This is based on Josef's "Btrfs: turbo charge fsync".
The current btrfs checks if an inode is in log by comparing
root's last_log_commit to inode's last_sub_trans[2].
But the problem is that this root->last_log_commit is shared among
inodes.
Say we have N inodes to be logged, after the first inode,
root's last_log_commit is updated and the N-1 remained files will
be skipped.
This fixes the bug by keeping a local copy of root's last_log_commit
inside each inode and this local copy will be maintained itself.
[1]: we regard each log transaction as a subset of btrfs's transaction,
i.e. sub_trans
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
This is based on Josef's "Btrfs: turbo charge fsync".
The above Josef's patch performs very good in random sync write test,
because we won't have too much extents to merge.
However, it does not performs good on the test:
dd if=/dev/zero of=foobar bs=4k count=12500 oflag=sync
The reason is when we do sequencial sync write, we need to merge the
current extent just with the previous one, so that we can get accumulated
extents to log:
A(4k) --> AA(8k) --> AAA(12k) --> AAAA(16k) ...
So we'll have to flush more and more checksum into log tree, which is the
bottleneck according to my tests.
But we can avoid this by telling fsync the real extents that are needed
to be logged.
With this, I did the above dd sync write test (size=50m),
w/o (orig) w/ (josef's) w/ (this)
SATA 104KB/s 109KB/s 121KB/s
ramdisk 1.5MB/s 1.5MB/s 10.7MB/s (613%)
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
We will stop and restart a transaction every time we move to a different leaf
when truncating a file. This is for enospc reasons, but really we could
probably get away with doing this a little better by actually working until we
hit an ENOSPC. So add a ->failfast flag to the block_rsv and set it when we do
truncates which will fail as soon as the block rsv runs out of space, and then
at that point we can stop and restart the transaction and refill the block rsv
and carry on. This will make rm'ing of a file with lots of extents a bit
faster. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This is based on Josef's "Btrfs: turbo charge fsync".
We should cleanup those extents after we've finished logging inode,
otherwise we may do redundant work on them.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
I hit this a couple times while working on my fsync patch (all my bugs, not
normal operation), but with my new stuff we could have new errors from cases
I have not encountered, so instead of BUG()'ing we should be WARN()'ing so
that we are notified there is a problem but the user doesn't lose their
data. We can easily commit the transaction in the case that the tree
logging fails and still be fine, so let's try and be as nice to the user as
possible. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
At least for the vm workload. Currently on fsync we will
1) Truncate all items in the log tree for the given inode if they exist
and
2) Copy all items for a given inode into the log
The problem with this is that for things like VMs you can have lots of
extents from the fragmented writing behavior, and worst yet you may have
only modified a few extents, not the entire thing. This patch fixes this
problem by tracking which transid modified our extent, and then when we do
the tree logging we find all of the extents we've modified in our current
transaction, sort them and commit them. We also only truncate up to the
xattrs of the inode and copy that stuff in normally, and then just drop any
extents in the range we have that exist in the log already. Here are some
numbers of a 50 meg fio job that does random writes and fsync()s after every
write
Original Patched
SATA drive 82KB/s 140KB/s
Fusion drive 431KB/s 2532KB/s
So around 2-6 times faster depending on your hardware. There are a few
corner cases, for example if you truncate at all we have to do it the old
way since there is no way to be sure what is in the log is ok. This
probably could be done smarter, but if you write-fsync-truncate-write-fsync
you deserve what you get. All this work is in RAM of course so if your
inode gets evicted from cache and you read it in and fsync it we'll do it
the slow way if we are still in the same transaction that we last modified
the inode in.
The biggest cool part of this is that it requires no changes to the recovery
code, so if you fsync with this patch and crash and load an old kernel, it
will run the recovery and be a-ok. I have tested this pretty thoroughly
with an fsync tester and everything comes back fine, as well as xfstests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
While working on my fsync patch my fsync tester kept hitting mismatching
md5sums when I would randomly write to a prealloc'ed region, syncfs() and
then write to the prealloced region some more and then fsync() and then
immediately reboot. This is because the tree logging code will skip writing
csums for file extents who's generation is less than the current running
transaction. When we mark extents as written we haven't been updating their
generation so they were always being skipped. This wouldn't happen if you
were to preallocate and then write in the same transaction, but if you for
example prealloced a VM you could definitely run into this problem. This
patch makes my fsync tester happy again. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Swinging this pendulum back the other way. We've been allocating chunks up
to 2% of the disk no matter how much we actually have allocated. So instead
fix this calculation to only allocate chunks if we have more than 80% of the
space available allocated. Please test this as it will likely cause all
sorts of ENOSPC problems to pop up suddenly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is a completely impossible situation to hit where you can preallocate
a file, fsync it, write into the preallocated region, have the transaction
commit twice and then fsync and then immediately lose power and lose all of
the contents of the write. This patch fixes this just so I feel better
about the situation and because it is lightweight, we just update the
last_trans when we finish an ordered IO and we don't update the inode
itself. This way we are completely safe and I feel better. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The btrfs send code was assuming the offset of the file item into the
extent translated to bytes on disk. If we're compressed, this isn't
true, and so it was off into extents owned by other files.
It was also improperly handling inline extents. This solves a crash
where we may have gone past the end of the file extent item by not
testing early enough for an inline extent. It also solves problems
where we have a whole between the end of the inline item and the start
of the full extent.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We can't do the deleted/reused logic for top/root inodes as it would
create a stream that tries to delete and recreate the root dir.
Reported-by: Alex Lyakas <alex.bolshoy.btrfs@gmail.com>
Signed-off-by: Alexander Block <ablock84@googlemail.com>
The previous check was working fine, but this check should be
easier to read. Also, we could theoritically have some exotic
bugs with the previous checks.
Signed-off-by: Alexander Block <ablock84@googlemail.com>
Updating send_progress in process_recorded_refs was not correct.
It got updated too early in the cur_inode_new_gen case.
Reported-by: Alex Lyakas <alex.bolshoy.btrfs@gmail.com>
Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Alexander Block <ablock84@googlemail.com>
Btrfs send/receive uses the aux field to store inode numbers. On
32 bit machines this may become a problem.
Also fix all users of ulist_add and ulist_add_merged.
Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Alexander Block <ablock84@googlemail.com>
We can't easily use the index of the radix tree for inums as the
radix tree uses 32bit indexes on 32bit kernels. For 32bit kernels,
we now use the lower 32bit of the inum as index and an additional
list to store multiple entries per radix tree entry.
Reported-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Alexander Block <ablock84@googlemail.com>
When everything is done, name_cache_free is called which however
forgot to call kfree on the cache entries.
Signed-off-by: Alexander Block <ablock84@googlemail.com>