mirror of
https://github.com/armbian/linux.git
synced 2026-01-06 10:13:00 -08:00
Merge branch 'linus' into perf/urgent, to pick up the upstream merged bits
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
@@ -55,12 +55,12 @@ Description: Interface for making ib_srp connect to a new target.
|
||||
only safe with partial memory descriptor list support enabled
|
||||
(allow_ext_sg=1).
|
||||
* comp_vector, a number in the range 0..n-1 specifying the
|
||||
MSI-X completion vector. Some HCA's allocate multiple (n)
|
||||
MSI-X vectors per HCA port. If the IRQ affinity masks of
|
||||
these interrupts have been configured such that each MSI-X
|
||||
interrupt is handled by a different CPU then the comp_vector
|
||||
parameter can be used to spread the SRP completion workload
|
||||
over multiple CPU's.
|
||||
MSI-X completion vector of the first RDMA channel. Some
|
||||
HCA's allocate multiple (n) MSI-X vectors per HCA port. If
|
||||
the IRQ affinity masks of these interrupts have been
|
||||
configured such that each MSI-X interrupt is handled by a
|
||||
different CPU then the comp_vector parameter can be used to
|
||||
spread the SRP completion workload over multiple CPU's.
|
||||
* tl_retry_count, a number in the range 2..7 specifying the
|
||||
IB RC retry count.
|
||||
* queue_size, the maximum number of commands that the
|
||||
@@ -88,6 +88,13 @@ Description: Whether ib_srp is allowed to include a partial memory
|
||||
descriptor list in an SRP_CMD when communicating with an SRP
|
||||
target.
|
||||
|
||||
What: /sys/class/scsi_host/host<n>/ch_count
|
||||
Date: April 1, 2015
|
||||
KernelVersion: 3.19
|
||||
Contact: linux-rdma@vger.kernel.org
|
||||
Description: Number of RDMA channels used for communication with the SRP
|
||||
target.
|
||||
|
||||
What: /sys/class/scsi_host/host<n>/cmd_sg_entries
|
||||
Date: May 19, 2011
|
||||
KernelVersion: 2.6.39
|
||||
@@ -95,6 +102,12 @@ Contact: linux-rdma@vger.kernel.org
|
||||
Description: Maximum number of data buffer descriptors that may be sent to
|
||||
the target in a single SRP_CMD request.
|
||||
|
||||
What: /sys/class/scsi_host/host<n>/comp_vector
|
||||
Date: September 2, 2013
|
||||
KernelVersion: 3.11
|
||||
Contact: linux-rdma@vger.kernel.org
|
||||
Description: Completion vector used for the first RDMA channel.
|
||||
|
||||
What: /sys/class/scsi_host/host<n>/dgid
|
||||
Date: June 17, 2006
|
||||
KernelVersion: 2.6.17
|
||||
|
||||
@@ -36,7 +36,7 @@ o How can the updater tell when a grace period has completed
|
||||
executed in user mode, or executed in the idle loop, we can
|
||||
safely free up that item.
|
||||
|
||||
Preemptible variants of RCU (CONFIG_TREE_PREEMPT_RCU) get the
|
||||
Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
|
||||
same effect, but require that the readers manipulate CPU-local
|
||||
counters. These counters allow limited types of blocking within
|
||||
RCU read-side critical sections. SRCU also uses CPU-local
|
||||
@@ -81,7 +81,7 @@ o I hear that RCU is patented? What is with that?
|
||||
o I hear that RCU needs work in order to support realtime kernels?
|
||||
|
||||
This work is largely completed. Realtime-friendly RCU can be
|
||||
enabled via the CONFIG_TREE_PREEMPT_RCU kernel configuration
|
||||
enabled via the CONFIG_PREEMPT_RCU kernel configuration
|
||||
parameter. However, work is in progress for enabling priority
|
||||
boosting of preempted RCU read-side critical sections. This is
|
||||
needed if you have CPU-bound realtime threads.
|
||||
|
||||
@@ -26,12 +26,6 @@ CONFIG_RCU_CPU_STALL_TIMEOUT
|
||||
Stall-warning messages may be enabled and disabled completely via
|
||||
/sys/module/rcupdate/parameters/rcu_cpu_stall_suppress.
|
||||
|
||||
CONFIG_RCU_CPU_STALL_VERBOSE
|
||||
|
||||
This kernel configuration parameter causes the stall warning to
|
||||
also dump the stacks of any tasks that are blocking the current
|
||||
RCU-preempt grace period.
|
||||
|
||||
CONFIG_RCU_CPU_STALL_INFO
|
||||
|
||||
This kernel configuration parameter causes the stall warning to
|
||||
@@ -77,7 +71,7 @@ This message indicates that CPU 5 detected that it was causing a stall,
|
||||
and that the stall was affecting RCU-sched. This message will normally be
|
||||
followed by a stack dump of the offending CPU. On TREE_RCU kernel builds,
|
||||
RCU and RCU-sched are implemented by the same underlying mechanism,
|
||||
while on TREE_PREEMPT_RCU kernel builds, RCU is instead implemented
|
||||
while on PREEMPT_RCU kernel builds, RCU is instead implemented
|
||||
by rcu_preempt_state.
|
||||
|
||||
On the other hand, if the offending CPU fails to print out a stall-warning
|
||||
@@ -89,7 +83,7 @@ INFO: rcu_bh_state detected stalls on CPUs/tasks: { 3 5 } (detected by 2, 2502 j
|
||||
This message indicates that CPU 2 detected that CPUs 3 and 5 were both
|
||||
causing stalls, and that the stall was affecting RCU-bh. This message
|
||||
will normally be followed by stack dumps for each CPU. Please note that
|
||||
TREE_PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
|
||||
PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
|
||||
and that the tasks will be indicated by PID, for example, "P3421".
|
||||
It is even possible for a rcu_preempt_state stall to be caused by both
|
||||
CPUs -and- tasks, in which case the offending CPUs and tasks will all
|
||||
@@ -205,10 +199,10 @@ o A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
|
||||
o A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
|
||||
is running at a higher priority than the RCU softirq threads.
|
||||
This will prevent RCU callbacks from ever being invoked,
|
||||
and in a CONFIG_TREE_PREEMPT_RCU kernel will further prevent
|
||||
and in a CONFIG_PREEMPT_RCU kernel will further prevent
|
||||
RCU grace periods from ever completing. Either way, the
|
||||
system will eventually run out of memory and hang. In the
|
||||
CONFIG_TREE_PREEMPT_RCU case, you might see stall-warning
|
||||
CONFIG_PREEMPT_RCU case, you might see stall-warning
|
||||
messages.
|
||||
|
||||
o A hardware or software issue shuts off the scheduler-clock
|
||||
|
||||
@@ -8,7 +8,7 @@ The following sections describe the debugfs files and formats, first
|
||||
for rcutree and next for rcutiny.
|
||||
|
||||
|
||||
CONFIG_TREE_RCU and CONFIG_TREE_PREEMPT_RCU debugfs Files and Formats
|
||||
CONFIG_TREE_RCU and CONFIG_PREEMPT_RCU debugfs Files and Formats
|
||||
|
||||
These implementations of RCU provide several debugfs directories under the
|
||||
top-level directory "rcu":
|
||||
@@ -18,7 +18,7 @@ rcu/rcu_preempt
|
||||
rcu/rcu_sched
|
||||
|
||||
Each directory contains files for the corresponding flavor of RCU.
|
||||
Note that rcu/rcu_preempt is only present for CONFIG_TREE_PREEMPT_RCU.
|
||||
Note that rcu/rcu_preempt is only present for CONFIG_PREEMPT_RCU.
|
||||
For CONFIG_TREE_RCU, the RCU flavor maps onto the RCU-sched flavor,
|
||||
so that activity for both appears in rcu/rcu_sched.
|
||||
|
||||
|
||||
@@ -137,7 +137,7 @@ rcu_read_lock()
|
||||
Used by a reader to inform the reclaimer that the reader is
|
||||
entering an RCU read-side critical section. It is illegal
|
||||
to block while in an RCU read-side critical section, though
|
||||
kernels built with CONFIG_TREE_PREEMPT_RCU can preempt RCU
|
||||
kernels built with CONFIG_PREEMPT_RCU can preempt RCU
|
||||
read-side critical sections. Any RCU-protected data structure
|
||||
accessed during an RCU read-side critical section is guaranteed to
|
||||
remain unreclaimed for the full duration of that critical section.
|
||||
|
||||
@@ -7,32 +7,14 @@ world, which changes the way some things have to be initialized. This makes
|
||||
a need to provide an interface for such platforms to specify available firmware
|
||||
operations and call them when needed.
|
||||
|
||||
Firmware operations can be specified using struct firmware_ops
|
||||
|
||||
struct firmware_ops {
|
||||
/*
|
||||
* Enters CPU idle mode
|
||||
*/
|
||||
int (*do_idle)(void);
|
||||
/*
|
||||
* Sets boot address of specified physical CPU
|
||||
*/
|
||||
int (*set_cpu_boot_addr)(int cpu, unsigned long boot_addr);
|
||||
/*
|
||||
* Boots specified physical CPU
|
||||
*/
|
||||
int (*cpu_boot)(int cpu);
|
||||
/*
|
||||
* Initializes L2 cache
|
||||
*/
|
||||
int (*l2x0_init)(void);
|
||||
};
|
||||
|
||||
and then registered with register_firmware_ops function
|
||||
Firmware operations can be specified by filling in a struct firmware_ops
|
||||
with appropriate callbacks and then registering it with register_firmware_ops()
|
||||
function.
|
||||
|
||||
void register_firmware_ops(const struct firmware_ops *ops)
|
||||
|
||||
the ops pointer must be non-NULL.
|
||||
The ops pointer must be non-NULL. More information about struct firmware_ops
|
||||
and its members can be found in arch/arm/include/asm/firmware.h header.
|
||||
|
||||
There is a default, empty set of operations provided, so there is no need to
|
||||
set anything if platform does not require firmware operations.
|
||||
|
||||
@@ -37,16 +37,26 @@ SunXi family
|
||||
http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf
|
||||
|
||||
- Allwinner A23
|
||||
+ Not Supported
|
||||
+ Datasheet
|
||||
http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf
|
||||
+ User Manual
|
||||
http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf
|
||||
|
||||
* Quad ARM Cortex-A7 based SoCs
|
||||
- Allwinner A31 (sun6i)
|
||||
+ Datasheet
|
||||
http://dl.linux-sunxi.org/A31/A31%20Datasheet%20-%20v1.00%20(2012-12-24).pdf
|
||||
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf
|
||||
+ User Manual
|
||||
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf
|
||||
|
||||
- Allwinner A31s (sun6i)
|
||||
+ Not Supported
|
||||
+ Datasheet
|
||||
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf
|
||||
+ User Manual
|
||||
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf
|
||||
|
||||
* Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs
|
||||
- Allwinner A80
|
||||
+ Not Supported
|
||||
+ Datasheet
|
||||
http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf
|
||||
|
||||
45
Documentation/arm64/legacy_instructions.txt
Normal file
45
Documentation/arm64/legacy_instructions.txt
Normal file
@@ -0,0 +1,45 @@
|
||||
The arm64 port of the Linux kernel provides infrastructure to support
|
||||
emulation of instructions which have been deprecated, or obsoleted in
|
||||
the architecture. The infrastructure code uses undefined instruction
|
||||
hooks to support emulation. Where available it also allows turning on
|
||||
the instruction execution in hardware.
|
||||
|
||||
The emulation mode can be controlled by writing to sysctl nodes
|
||||
(/proc/sys/abi). The following explains the different execution
|
||||
behaviours and the corresponding values of the sysctl nodes -
|
||||
|
||||
* Undef
|
||||
Value: 0
|
||||
Generates undefined instruction abort. Default for instructions that
|
||||
have been obsoleted in the architecture, e.g., SWP
|
||||
|
||||
* Emulate
|
||||
Value: 1
|
||||
Uses software emulation. To aid migration of software, in this mode
|
||||
usage of emulated instruction is traced as well as rate limited
|
||||
warnings are issued. This is the default for deprecated
|
||||
instructions, .e.g., CP15 barriers
|
||||
|
||||
* Hardware Execution
|
||||
Value: 2
|
||||
Although marked as deprecated, some implementations may support the
|
||||
enabling/disabling of hardware support for the execution of these
|
||||
instructions. Using hardware execution generally provides better
|
||||
performance, but at the loss of ability to gather runtime statistics
|
||||
about the use of the deprecated instructions.
|
||||
|
||||
The default mode depends on the status of the instruction in the
|
||||
architecture. Deprecated instructions should default to emulation
|
||||
while obsolete instructions must be undefined by default.
|
||||
|
||||
Supported legacy instructions
|
||||
-----------------------------
|
||||
* SWP{B}
|
||||
Node: /proc/sys/abi/swp
|
||||
Status: Obsolete
|
||||
Default: Undef (0)
|
||||
|
||||
* CP15 Barriers
|
||||
Node: /proc/sys/abi/cp15_barrier
|
||||
Status: Deprecated
|
||||
Default: Emulate (1)
|
||||
@@ -7,12 +7,13 @@
|
||||
maintainers on how to implement atomic counter, bitops, and spinlock
|
||||
interfaces properly.
|
||||
|
||||
The atomic_t type should be defined as a signed integer.
|
||||
Also, it should be made opaque such that any kind of cast to a normal
|
||||
C integer type will fail. Something like the following should
|
||||
suffice:
|
||||
The atomic_t type should be defined as a signed integer and
|
||||
the atomic_long_t type as a signed long integer. Also, they should
|
||||
be made opaque such that any kind of cast to a normal C integer type
|
||||
will fail. Something like the following should suffice:
|
||||
|
||||
typedef struct { int counter; } atomic_t;
|
||||
typedef struct { long counter; } atomic_long_t;
|
||||
|
||||
Historically, counter has been declared volatile. This is now discouraged.
|
||||
See Documentation/volatile-considered-harmful.txt for the complete rationale.
|
||||
@@ -37,6 +38,9 @@ initializer is used before runtime. If the initializer is used at runtime, a
|
||||
proper implicit or explicit read memory barrier is needed before reading the
|
||||
value with atomic_read from another thread.
|
||||
|
||||
As with all of the atomic_ interfaces, replace the leading "atomic_"
|
||||
with "atomic_long_" to operate on atomic_long_t.
|
||||
|
||||
The second interface can be used at runtime, as in:
|
||||
|
||||
struct foo { atomic_t counter; };
|
||||
|
||||
@@ -827,10 +827,6 @@ but in the event of any barrier requests in the tag queue we need to ensure
|
||||
that requests are restarted in the order they were queue. This may happen
|
||||
if the driver needs to use blk_queue_invalidate_tags().
|
||||
|
||||
Tagging also defines a new request flag, REQ_QUEUED. This is set whenever
|
||||
a request is currently tagged. You should not use this flag directly,
|
||||
blk_rq_tagged(rq) is the portable way to do so.
|
||||
|
||||
3.3 I/O Submission
|
||||
|
||||
The routine submit_bio() is used to submit a single io. Higher level i/o
|
||||
|
||||
@@ -47,20 +47,26 @@ Message and constructor argument pairs are:
|
||||
'discard_promote_adjustment <value>'
|
||||
|
||||
The sequential threshold indicates the number of contiguous I/Os
|
||||
required before a stream is treated as sequential. The random threshold
|
||||
required before a stream is treated as sequential. Once a stream is
|
||||
considered sequential it will bypass the cache. The random threshold
|
||||
is the number of intervening non-contiguous I/Os that must be seen
|
||||
before the stream is treated as random again.
|
||||
|
||||
The sequential and random thresholds default to 512 and 4 respectively.
|
||||
|
||||
Large, sequential ios are probably better left on the origin device
|
||||
since spindles tend to have good bandwidth. The io_tracker counts
|
||||
contiguous I/Os to try to spot when the io is in one of these sequential
|
||||
modes.
|
||||
Large, sequential I/Os are probably better left on the origin device
|
||||
since spindles tend to have good sequential I/O bandwidth. The
|
||||
io_tracker counts contiguous I/Os to try to spot when the I/O is in one
|
||||
of these sequential modes. But there are use-cases for wanting to
|
||||
promote sequential blocks to the cache (e.g. fast application startup).
|
||||
If sequential threshold is set to 0 the sequential I/O detection is
|
||||
disabled and sequential I/O will no longer implicitly bypass the cache.
|
||||
Setting the random threshold to 0 does _not_ disable the random I/O
|
||||
stream detection.
|
||||
|
||||
Internally the mq policy maintains a promotion threshold variable. If
|
||||
the hit count of a block not in the cache goes above this threshold it
|
||||
gets promoted to the cache. The read, write and discard promote adjustment
|
||||
Internally the mq policy determines a promotion threshold. If the hit
|
||||
count of a block not in the cache goes above this threshold it gets
|
||||
promoted to the cache. The read, write and discard promote adjustment
|
||||
tunables allow you to tweak the promotion threshold by adding a small
|
||||
value based on the io type. They default to 4, 8 and 1 respectively.
|
||||
If you're trying to quickly warm a new cache device you may wish to
|
||||
|
||||
@@ -2,7 +2,9 @@ Amlogic MesonX device tree bindings
|
||||
-------------------------------------------
|
||||
|
||||
Boards with the Amlogic Meson6 SoC shall have the following properties:
|
||||
Required root node property:
|
||||
compatible: "amlogic,meson6"
|
||||
|
||||
Required root node property:
|
||||
|
||||
compatible = "amlogic,meson6";
|
||||
Boards with the Amlogic Meson8 SoC shall have the following properties:
|
||||
Required root node property:
|
||||
compatible: "amlogic,meson8";
|
||||
|
||||
@@ -22,6 +22,14 @@ to deliver its interrupts via SPIs.
|
||||
- always-on : a boolean property. If present, the timer is powered through an
|
||||
always-on power domain, therefore it never loses context.
|
||||
|
||||
** Optional properties:
|
||||
|
||||
- arm,cpu-registers-not-fw-configured : Firmware does not initialize
|
||||
any of the generic timer CPU registers, which contain their
|
||||
architecturally-defined reset values. Only supported for 32-bit
|
||||
systems which follow the ARMv7 architected reset values.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
timer {
|
||||
|
||||
@@ -92,3 +92,68 @@ Required nodes:
|
||||
- core-module: the root node to the Versatile platforms must have
|
||||
a core-module with regs and the compatible strings
|
||||
"arm,core-module-versatile", "syscon"
|
||||
|
||||
ARM RealView Boards
|
||||
-------------------
|
||||
The RealView boards cover tailored evaluation boards that are used to explore
|
||||
the ARM11 and Cortex A-8 and Cortex A-9 processors.
|
||||
|
||||
Required properties (in root node):
|
||||
/* RealView Emulation Baseboard */
|
||||
compatible = "arm,realview-eb";
|
||||
/* RealView Platform Baseboard for ARM1176JZF-S */
|
||||
compatible = "arm,realview-pb1176";
|
||||
/* RealView Platform Baseboard for ARM11 MPCore */
|
||||
compatible = "arm,realview-pb11mp";
|
||||
/* RealView Platform Baseboard for Cortex A-8 */
|
||||
compatible = "arm,realview-pba8";
|
||||
/* RealView Platform Baseboard Explore for Cortex A-9 */
|
||||
compatible = "arm,realview-pbx";
|
||||
|
||||
Required nodes:
|
||||
|
||||
- soc: some node of the RealView platforms must be the SoC
|
||||
node that contain the SoC-specific devices, withe the compatible
|
||||
string set to one of these tuples:
|
||||
"arm,realview-eb-soc", "simple-bus"
|
||||
"arm,realview-pb1176-soc", "simple-bus"
|
||||
"arm,realview-pb11mp-soc", "simple-bus"
|
||||
"arm,realview-pba8-soc", "simple-bus"
|
||||
"arm,realview-pbx-soc", "simple-bus"
|
||||
|
||||
- syscon: some subnode of the RealView SoC node must be a
|
||||
system controller node pointing to the control registers,
|
||||
with the compatible string set to one of these tuples:
|
||||
"arm,realview-eb-syscon", "syscon"
|
||||
"arm,realview-pb1176-syscon", "syscon"
|
||||
"arm,realview-pb11mp-syscon", "syscon"
|
||||
"arm,realview-pba8-syscon", "syscon"
|
||||
"arm,realview-pbx-syscon", "syscon"
|
||||
|
||||
Required properties for the system controller:
|
||||
- regs: the location and size of the system controller registers,
|
||||
one range of 0x1000 bytes.
|
||||
|
||||
Example:
|
||||
|
||||
/dts-v1/;
|
||||
#include <dt-bindings/interrupt-controller/irq.h>
|
||||
#include "skeleton.dtsi"
|
||||
|
||||
/ {
|
||||
model = "ARM RealView PB1176 with device tree";
|
||||
compatible = "arm,realview-pb1176";
|
||||
|
||||
soc {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <1>;
|
||||
compatible = "arm,realview-pb1176-soc", "simple-bus";
|
||||
ranges;
|
||||
|
||||
syscon: syscon@10000000 {
|
||||
compatible = "arm,realview-syscon", "syscon";
|
||||
reg = <0x10000000 0x1000>;
|
||||
};
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
31
Documentation/devicetree/bindings/arm/bcm/cygnus.txt
Normal file
31
Documentation/devicetree/bindings/arm/bcm/cygnus.txt
Normal file
@@ -0,0 +1,31 @@
|
||||
Broadcom Cygnus device tree bindings
|
||||
------------------------------------
|
||||
|
||||
|
||||
Boards with Cygnus SoCs shall have the following properties:
|
||||
|
||||
Required root node property:
|
||||
|
||||
BCM11300
|
||||
compatible = "brcm,bcm11300", "brcm,cygnus";
|
||||
|
||||
BCM11320
|
||||
compatible = "brcm,bcm11320", "brcm,cygnus";
|
||||
|
||||
BCM11350
|
||||
compatible = "brcm,bcm11350", "brcm,cygnus";
|
||||
|
||||
BCM11360
|
||||
compatible = "brcm,bcm11360", "brcm,cygnus";
|
||||
|
||||
BCM58300
|
||||
compatible = "brcm,bcm58300", "brcm,cygnus";
|
||||
|
||||
BCM58302
|
||||
compatible = "brcm,bcm58302", "brcm,cygnus";
|
||||
|
||||
BCM58303
|
||||
compatible = "brcm,bcm58303", "brcm,cygnus";
|
||||
|
||||
BCM58305
|
||||
compatible = "brcm,bcm58305", "brcm,cygnus";
|
||||
@@ -227,6 +227,15 @@ nodes to be present and contain the properties described below.
|
||||
# List of phandles to idle state nodes supported
|
||||
by this cpu [3].
|
||||
|
||||
- rockchip,pmu
|
||||
Usage: optional for systems that have an "enable-method"
|
||||
property value of "rockchip,rk3066-smp"
|
||||
While optional, it is the preferred way to get access to
|
||||
the cpu-core power-domains.
|
||||
Value type: <phandle>
|
||||
Definition: Specifies the syscon node controlling the cpu core
|
||||
power domains.
|
||||
|
||||
Example 1 (dual-cluster big.LITTLE system 32-bit):
|
||||
|
||||
cpus {
|
||||
|
||||
@@ -74,3 +74,41 @@ Required root node properties:
|
||||
i.MX6q generic board
|
||||
Required root node properties:
|
||||
- compatible = "fsl,imx6q";
|
||||
|
||||
|
||||
Freescale LS1021A Platform Device Tree Bindings
|
||||
------------------------------------------------
|
||||
|
||||
Required root node compatible properties:
|
||||
- compatible = "fsl,ls1021a";
|
||||
|
||||
Freescale LS1021A SoC-specific Device Tree Bindings
|
||||
-------------------------------------------
|
||||
|
||||
Freescale SCFG
|
||||
SCFG is the supplemental configuration unit, that provides SoC specific
|
||||
configuration and status registers for the chip. Such as getting PEX port
|
||||
status.
|
||||
Required properties:
|
||||
- compatible: should be "fsl,ls1021a-scfg"
|
||||
- reg: should contain base address and length of SCFG memory-mapped registers
|
||||
|
||||
Example:
|
||||
scfg: scfg@1570000 {
|
||||
compatible = "fsl,ls1021a-scfg";
|
||||
reg = <0x0 0x1570000 0x0 0x10000>;
|
||||
};
|
||||
|
||||
Freescale DCFG
|
||||
DCFG is the device configuration unit, that provides general purpose
|
||||
configuration and status for the device. Such as setting the secondary
|
||||
core start address and release the secondary core from holdoff and startup.
|
||||
Required properties:
|
||||
- compatible: should be "fsl,ls1021a-dcfg"
|
||||
- reg : should contain base address and length of DCFG memory-mapped registers
|
||||
|
||||
Example:
|
||||
dcfg: dcfg@1ee0000 {
|
||||
compatible = "fsl,ls1021a-dcfg";
|
||||
reg = <0x0 0x1ee0000 0x0 0x10000>;
|
||||
};
|
||||
|
||||
@@ -17,6 +17,7 @@ Main node required properties:
|
||||
"arm,cortex-a7-gic"
|
||||
"arm,arm11mp-gic"
|
||||
"brcm,brahma-b15-gic"
|
||||
"arm,arm1176jzf-devchip-gic"
|
||||
- interrupt-controller : Identifies the node as an interrupt controller
|
||||
- #interrupt-cells : Specifies the number of cells needed to encode an
|
||||
interrupt source. The type shall be a <u32> and the value shall be 3.
|
||||
|
||||
@@ -106,11 +106,21 @@ Required subnode-properties:
|
||||
- groups: a list of strings describing the group names.
|
||||
- function: a string describing the function used to mux the groups.
|
||||
|
||||
* Reset controller binding
|
||||
|
||||
A reset controller is part of the chip control registers set. The chip control
|
||||
node also provides the reset. The register set is not at the same offset between
|
||||
Berlin SoCs.
|
||||
|
||||
Required property:
|
||||
- #reset-cells: must be set to 2
|
||||
|
||||
Example:
|
||||
|
||||
chip: chip-control@ea0000 {
|
||||
compatible = "marvell,berlin2-chip-ctrl";
|
||||
#clock-cells = <1>;
|
||||
#reset-cells = <2>;
|
||||
reg = <0xea0000 0x400>;
|
||||
clocks = <&refclk>, <&externaldev 0>;
|
||||
clock-names = "refclk", "video_ext0";
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
Mediatek MT6589 Platforms Device Tree Bindings
|
||||
MediaTek mt65xx & mt81xx Platforms Device Tree Bindings
|
||||
|
||||
Boards with a SoC of the Mediatek MT6589 shall have the following property:
|
||||
Boards with a MediaTek mt65xx/mt81xx SoC shall have the following property:
|
||||
|
||||
Required root node property:
|
||||
|
||||
compatible: must contain "mediatek,mt6589"
|
||||
compatible: Must contain one of
|
||||
"mediatek,mt6589"
|
||||
"mediatek,mt6592"
|
||||
"mediatek,mt8127"
|
||||
"mediatek,mt8135"
|
||||
|
||||
|
||||
Supported boards:
|
||||
@@ -12,3 +16,12 @@ Supported boards:
|
||||
- bq Aquaris5 smart phone:
|
||||
Required root node properties:
|
||||
- compatible = "mundoreader,bq-aquaris5", "mediatek,mt6589";
|
||||
- Evaluation board for MT6592:
|
||||
Required root node properties:
|
||||
- compatible = "mediatek,mt6592-evb", "mediatek,mt6592";
|
||||
- MTK mt8127 tablet moose EVB:
|
||||
Required root node properties:
|
||||
- compatible = "mediatek,mt8127-moose", "mediatek,mt8127";
|
||||
- MTK mt8135 tablet EVB:
|
||||
Required root node properties:
|
||||
- compatible = "mediatek,mt8135-evbp1", "mediatek,mt8135";
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user