You've already forked PythonLib
mirror of
https://github.com/lifebottle/PythonLib.git
synced 2026-02-13 15:25:50 -08:00
Merge pull request #109 from lifebottle/pnvnd-patch-1
Create wav_to_txt.py
This commit is contained in:
61
wav_to_txt.py
Normal file
61
wav_to_txt.py
Normal file
@@ -0,0 +1,61 @@
|
||||
# Usage with IDLE:
|
||||
# path = "path/to/audio.wav"
|
||||
# print("\nFull text:", get_large_audio_transcription_on_silence(path))
|
||||
|
||||
# importing libraries
|
||||
import speech_recognition as sr
|
||||
import os
|
||||
from pydub import AudioSegment
|
||||
from pydub.silence import split_on_silence
|
||||
|
||||
# create a speech recognition object
|
||||
r = sr.Recognizer()
|
||||
|
||||
# a function to recognize speech in the audio file
|
||||
# so that we don't repeat ourselves in in other functions
|
||||
def transcribe_audio(path):
|
||||
# use the audio file as the audio source
|
||||
with sr.AudioFile(path) as source:
|
||||
audio_listened = r.record(source)
|
||||
# try converting it to text
|
||||
text = r.recognize_google(audio_listened, language='ja-JP')
|
||||
return text
|
||||
|
||||
# a function that splits the audio file into chunks on silence
|
||||
# and applies speech recognition
|
||||
def get_large_audio_transcription_on_silence(path):
|
||||
"""Splitting the large audio file into chunks
|
||||
and apply speech recognition on each of these chunks"""
|
||||
# open the audio file using pydub
|
||||
sound = AudioSegment.from_file(path)
|
||||
# split audio sound where silence is 500 miliseconds or more and get chunks
|
||||
chunks = split_on_silence(sound,
|
||||
# experiment with this value for your target audio file
|
||||
min_silence_len = 500,
|
||||
# adjust this per requirement
|
||||
silence_thresh = sound.dBFS-14,
|
||||
# keep the silence for 1 second, adjustable as well
|
||||
keep_silence=500,
|
||||
)
|
||||
folder_name = "audio-chunks"
|
||||
# create a directory to store the audio chunks
|
||||
if not os.path.isdir(folder_name):
|
||||
os.mkdir(folder_name)
|
||||
whole_text = ""
|
||||
# process each chunk
|
||||
for i, audio_chunk in enumerate(chunks, start=1):
|
||||
# export audio chunk and save it in
|
||||
# the `folder_name` directory.
|
||||
chunk_filename = os.path.join(folder_name, f"chunk{i}.wav")
|
||||
audio_chunk.export(chunk_filename, format="wav")
|
||||
# recognize the chunk
|
||||
try:
|
||||
text = transcribe_audio(chunk_filename)
|
||||
except sr.UnknownValueError as e:
|
||||
print("Error:", str(e))
|
||||
else:
|
||||
text = f"{text.capitalize()}. "
|
||||
print(chunk_filename, ":", text)
|
||||
whole_text += text
|
||||
# return the text for all chunks detected
|
||||
return whole_text
|
||||
Reference in New Issue
Block a user