The following method of CPU hotplug callback registration is not safe
due to the possibility of an ABBA deadlock involving the cpu_add_remove_lock
and the cpu_hotplug.lock.
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
The deadlock is shown below:
CPU 0 CPU 1
----- -----
Acquire cpu_hotplug.lock
[via get_online_cpus()]
CPU online/offline operation
takes cpu_add_remove_lock
[via cpu_maps_update_begin()]
Try to acquire
cpu_add_remove_lock
[via register_cpu_notifier()]
CPU online/offline operation
tries to acquire cpu_hotplug.lock
[via cpu_hotplug_begin()]
*** DEADLOCK! ***
The problem here is that callback registration takes the locks in one order
whereas the CPU hotplug operations take the same locks in the opposite order.
To avoid this issue and to provide a race-free method to register CPU hotplug
callbacks (along with initialization of already online CPUs), introduce new
variants of the callback registration APIs that simply register the callbacks
without holding the cpu_add_remove_lock during the registration. That way,
we can avoid the ABBA scenario. However, we will need to hold the
cpu_add_remove_lock throughout the entire critical section, to protect updates
to the callback/notifier chain.
This can be achieved by writing the callback registration code as follows:
cpu_maps_update_begin(); [ or cpu_notifier_register_begin(); see below ]
for_each_online_cpu(cpu)
init_cpu(cpu);
/* This doesn't take the cpu_add_remove_lock */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_maps_update_done(); [ or cpu_notifier_register_done(); see below ]
Note that we can't use get_online_cpus() here instead of cpu_maps_update_begin()
because the cpu_hotplug.lock is dropped during the invocation of CPU_POST_DEAD
notifiers, and hence get_online_cpus() cannot provide the necessary
synchronization to protect the callback/notifier chains against concurrent
reads and writes. On the other hand, since the cpu_add_remove_lock protects
the entire hotplug operation (including CPU_POST_DEAD), we can use
cpu_maps_update_begin/done() to guarantee proper synchronization.
Also, since cpu_maps_update_begin/done() is like a super-set of
get/put_online_cpus(), the former naturally protects the critical sections
from concurrent hotplug operations.
Since the names cpu_maps_update_begin/done() don't make much sense in CPU
hotplug callback registration scenarios, we'll introduce new APIs named
cpu_notifier_register_begin/done() and map them to cpu_maps_update_begin/done().
In summary, introduce the lockless variants of un/register_cpu_notifier() and
also export the cpu_notifier_register_begin/done() APIs for use by modules.
This way, we provide a race-free way to register hotplug callbacks as well as
perform initialization for the CPUs that are already online.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
(cherry picked from commit 93ae4f978c)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Commit a0c516cbfc ("zram: don't grab mutex in zram_slot_free_noity")
introduced free request pending code to avoid scheduling by mutex under
spinlock and it was a mess which made code lenghty and increased
overhead.
Now, we don't need zram->lock any more to free slot so this patch
reverts it and then, tb_lock should protect it.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit f614a9f48d)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Currently, the zram table is protected by zram->lock but it's rather
coarse-grained lock and it makes hard for scalibility.
Let's use own rwlock instead of depending on zram->lock. This patch
adds new locking so obviously, it would make slow but this patch is just
prepartion for removing coarse-grained rw_semaphore(ie, zram->lock)
which is hurdle about zram scalability.
Final patch in this patchset series will remove the lock from read-path
and change rw_semaphore with mutex in write path. With bonus, we could
drop pending slot free mess in next patch.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit 92967471b6)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Sergey reported we don't need to handle pending free request every I/O
so that this patch removes it in read path while we remain it in write
path.
Let's consider below example.
Swap subsystem ask to zram "A" block free by swap_slot_free_notify but
zram had been pended it without real freeing. Swap subsystem allocates
"A" block for new data but request pended for a long time just handled
and zram blindly free new data on the "A" block. :(
That's why we couldn't remove handle pending free request right before
zram-write.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit 9b353db16d)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Zram has lived in staging for a LONG LONG time and have been
fixed/improved by many contributors so code is clean and stable now. Of
course, there are lots of product using zram in real practice.
The major TV companys have used zram as swap since two years ago and
recently our production team released android smart phone with zram
which is used as swap, too and recently Android Kitkat start to use zram
for small memory smart phone. And there was a report Google released
their ChromeOS with zram, too and cyanogenmod have been used zram long
time ago. And I heard some disto have used zram block device for tmpfs.
In addition, I saw many report from many other peoples. For example,
Lubuntu start to use it.
The benefit of zram is very clear. With my experience, one of the
benefit was to remove jitter of video application with backgroud memory
pressure. It would be effect of efficient memory usage by compression
but more issue is whether swap is there or not in the system. Recent
mobile platforms have used JAVA so there are many anonymous pages. But
embedded system normally are reluctant to use eMMC or SDCard as swap
because there is wear-leveling and latency issues so if we do not use
swap, it means we can't reclaim anoymous pages and at last, we could
encounter OOM kill. :(
Although we have real storage as swap, it was a problem, too. Because
it sometime ends up making system very unresponsible caused by slow swap
storage performance.
Quote from Luigi on Google
"Since Chrome OS was mentioned: the main reason why we don't use swap
to a disk (rotating or SSD) is because it doesn't degrade gracefully
and leads to a bad interactive experience. Generally we prefer to
manage RAM at a higher level, by transparently killing and restarting
processes. But we noticed that zram is fast enough to be competitive
with the latter, and it lets us make more efficient use of the
available RAM. " and he announced.
http://www.spinics.net/lists/linux-mm/msg57717.html
Other uses case is to use zram for block device. Zram is block device
so anyone can format the block device and mount on it so some guys on
the internet start zram as /var/tmp.
http://forums.gentoo.org/viewtopic-t-838198-start-0.html
Let's promote zram and enhance/maintain it instead of removing.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit cd67e10ac6)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
This patch moves zsmalloc under mm directory.
Before that, description will explain why we have needed custom
allocator.
Zsmalloc is a new slab-based memory allocator for storing compressed
pages. It is designed for low fragmentation and high allocation success
rate on large object, but <= PAGE_SIZE allocations.
zsmalloc differs from the kernel slab allocator in two primary ways to
achieve these design goals.
zsmalloc never requires high order page allocations to back slabs, or
"size classes" in zsmalloc terms. Instead it allows multiple
single-order pages to be stitched together into a "zspage" which backs
the slab. This allows for higher allocation success rate under memory
pressure.
Also, zsmalloc allows objects to span page boundaries within the zspage.
This allows for lower fragmentation than could be had with the kernel
slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the
kernel slab allocator, if a page compresses to 60% of it original size,
the memory savings gained through compression is lost in fragmentation
because another object of the same size can't be stored in the leftover
space.
This ability to span pages results in zsmalloc allocations not being
directly addressable by the user. The user is given an
non-dereferencable handle in response to an allocation request. That
handle must be mapped, using zs_map_object(), which returns a pointer to
the mapped region that can be used. The mapping is necessary since the
object data may reside in two different noncontigious pages.
The zsmalloc fulfills the allocation needs for zram perfectly
[sjenning@linux.vnet.ibm.com: borrow Seth's quote]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit bcf1647d08)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Conflicts:
drivers/staging/zsmalloc/Kconfig
mm/Kconfig
mm/Makefile
Conflicts solutions:
only move zsmalloc to mm/, skip unrelated cma/zbud/zswap
As suggested by Minchan Kim and Jerome Marchand "The code in reset_store
get the block device (bdget_disk()) but it does not put it (bdput()) when
it's done using it. The usage count is therefore incremented but never
decremented."
This patch also puts bdput() for all error cases.
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit 1b672224d1)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
This patch fixes the bug in reset_store caused by accessing NULL pointer.
The bdev gets its value from bdget_disk() which could fail when memory
pressure is severe and hence can return NULL because allocation of
inode in bdget could fail.
Hence, this patch introduces a check for bdev to prevent reference to a
NULL pointer in the later part of the code. It also removes unnecessary
check of bdev for fsync_bdev().
Cc: stable <stable@vger.kernel.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit 46a51c8021)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
This patch fixes the following Smatch warning in zram_drv.c-
drivers/staging/zram/zram_drv.c:899
destroy_device() warn: variable dereferenced before check 'zram->disk' (see line 896)
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit 59d3fe5404)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
This reverts commit c70bda992c.
It's incorrect, Kay writes:
Please just remove it. "devname" is meant to be used for
single-instance devices with a static dev_t, never for things
like zramX.
It will not do anything useful here, it does nothing really
without a statically assigned dev_t, and it should not be used
for devices of this kind anyway.
Reported-by: Tom Gundersen <teg@jklm.no>
Reported-by: Kay Sievers <kay@vrfy.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit f0f65a95de)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
[1] introduced down_write in zram_slot_free_notify to prevent race
between zram_slot_free_notify and zram_bvec_[read|write]. The race
could happen if somebody who has right permission to open swap device
is reading swap device while it is used by swap in parallel.
However, zram_slot_free_notify is called with holding spin_lock of
swap layer so we shouldn't avoid holing mutex. Otherwise, lockdep
warns it.
This patch adds new list to handle free slot and workqueue
so zram_slot_free_notify just registers slot index to be freed and
registers the request to workqueue. If workqueue is expired,
it holds mutex_lock so there is no problem any more.
If any I/O is issued, zram handles pending slot-free request
caused by zram_slot_free_notify right before handling issued
request because workqueue wouldn't be expired yet so zram I/O
request handling function can miss it.
Lastly, when zram is reset, flush_work could handle all of pending
free request so we shouldn't have memory leak.
NOTE: If zram_slot_free_notify's kmalloc with GFP_ATOMIC would be
failed, the slot will be freed when next write I/O write the slot.
[1] [57ab0485, zram: use zram->lock to protect zram_free_page()
in swap free notify path]
* from v2
* refactoring
* from v1
* totally redesign
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit a0c516cbfc)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
[1] tried to fix invalid memory access on zram->disk but it didn't
fix properly because get_disk failed during module exit path.
Actually, we don't need to reset zram->disk's capacity to zero
in module exit path so that this patch introduces new argument
"reset_capacity" on zram_reset_divice and it only reset it when
reset_store is called.
[1] 6030ea9b, zram: avoid invalid memory access in zram_exit()
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit 2b86ab9cc2)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
In function zram_bvec_write(), previous data at the index is
already freed by function zram_free_page().
When failed to compress or zs_malloc, there is no way to restore old data.
Therefore, free previous data when it's about to update.
Also, no need to check whether table is not empty outside of
function zram_free_page(), because the function properly checks inside.
Signed-off-by: Sunghan Suh <sunghan.suh@samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit f40ac2ae1b)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Greg spotted that said driver is not subscribing to the automagic
mechanism of auto-loading if a user tries to open /dev/zram.
This fixes it.
CC: Minchan Kim <minchan@kernel.org>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit c70bda992c)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Move zram sysfs code to zram drv and remove zram_sysfs.c
file. This gives ability to make static a number of previously
exported zram functions, used from zram sysfs, e.g. internal zram
zram_meta_alloc/free(). We also can drop zram_drv wrapper
functions, used from zram sysfs:
e.g. zram_reset_device()/__zram_reset_device() pair.
v2: as suggested by Greg K-H, move MODULE description to the
bottom of the file.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit 9b3bb7abcd)
Signed-off-by: Alex Shi <alex.shi@linaro.org>