )
{
point.X -= _translateX;
point.Y -= _translateY;
point.Z -= _translateZ;
}
// Transform points using composite mainMatrix. (Translation of points together with
// Center of rotation and rotations by X and Y axes).
GetValues( points );
// Apply perspective
if( _perspective != 0F && withPerspective )
{
ApplyPerspective( points );
}
// RightAngle Projection
if( _rightAngleAxis )
{
RightAngleProjection( points );
RightAngleShift( points );
}
// Scales data points. Scaling has to be performed SEPARATELY from
// composite matrix. If scale is used with composite matrix after
// rotation, scaling will deform object.
Scale( points );
}
/// <summary>
/// This method adjusts a position of 3D Chart Area cube. This
/// method will translate chart for better use of the inner
/// plotting area. Center of rotation is shifted for
/// right Angle projection.
/// </summary>
/// <param name="points">3D Points array.</param>
private void RightAngleShift( Point3D [] points )
{
foreach( Point3D point in points )
{
point.X = point.X - _shiftX;
point.Y = point.Y - _shiftY;
}
}
/// <summary>
/// Method used to calculate right Angle projection.
/// </summary>
/// <param name="points">3D points array.</param>
private void RightAngleProjection( Point3D [] points )
{
float coorectionAngle = 45F;
float xFactor = this._angleX / 45;
float yFactor;
if( this._angleY >= 45 )
{
yFactor = (this._angleY - 90) / coorectionAngle;
}
else if ( this._angleY <= -45 )
{
yFactor = ( this._angleY + 90 ) / coorectionAngle;
}
else
{
yFactor = this._angleY / coorectionAngle;
}
// Projection formula
// perspectiveZ - Position of perspective plain.
// Perspective Factor - Intensity of projection.
foreach( Point3D point in points )
{
point.X = point.X + ( _perspectiveZ - point.Z ) * yFactor;
point.Y = point.Y - ( _perspectiveZ - point.Z ) * xFactor;
}
}
/// <summary>
/// Method is used for Planar Geometric projection.
/// </summary>
/// <param name="points">3D Points array.</param>
private void ApplyPerspective( Point3D [] points )
{
// Projection formula
// perspectiveZ - Position of perspective plain.
// perspectiveFactor - Intensity of projection.
foreach( Point3D point in points )
{
point.X = _translateX + (point.X - _translateX) / ( 1 + (_perspectiveZ - point.Z) * _perspectiveFactor);
point.Y = _translateY + (point.Y - _translateY) / ( 1 + (_perspectiveZ - point.Z) * _perspectiveFactor);
}
}
/// <summary>
/// Scales data points. Scaling has to be performed SEPARATELY from
/// composite matrix. If scale is used with composite matrix after
/// rotation, scaling will deform object.
/// </summary>
/// <param name="points">3D Points array.</param>
private void Scale( Point3D [] points )
{
foreach( Point3D point in points )
{
point.X = _translateX + (point.X - _translateX) / _scale;
point.Y = _translateY + (point.Y - _translateY) / _scale;
}
}
/// <summary>
/// Prepend to this Matrix object a translation. This method is used
/// only if CENTER OF ROTATION HAS TO BE MOVED.
/// </summary>
/// <param name="dx">Translate in x axis direction.</param>
/// <param name="dy">Translate in y axis direction.</param>
/// <param name="dz">Translate in z axis direction.</param>
private void Translate( float dx, float dy, float dz )
{
float [][] translationMatrix = new float[4][];
translationMatrix[0] = new float[4];
translationMatrix[1] = new float[4];
translationMatrix[2] = new float[4];
translationMatrix[3] = new float[4];
// Matrix initialization
// Row loop
for( int row = 0; row < 4; row ++ )
{
// Column loop
for( int column = 0; column < 4; column ++ )
{
// For initialization: Diagonal matrix elements are equal to one
// and all other elements are equal to zero.
if( row == column )
{
translationMatrix[row][column] = 1F;
}
else
{
translationMatrix[row][column] = 0F;
}
}
}
// Set translation values to the matrix
translationMatrix[0][3] = dx;
translationMatrix[1][3] = dy;
translationMatrix[2][3] = dz;
// Translate main Matrix
Multiply( translationMatrix, MatrixOrder.Prepend, true );
}
/// <summary>
/// This method initialize and set default values for mainMatrix ( there is no rotation and translation )
/// </summary>
private void Reset()
{
// First element is row and second element is column !!!
_mainMatrix = new float[4][];
_mainMatrix[0] = new float[4];
_mainMatrix[1] = new float[4];
_mainMatrix[2] = new float[4];
_mainMatrix[3] = new float[4];
// Matrix initialization
// Row loop
for( int row = 0; row < 4; row ++ )
{
// Column loop
for( int column = 0; column < 4; column ++ )
{
// For initialization: Diagonal matrix elements are equal to one
// and all other elements are equal to zero.
if( row == column )
{
_mainMatrix[row][column] = 1F;
}
else
{
_mainMatrix[row][column] = 0F;
}
}
}
}
/// <summary>
/// Multiplies this Matrix object by the matrix specified in the
/// matrix parameter, and in the order specified in the order parameter.
/// </summary>
/// <param name="mulMatrix">The Matrix object by which this Matrix object is to be multiplied.</param>
/// <param name="order">The MatrixOrder enumeration that represents the order of the multiplication. If the specified order is MatrixOrder.Prepend, this Matrix object is multiplied by the specified matrix in a prepended order. If the specified order is MatrixOrder.Append, this Matrix object is multiplied by the specified matrix in an appended order.</param>
/// <param name="setMainMatrix">Set main matrix to be result of multiplication</param>
/// <returns>Matrix multiplication result.</returns>
private float[][] Multiply( float [][] mulMatrix, MatrixOrder order, bool setMainMatrix )
{
// A matrix which is result of matrix multiplication
// of mulMatrix and mainMatrix
float [][] resultMatrix = new float[4][];
resultMatrix[0] = new float[4];
resultMatrix[1] = new float[4];
resultMatrix[2] = new float[4];
resultMatrix[3] = new float[4];
// Row loop
for( int row = 0; row < 4; row ++ )
{
// Column loop
for( int column = 0; column < 4; column ++ )
{
// Initialize element
resultMatrix[row][column ] = 0F;
for( int sumIndx = 0; sumIndx < 4; sumIndx ++ )
{
// Find matrix element
if( order == MatrixOrder.Prepend )
{
// Order of matrix multiplication
resultMatrix[row][column ] += _mainMatrix[row][sumIndx ] * mulMatrix[sumIndx][column];
}
else
{
// Order of matrix multiplication
resultMatrix[row][column] += mulMatrix[row][sumIndx] * _mainMatrix[sumIndx][column];
}
}
}
}
// Set result matrix to be main matrix
if( setMainMatrix )
{
_mainMatrix = resultMatrix;
}
return resultMatrix;
}
/// <summary>
/// Multiplies this Matrix object by the Vector specified in the
/// vector parameter.
/// </summary>
/// <param name="mulVector">The vector object by which this Matrix object is to be multiplied.</param>
/// <param name="resultVector">Vector which is result of matrix and vector multiplication.</param>
private void MultiplyVector( float [] mulVector, ref float [] resultVector )
{
// Row loop
for( int row = 0; row < 3; row ++ )
{
// Initialize element
resultVector[ row ] = 0F;
// Column loop
for( int column = 0; column < 4; column ++ )
{
// Find matrix element
resultVector[ row ] += _mainMatrix[row][column] * mulVector[ column ];
}
}
}
/// <summary>
/// Prepend to this Matrix object a clockwise rotation, around the axis and by the specified angle.
/// </summary>
/// <param name="angle">Angle to rotate</param>
/// <param name="axis">Axis used for rotation</param>
private void Rotate( double angle, RotationAxis axis )
{
float [][] rotationMatrix = new float[4][];
rotationMatrix[0] = new float[4];
rotationMatrix[1] = new float[4];
rotationMatrix[2] = new float[4];
rotationMatrix[3] = new float[4];
// Change angle direction
angle = -1F * angle;
// Matrix initialization
// Row loop
for( int row = 0; row < 4; row ++ )
{
// Column loop
for( int column = 0; column < 4; column ++ )
{
// For initialization: Diagonal matrix elements are equal to one
// and all other elements are equal to zero.
if( row == column )
{
rotationMatrix[row][column] = 1F;
}
else
{
rotationMatrix[row][column] = 0F;
}
}
}
// Rotation about axis
switch( axis )
{
// Rotation about X axis
case RotationAxis.X:
rotationMatrix[1][1] = (float)Math.Cos( angle );
rotationMatrix[1][2] = (float)-Math.Sin( angle );
rotationMatrix[2][1] = (float)Math.Sin( angle );
rotationMatrix[2][2] = (float)Math.Cos( angle );
break;
// Rotation about Y axis
case RotationAxis.Y:
rotationMatrix[0][0] = (float)Math.Cos( angle );
rotationMatrix[0][2] = (float)Math.Sin( angle );
rotationMatrix[2][0] = (float)-Math.Sin( angle );
rotationMatrix[2][2] = (float)Math.Cos( angle );
break;
// Rotation about Z axis
case RotationAxis.Z:
rotationMatrix[0][0] = (float)Math.Cos( angle );
rotationMatrix[0][1] = (float)-Math.Sin( angle );
rotationMatrix[1][0] = (float)Math.Sin( angle );
rotationMatrix[1][1] = (float)Math.Cos( angle );
break;
}
// Rotate Main matrix
Multiply( rotationMatrix, MatrixOrder.Prepend, true );
}
/// <summary>
/// Returns transformed x and y values from x, y and z values
/// and composed main matrix values (All rotations,
/// translations and scaling).
/// </summary>
/// <param name="points">Array of 3D points.</param>
private void GetValues( Point3D [] points )
{
// Create one dimensional matrix (vector)
float [] inputVector = new float[4];
// A vector which is result of matrix and vector multiplication
float [] resultVector = new float[4];
foreach( Point3D point in points )
{
// Fill input vector with x, y and z coordinates
inputVector[0] = point.X;
inputVector[1] = point.Y;
inputVector[2] = point.Z;
inputVector[3] = 1;
// Apply 3D transformations.
MultiplyVector( inputVector, ref resultVector );
// Return x and y coordinates.
point.X = resultVector[0];
point.Y = resultVector[1];
point.Z = resultVector[2];
}
}
/// <summary>
/// Set points for 3D Bar which represents 3D Chart Area.
/// </summary>
/// <param name="dx">Width of the bar 3D.</param>
/// <param name="dy">Height of the bar 3D.</param>
/// <param name="dz">Depth of the bar 3D.</param>
/// <returns>Collection of Points 3D.</returns>
private Point3D [] Set3DBarPoints( float dx, float dy, float dz )
{
Point3D [] points = new Point3D[8];
// ********************************************
// 3D Bar side: Front
// ********************************************
points[0] = new Point3D(-dx/2, -dy/2, dz/2);
points[1] = new Point3D(dx/2, -dy/2, dz/2);
points[2] = new Point3D(dx/2, dy/2, dz/2);
points[3] = new Point3D(-dx/2, dy/2, dz/2);
// ********************************************
// 3D Bar side: Back
// ********************************************
points[4] = new Point3D(-dx/2, -dy/2, -dz/2);
points[5] = new Point3D(dx/2, -dy/2, -dz/2);
points[6] = new Point3D(dx/2, dy/2, -dz/2);
points[7] = new Point3D(-dx/2, dy/2, -dz/2);
return points;
}
#endregion // Private Methods
#region Lighting Methods
/// <summary>
/// Initial Lighting. Use matrix transformation only once
/// for Normal vectors.
/// </summary>
/// <param name="lightStyle">LightStyle Style</param>
internal void InitLight( LightStyle lightStyle )
{
// Set LightStyle Style
this._lightStyle = lightStyle;
// Center of rotation
_lightVectors[0] = new Point3D( 0F, 0F, 0F );
// Front side normal Vector.
_lightVectors[1] = new Point3D( 0F, 0F, 1F );
// Back side normal Vector.
_lightVectors[2] = new Point3D( 0F, 0F, -1F );
// Left side normal Vector.
_lightVectors[3] = new Point3D( -1F, 0F, 0F );
// Right side normal Vector.
_lightVectors[4] = new Point3D( 1F, 0F, 0F );
// Top side normal Vector.
_lightVectors[5] = new Point3D( 0F, -1F, 0F );
// Bottom side normal Vector.
_lightVectors[6] = new Point3D( 0F, 1F, 0F );
// Apply matrix transformations
TransformPoints( _lightVectors, false );
// ********************************************************
// LightStyle Vector and normal vectors have to have same center.
// Shift Normal vectors.
// ********************************************************
// Front Side shift
_lightVectors[1].X -= _lightVectors[0].X;
_lightVectors[1].Y -= _lightVectors[0].Y;
_lightVectors[1].Z -= _lightVectors[0].Z;
// Back Side shift
_lightVectors[2].X -= _lightVectors[0].X;
_lightVectors[2].Y -= _lightVectors[0].Y;
_lightVectors[2].Z -= _lightVectors[0].Z;
// Left Side shift
_lightVectors[3].X -= _lightVectors[0].X;
_lightVectors[3].Y -= _lightVectors[0].Y;
_lightVectors[3].Z -= _lightVectors[0].Z;
// Right Side shift
_lightVectors[4].X -= _lightVectors[0].X;
_lightVectors[4].Y -= _lightVectors[0].Y;
_lightVectors[4].Z -= _lightVectors[0].Z;
// Top Side shift
_lightVectors[5].X -= _lightVectors[0].X;
_lightVectors[5].Y -= _lightVectors[0].Y;
_lightVectors[5].Z -= _lightVectors[0].Z;
// Bottom Side shift
_lightVectors[6].X -= _lightVectors[0].X;
_lightVectors[6].Y -= _lightVectors[0].Y;
_lightVectors[6].Z -= _lightVectors[0].Z;
}
/// <summary>
/// Return intensity of lightStyle for 3D Cube. There are tree types of lights: None,
/// Simplistic and Realistic. None Style have same lightStyle intensity on
/// all polygons. Normal vector doesn<73>t have influence on this type
/// of lighting. Simplistic style have lightStyle source, which is
/// rotated together with scene. Realistic lighting have fixed lightStyle
/// source and intensity of lightStyle is change when scene is rotated.
/// </summary>
/// <param name="surfaceColor">Color used for polygons without lighting</param>
/// <param name="front">Color corrected with intensity of lightStyle for Front side of the 3D Rectangle</param>
/// <param name="back">Color corrected with intensity of lightStyle for Back side of the 3D Rectangle</param>
/// <param name="left">Color corrected with intensity of lightStyle for Left side of the 3D Rectangle</param>
/// <param name="right">Color corrected with intensity of lightStyle for Right side of the 3D Rectangle</param>
/// <param name="top">Color corrected with intensity of lightStyle for Top side of the 3D Rectangle</param>
/// <param name="bottom">Color corrected with intensity of lightStyle for Bottom side of the 3D Rectangle</param>
internal void GetLight( Color surfaceColor, out Color front, out Color back, out Color left, out Color right, out Color top, out Color bottom )
{
switch( _lightStyle )
{
// LightStyle style is None
case LightStyle.None:
{
front = surfaceColor;
left = surfaceColor;
top = surfaceColor;
back = surfaceColor;
right = surfaceColor;
bottom = surfaceColor;
break;
}
// LightStyle style is Simplistic
case LightStyle.Simplistic:
{
front = surfaceColor;
left = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.25);
top = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.15);
back = surfaceColor;
right = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.25);
bottom = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.15);
break;
}
// LightStyle style is Realistic
default:
{
// For Right Axis angle Realistic lightStyle should be different
if( _rightAngleAxis )
{
// LightStyle source Vector
Point3D lightSource = new Point3D( 0F, 0F, -1F );
Point3D [] rightPRpoints = new Point3D[1];
rightPRpoints[0] = lightSource;
RightAngleProjection(rightPRpoints);
// ******************************************************************
// Color correction. Angle between Normal vector of polygon and
// vector of lightStyle source is used.
// ******************************************************************
if( this._angleY >= 45 || this._angleY <= -45 )
{
front = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, GetAngle(lightSource,_lightVectors[1])/Math.PI );
back = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, GetAngle(lightSource,_lightVectors[2])/Math.PI );
left = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0 );
right = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0 );
}
else
{
front = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0 );
back = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 1 );
left = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, GetAngle(lightSource,_lightVectors[3])/Math.PI );
right = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, GetAngle(lightSource,_lightVectors[4])/Math.PI );
}
top = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, GetAngle(lightSource,_lightVectors[5])/Math.PI );
bottom = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, GetAngle(lightSource,_lightVectors[6])/Math.PI );
}
else
{
// LightStyle source Vector
Point3D lightSource = new Point3D( 0F, 0F, 1F );
// ******************************************************************
// Color correction. Angle between Normal vector of polygon and
// vector of lightStyle source is used.
// ******************************************************************
front = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[1])/Math.PI );
back = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[2])/Math.PI );
left = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[3])/Math.PI );
right = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[4])/Math.PI );
top = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[5])/Math.PI );
bottom = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[6])/Math.PI );
}
break;
}
}
}
/// <summary>
/// Return intensity of lightStyle for Polygons. There are tree types of lights: None,
/// Simplistic and Realistic. None Style have same lightStyle intensity on
/// all polygons. Normal vector doesn<73>t have influence on this type
/// of lighting. Simplistic style have lightStyle source, which is
/// rotated together with scene. Realistic lighting have fixed lightStyle
/// source and intensity of lightStyle is change when scene is rotated.
/// </summary>
/// <param name="points">Points of the polygon</param>
/// <param name="surfaceColor">Color used for polygons without lighting</param>
/// <param name="visiblePolygon">This flag gets information if polygon is visible or not.</param>
/// <param name="rotation">Y angle ( from -90 to 90 ) Should be used width switchSeriesOrder to get from -180 to 180</param>
/// <param name="surfaceName">Used for lighting of front - back and left - right sides</param>
/// <param name="switchSeriesOrder">Used to calculate real y angle</param>
/// <returns>Color corrected with intensity of lightStyle</returns>
internal Color GetPolygonLight(Point3D[] points, Color surfaceColor, bool visiblePolygon, float rotation, SurfaceNames surfaceName, bool switchSeriesOrder)
{
// Corrected color
Color color = surfaceColor;
// Direction of lightStyle source
Point3D lightSource;
lightSource = new Point3D( 0F, 0F, 1F );
// There are tree different lightStyle styles: None, Simplistic and realistic.
switch( _lightStyle )
{
// LightStyle style is None
case LightStyle.None:
{
// Use same color
break;
}
// LightStyle style is Simplistic
case LightStyle.Simplistic:
{
// Find two vectors of polygon
Point3D firstVector = new Point3D();
firstVector.X = points[0].X - points[1].X;
firstVector.Y = points[0].Y - points[1].Y;
firstVector.Z = points[0].Z - points[1].Z;
Point3D secondVector = new Point3D();
secondVector.X = points[2].X - points[1].X;
secondVector.Y = points[2].Y - points[1].Y;
secondVector.Z = points[2].Z - points[1].Z;
// Find Normal vector for Polygon
Point3D normalVector = new Point3D();
normalVector.X = firstVector.Y * secondVector.Z - firstVector.Z * secondVector.Y;
normalVector.Y = firstVector.Z * secondVector.X - firstVector.X * secondVector.Z;
normalVector.Z = firstVector.X * secondVector.Y - firstVector.Y * secondVector.X;
// Polygon is left side ( like side of area chart )
if( surfaceName == SurfaceNames.Left )
{
color = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.15);
}
// Polygon is right side ( like side of area chart )
else if( surfaceName == SurfaceNames.Right )
{
color = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.15);
}
// Polygon is front side ( like side of area chart )
else if( surfaceName == SurfaceNames.Front )
{
color = surfaceColor;
}
// Polygon is back side ( like side of area chart )
else if( surfaceName == SurfaceNames.Back )
{
color = surfaceColor;
}
// Polygon has angle with bottom side ( Line chart or top of area chart )
else
{
float angleLeft;
float angleRight;
// Find angles between lightStyle and polygon for different y-axis angles.
if( switchSeriesOrder )
{
if (rotation > 0 && rotation <= 90)
{
angleLeft = GetAngle( normalVector, _lightVectors[3] );
angleRight = GetAngle( normalVector, _lightVectors[4] );
}
else
{
angleLeft = GetAngle( normalVector, _lightVectors[4] );
angleRight = GetAngle( normalVector, _lightVectors[3] );
}
}
else
{
if (rotation > 0 && rotation <= 90)
{
angleLeft = GetAngle( normalVector, _lightVectors[4] );
angleRight = GetAngle( normalVector, _lightVectors[3] );
}
else
{
angleLeft = GetAngle( normalVector, _lightVectors[3] );
angleRight = GetAngle( normalVector, _lightVectors[4] );
}
}
if( Math.Abs( angleLeft - angleRight ) < 0.01 )
{
color = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.25);
}
else if( angleLeft < angleRight )
{
color = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.25);
}
else
{
color = ChartGraphics.GetGradientColor( surfaceColor, Color.Black, 0.15);
}
}
break;
}
// LightStyle style is Realistic
default:
{
// Find two vectors of polygon
Point3D firstVector = new Point3D();
firstVector.X = points[0].X - points[1].X;
firstVector.Y = points[0].Y - points[1].Y;
firstVector.Z = points[0].Z - points[1].Z;
Point3D secondVector = new Point3D();
secondVector.X = points[2].X - points[1].X;
secondVector.Y = points[2].Y - points[1].Y;
secondVector.Z = points[2].Z - points[1].Z;
// Find Normal vector for Polygon
Point3D normalVector = new Point3D();
normalVector.X = firstVector.Y * secondVector.Z - firstVector.Z * secondVector.Y;
normalVector.Y = firstVector.Z * secondVector.X - firstVector.X * secondVector.Z;
normalVector.Z = firstVector.X * secondVector.Y - firstVector.Y * secondVector.X;
// ******************************************************************
// Color correction. Angle between Normal vector of polygon and
// vector of lightStyle source is used.
// ******************************************************************
if( surfaceName == SurfaceNames.Front )
{
lightSource.Z *= -1;
color = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[2])/Math.PI );
}
else if( surfaceName == SurfaceNames.Back )
{
lightSource.Z *= -1;
color = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,_lightVectors[1])/Math.PI );
}
else
{
if( visiblePolygon )
{
lightSource.Z *= -1;
}
color = GetBrightGradientColor( surfaceColor, GetAngle(lightSource,normalVector)/Math.PI );
}
break;
}
}
return color;
}
/// <summary>
/// This method creates gradien color with brightnes.
/// </summary>
/// <param name="beginColor">Start color for gradient.</param>
/// <param name="position">Position used between Start and end color.</param>
/// <returns>Calculated Gradient color from gradient position</returns>
private Color GetBrightGradientColor( Color beginColor, double position )
{
position = position * 2;
double brightness = 0.5;
if( position < brightness )
{
return ChartGraphics.GetGradientColor( Color.FromArgb(beginColor.A,255,255,255), beginColor, 1 - brightness + position );
}
else if( -brightness + position < 1 )
{
return ChartGraphics.GetGradientColor( beginColor, Color.Black, -brightness + position );
}
else
{
return Color.FromArgb( beginColor.A, 0, 0, 0 );
}
}
/// <summary>
/// Returns the angle between two 3D vectors (a and b);
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second Vector</param>
/// <returns>Angle between vectors</returns>
private float GetAngle(Point3D a,Point3D b)
{
double angle;
angle = Math.Acos( ( a.X * b.X + a.Y * b.Y + a.Z * b.Z ) / ( Math.Sqrt( a.X * a.X + a.Y * a.Y + a.Z * a.Z ) * Math.Sqrt( b.X * b.X + b.Y * b.Y + b.Z * b.Z ) ) );
return (float)angle;
}
#endregion
}
}