Merge branch 'linus' into perf/urgent, to pick up the upstream merged bits

Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Ingo Molnar
2014-12-12 09:09:03 +01:00
1941 changed files with 75348 additions and 59348 deletions

View File

@@ -55,12 +55,12 @@ Description: Interface for making ib_srp connect to a new target.
only safe with partial memory descriptor list support enabled
(allow_ext_sg=1).
* comp_vector, a number in the range 0..n-1 specifying the
MSI-X completion vector. Some HCA's allocate multiple (n)
MSI-X vectors per HCA port. If the IRQ affinity masks of
these interrupts have been configured such that each MSI-X
interrupt is handled by a different CPU then the comp_vector
parameter can be used to spread the SRP completion workload
over multiple CPU's.
MSI-X completion vector of the first RDMA channel. Some
HCA's allocate multiple (n) MSI-X vectors per HCA port. If
the IRQ affinity masks of these interrupts have been
configured such that each MSI-X interrupt is handled by a
different CPU then the comp_vector parameter can be used to
spread the SRP completion workload over multiple CPU's.
* tl_retry_count, a number in the range 2..7 specifying the
IB RC retry count.
* queue_size, the maximum number of commands that the
@@ -88,6 +88,13 @@ Description: Whether ib_srp is allowed to include a partial memory
descriptor list in an SRP_CMD when communicating with an SRP
target.
What: /sys/class/scsi_host/host<n>/ch_count
Date: April 1, 2015
KernelVersion: 3.19
Contact: linux-rdma@vger.kernel.org
Description: Number of RDMA channels used for communication with the SRP
target.
What: /sys/class/scsi_host/host<n>/cmd_sg_entries
Date: May 19, 2011
KernelVersion: 2.6.39
@@ -95,6 +102,12 @@ Contact: linux-rdma@vger.kernel.org
Description: Maximum number of data buffer descriptors that may be sent to
the target in a single SRP_CMD request.
What: /sys/class/scsi_host/host<n>/comp_vector
Date: September 2, 2013
KernelVersion: 3.11
Contact: linux-rdma@vger.kernel.org
Description: Completion vector used for the first RDMA channel.
What: /sys/class/scsi_host/host<n>/dgid
Date: June 17, 2006
KernelVersion: 2.6.17

View File

@@ -36,7 +36,7 @@ o How can the updater tell when a grace period has completed
executed in user mode, or executed in the idle loop, we can
safely free up that item.
Preemptible variants of RCU (CONFIG_TREE_PREEMPT_RCU) get the
Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
same effect, but require that the readers manipulate CPU-local
counters. These counters allow limited types of blocking within
RCU read-side critical sections. SRCU also uses CPU-local
@@ -81,7 +81,7 @@ o I hear that RCU is patented? What is with that?
o I hear that RCU needs work in order to support realtime kernels?
This work is largely completed. Realtime-friendly RCU can be
enabled via the CONFIG_TREE_PREEMPT_RCU kernel configuration
enabled via the CONFIG_PREEMPT_RCU kernel configuration
parameter. However, work is in progress for enabling priority
boosting of preempted RCU read-side critical sections. This is
needed if you have CPU-bound realtime threads.

View File

@@ -26,12 +26,6 @@ CONFIG_RCU_CPU_STALL_TIMEOUT
Stall-warning messages may be enabled and disabled completely via
/sys/module/rcupdate/parameters/rcu_cpu_stall_suppress.
CONFIG_RCU_CPU_STALL_VERBOSE
This kernel configuration parameter causes the stall warning to
also dump the stacks of any tasks that are blocking the current
RCU-preempt grace period.
CONFIG_RCU_CPU_STALL_INFO
This kernel configuration parameter causes the stall warning to
@@ -77,7 +71,7 @@ This message indicates that CPU 5 detected that it was causing a stall,
and that the stall was affecting RCU-sched. This message will normally be
followed by a stack dump of the offending CPU. On TREE_RCU kernel builds,
RCU and RCU-sched are implemented by the same underlying mechanism,
while on TREE_PREEMPT_RCU kernel builds, RCU is instead implemented
while on PREEMPT_RCU kernel builds, RCU is instead implemented
by rcu_preempt_state.
On the other hand, if the offending CPU fails to print out a stall-warning
@@ -89,7 +83,7 @@ INFO: rcu_bh_state detected stalls on CPUs/tasks: { 3 5 } (detected by 2, 2502 j
This message indicates that CPU 2 detected that CPUs 3 and 5 were both
causing stalls, and that the stall was affecting RCU-bh. This message
will normally be followed by stack dumps for each CPU. Please note that
TREE_PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
and that the tasks will be indicated by PID, for example, "P3421".
It is even possible for a rcu_preempt_state stall to be caused by both
CPUs -and- tasks, in which case the offending CPUs and tasks will all
@@ -205,10 +199,10 @@ o A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
o A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
is running at a higher priority than the RCU softirq threads.
This will prevent RCU callbacks from ever being invoked,
and in a CONFIG_TREE_PREEMPT_RCU kernel will further prevent
and in a CONFIG_PREEMPT_RCU kernel will further prevent
RCU grace periods from ever completing. Either way, the
system will eventually run out of memory and hang. In the
CONFIG_TREE_PREEMPT_RCU case, you might see stall-warning
CONFIG_PREEMPT_RCU case, you might see stall-warning
messages.
o A hardware or software issue shuts off the scheduler-clock

View File

@@ -8,7 +8,7 @@ The following sections describe the debugfs files and formats, first
for rcutree and next for rcutiny.
CONFIG_TREE_RCU and CONFIG_TREE_PREEMPT_RCU debugfs Files and Formats
CONFIG_TREE_RCU and CONFIG_PREEMPT_RCU debugfs Files and Formats
These implementations of RCU provide several debugfs directories under the
top-level directory "rcu":
@@ -18,7 +18,7 @@ rcu/rcu_preempt
rcu/rcu_sched
Each directory contains files for the corresponding flavor of RCU.
Note that rcu/rcu_preempt is only present for CONFIG_TREE_PREEMPT_RCU.
Note that rcu/rcu_preempt is only present for CONFIG_PREEMPT_RCU.
For CONFIG_TREE_RCU, the RCU flavor maps onto the RCU-sched flavor,
so that activity for both appears in rcu/rcu_sched.

View File

@@ -137,7 +137,7 @@ rcu_read_lock()
Used by a reader to inform the reclaimer that the reader is
entering an RCU read-side critical section. It is illegal
to block while in an RCU read-side critical section, though
kernels built with CONFIG_TREE_PREEMPT_RCU can preempt RCU
kernels built with CONFIG_PREEMPT_RCU can preempt RCU
read-side critical sections. Any RCU-protected data structure
accessed during an RCU read-side critical section is guaranteed to
remain unreclaimed for the full duration of that critical section.

View File

@@ -7,32 +7,14 @@ world, which changes the way some things have to be initialized. This makes
a need to provide an interface for such platforms to specify available firmware
operations and call them when needed.
Firmware operations can be specified using struct firmware_ops
struct firmware_ops {
/*
* Enters CPU idle mode
*/
int (*do_idle)(void);
/*
* Sets boot address of specified physical CPU
*/
int (*set_cpu_boot_addr)(int cpu, unsigned long boot_addr);
/*
* Boots specified physical CPU
*/
int (*cpu_boot)(int cpu);
/*
* Initializes L2 cache
*/
int (*l2x0_init)(void);
};
and then registered with register_firmware_ops function
Firmware operations can be specified by filling in a struct firmware_ops
with appropriate callbacks and then registering it with register_firmware_ops()
function.
void register_firmware_ops(const struct firmware_ops *ops)
the ops pointer must be non-NULL.
The ops pointer must be non-NULL. More information about struct firmware_ops
and its members can be found in arch/arm/include/asm/firmware.h header.
There is a default, empty set of operations provided, so there is no need to
set anything if platform does not require firmware operations.

View File

@@ -37,16 +37,26 @@ SunXi family
http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf
- Allwinner A23
+ Not Supported
+ Datasheet
http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf
+ User Manual
http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf
* Quad ARM Cortex-A7 based SoCs
- Allwinner A31 (sun6i)
+ Datasheet
http://dl.linux-sunxi.org/A31/A31%20Datasheet%20-%20v1.00%20(2012-12-24).pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf
+ User Manual
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf
- Allwinner A31s (sun6i)
+ Not Supported
+ Datasheet
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf
+ User Manual
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf
* Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs
- Allwinner A80
+ Not Supported
+ Datasheet
http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf

View File

@@ -0,0 +1,45 @@
The arm64 port of the Linux kernel provides infrastructure to support
emulation of instructions which have been deprecated, or obsoleted in
the architecture. The infrastructure code uses undefined instruction
hooks to support emulation. Where available it also allows turning on
the instruction execution in hardware.
The emulation mode can be controlled by writing to sysctl nodes
(/proc/sys/abi). The following explains the different execution
behaviours and the corresponding values of the sysctl nodes -
* Undef
Value: 0
Generates undefined instruction abort. Default for instructions that
have been obsoleted in the architecture, e.g., SWP
* Emulate
Value: 1
Uses software emulation. To aid migration of software, in this mode
usage of emulated instruction is traced as well as rate limited
warnings are issued. This is the default for deprecated
instructions, .e.g., CP15 barriers
* Hardware Execution
Value: 2
Although marked as deprecated, some implementations may support the
enabling/disabling of hardware support for the execution of these
instructions. Using hardware execution generally provides better
performance, but at the loss of ability to gather runtime statistics
about the use of the deprecated instructions.
The default mode depends on the status of the instruction in the
architecture. Deprecated instructions should default to emulation
while obsolete instructions must be undefined by default.
Supported legacy instructions
-----------------------------
* SWP{B}
Node: /proc/sys/abi/swp
Status: Obsolete
Default: Undef (0)
* CP15 Barriers
Node: /proc/sys/abi/cp15_barrier
Status: Deprecated
Default: Emulate (1)

View File

@@ -7,12 +7,13 @@
maintainers on how to implement atomic counter, bitops, and spinlock
interfaces properly.
The atomic_t type should be defined as a signed integer.
Also, it should be made opaque such that any kind of cast to a normal
C integer type will fail. Something like the following should
suffice:
The atomic_t type should be defined as a signed integer and
the atomic_long_t type as a signed long integer. Also, they should
be made opaque such that any kind of cast to a normal C integer type
will fail. Something like the following should suffice:
typedef struct { int counter; } atomic_t;
typedef struct { long counter; } atomic_long_t;
Historically, counter has been declared volatile. This is now discouraged.
See Documentation/volatile-considered-harmful.txt for the complete rationale.
@@ -37,6 +38,9 @@ initializer is used before runtime. If the initializer is used at runtime, a
proper implicit or explicit read memory barrier is needed before reading the
value with atomic_read from another thread.
As with all of the atomic_ interfaces, replace the leading "atomic_"
with "atomic_long_" to operate on atomic_long_t.
The second interface can be used at runtime, as in:
struct foo { atomic_t counter; };

View File

@@ -827,10 +827,6 @@ but in the event of any barrier requests in the tag queue we need to ensure
that requests are restarted in the order they were queue. This may happen
if the driver needs to use blk_queue_invalidate_tags().
Tagging also defines a new request flag, REQ_QUEUED. This is set whenever
a request is currently tagged. You should not use this flag directly,
blk_rq_tagged(rq) is the portable way to do so.
3.3 I/O Submission
The routine submit_bio() is used to submit a single io. Higher level i/o

View File

@@ -47,20 +47,26 @@ Message and constructor argument pairs are:
'discard_promote_adjustment <value>'
The sequential threshold indicates the number of contiguous I/Os
required before a stream is treated as sequential. The random threshold
required before a stream is treated as sequential. Once a stream is
considered sequential it will bypass the cache. The random threshold
is the number of intervening non-contiguous I/Os that must be seen
before the stream is treated as random again.
The sequential and random thresholds default to 512 and 4 respectively.
Large, sequential ios are probably better left on the origin device
since spindles tend to have good bandwidth. The io_tracker counts
contiguous I/Os to try to spot when the io is in one of these sequential
modes.
Large, sequential I/Os are probably better left on the origin device
since spindles tend to have good sequential I/O bandwidth. The
io_tracker counts contiguous I/Os to try to spot when the I/O is in one
of these sequential modes. But there are use-cases for wanting to
promote sequential blocks to the cache (e.g. fast application startup).
If sequential threshold is set to 0 the sequential I/O detection is
disabled and sequential I/O will no longer implicitly bypass the cache.
Setting the random threshold to 0 does _not_ disable the random I/O
stream detection.
Internally the mq policy maintains a promotion threshold variable. If
the hit count of a block not in the cache goes above this threshold it
gets promoted to the cache. The read, write and discard promote adjustment
Internally the mq policy determines a promotion threshold. If the hit
count of a block not in the cache goes above this threshold it gets
promoted to the cache. The read, write and discard promote adjustment
tunables allow you to tweak the promotion threshold by adding a small
value based on the io type. They default to 4, 8 and 1 respectively.
If you're trying to quickly warm a new cache device you may wish to

View File

@@ -2,7 +2,9 @@ Amlogic MesonX device tree bindings
-------------------------------------------
Boards with the Amlogic Meson6 SoC shall have the following properties:
Required root node property:
compatible: "amlogic,meson6"
Required root node property:
compatible = "amlogic,meson6";
Boards with the Amlogic Meson8 SoC shall have the following properties:
Required root node property:
compatible: "amlogic,meson8";

View File

@@ -22,6 +22,14 @@ to deliver its interrupts via SPIs.
- always-on : a boolean property. If present, the timer is powered through an
always-on power domain, therefore it never loses context.
** Optional properties:
- arm,cpu-registers-not-fw-configured : Firmware does not initialize
any of the generic timer CPU registers, which contain their
architecturally-defined reset values. Only supported for 32-bit
systems which follow the ARMv7 architected reset values.
Example:
timer {

View File

@@ -92,3 +92,68 @@ Required nodes:
- core-module: the root node to the Versatile platforms must have
a core-module with regs and the compatible strings
"arm,core-module-versatile", "syscon"
ARM RealView Boards
-------------------
The RealView boards cover tailored evaluation boards that are used to explore
the ARM11 and Cortex A-8 and Cortex A-9 processors.
Required properties (in root node):
/* RealView Emulation Baseboard */
compatible = "arm,realview-eb";
/* RealView Platform Baseboard for ARM1176JZF-S */
compatible = "arm,realview-pb1176";
/* RealView Platform Baseboard for ARM11 MPCore */
compatible = "arm,realview-pb11mp";
/* RealView Platform Baseboard for Cortex A-8 */
compatible = "arm,realview-pba8";
/* RealView Platform Baseboard Explore for Cortex A-9 */
compatible = "arm,realview-pbx";
Required nodes:
- soc: some node of the RealView platforms must be the SoC
node that contain the SoC-specific devices, withe the compatible
string set to one of these tuples:
"arm,realview-eb-soc", "simple-bus"
"arm,realview-pb1176-soc", "simple-bus"
"arm,realview-pb11mp-soc", "simple-bus"
"arm,realview-pba8-soc", "simple-bus"
"arm,realview-pbx-soc", "simple-bus"
- syscon: some subnode of the RealView SoC node must be a
system controller node pointing to the control registers,
with the compatible string set to one of these tuples:
"arm,realview-eb-syscon", "syscon"
"arm,realview-pb1176-syscon", "syscon"
"arm,realview-pb11mp-syscon", "syscon"
"arm,realview-pba8-syscon", "syscon"
"arm,realview-pbx-syscon", "syscon"
Required properties for the system controller:
- regs: the location and size of the system controller registers,
one range of 0x1000 bytes.
Example:
/dts-v1/;
#include <dt-bindings/interrupt-controller/irq.h>
#include "skeleton.dtsi"
/ {
model = "ARM RealView PB1176 with device tree";
compatible = "arm,realview-pb1176";
soc {
#address-cells = <1>;
#size-cells = <1>;
compatible = "arm,realview-pb1176-soc", "simple-bus";
ranges;
syscon: syscon@10000000 {
compatible = "arm,realview-syscon", "syscon";
reg = <0x10000000 0x1000>;
};
};
};

View File

@@ -0,0 +1,31 @@
Broadcom Cygnus device tree bindings
------------------------------------
Boards with Cygnus SoCs shall have the following properties:
Required root node property:
BCM11300
compatible = "brcm,bcm11300", "brcm,cygnus";
BCM11320
compatible = "brcm,bcm11320", "brcm,cygnus";
BCM11350
compatible = "brcm,bcm11350", "brcm,cygnus";
BCM11360
compatible = "brcm,bcm11360", "brcm,cygnus";
BCM58300
compatible = "brcm,bcm58300", "brcm,cygnus";
BCM58302
compatible = "brcm,bcm58302", "brcm,cygnus";
BCM58303
compatible = "brcm,bcm58303", "brcm,cygnus";
BCM58305
compatible = "brcm,bcm58305", "brcm,cygnus";

View File

@@ -227,6 +227,15 @@ nodes to be present and contain the properties described below.
# List of phandles to idle state nodes supported
by this cpu [3].
- rockchip,pmu
Usage: optional for systems that have an "enable-method"
property value of "rockchip,rk3066-smp"
While optional, it is the preferred way to get access to
the cpu-core power-domains.
Value type: <phandle>
Definition: Specifies the syscon node controlling the cpu core
power domains.
Example 1 (dual-cluster big.LITTLE system 32-bit):
cpus {

View File

@@ -74,3 +74,41 @@ Required root node properties:
i.MX6q generic board
Required root node properties:
- compatible = "fsl,imx6q";
Freescale LS1021A Platform Device Tree Bindings
------------------------------------------------
Required root node compatible properties:
- compatible = "fsl,ls1021a";
Freescale LS1021A SoC-specific Device Tree Bindings
-------------------------------------------
Freescale SCFG
SCFG is the supplemental configuration unit, that provides SoC specific
configuration and status registers for the chip. Such as getting PEX port
status.
Required properties:
- compatible: should be "fsl,ls1021a-scfg"
- reg: should contain base address and length of SCFG memory-mapped registers
Example:
scfg: scfg@1570000 {
compatible = "fsl,ls1021a-scfg";
reg = <0x0 0x1570000 0x0 0x10000>;
};
Freescale DCFG
DCFG is the device configuration unit, that provides general purpose
configuration and status for the device. Such as setting the secondary
core start address and release the secondary core from holdoff and startup.
Required properties:
- compatible: should be "fsl,ls1021a-dcfg"
- reg : should contain base address and length of DCFG memory-mapped registers
Example:
dcfg: dcfg@1ee0000 {
compatible = "fsl,ls1021a-dcfg";
reg = <0x0 0x1ee0000 0x0 0x10000>;
};

View File

@@ -17,6 +17,7 @@ Main node required properties:
"arm,cortex-a7-gic"
"arm,arm11mp-gic"
"brcm,brahma-b15-gic"
"arm,arm1176jzf-devchip-gic"
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The type shall be a <u32> and the value shall be 3.

View File

@@ -106,11 +106,21 @@ Required subnode-properties:
- groups: a list of strings describing the group names.
- function: a string describing the function used to mux the groups.
* Reset controller binding
A reset controller is part of the chip control registers set. The chip control
node also provides the reset. The register set is not at the same offset between
Berlin SoCs.
Required property:
- #reset-cells: must be set to 2
Example:
chip: chip-control@ea0000 {
compatible = "marvell,berlin2-chip-ctrl";
#clock-cells = <1>;
#reset-cells = <2>;
reg = <0xea0000 0x400>;
clocks = <&refclk>, <&externaldev 0>;
clock-names = "refclk", "video_ext0";

View File

@@ -1,10 +1,14 @@
Mediatek MT6589 Platforms Device Tree Bindings
MediaTek mt65xx & mt81xx Platforms Device Tree Bindings
Boards with a SoC of the Mediatek MT6589 shall have the following property:
Boards with a MediaTek mt65xx/mt81xx SoC shall have the following property:
Required root node property:
compatible: must contain "mediatek,mt6589"
compatible: Must contain one of
"mediatek,mt6589"
"mediatek,mt6592"
"mediatek,mt8127"
"mediatek,mt8135"
Supported boards:
@@ -12,3 +16,12 @@ Supported boards:
- bq Aquaris5 smart phone:
Required root node properties:
- compatible = "mundoreader,bq-aquaris5", "mediatek,mt6589";
- Evaluation board for MT6592:
Required root node properties:
- compatible = "mediatek,mt6592-evb", "mediatek,mt6592";
- MTK mt8127 tablet moose EVB:
Required root node properties:
- compatible = "mediatek,mt8127-moose", "mediatek,mt8127";
- MTK mt8135 tablet EVB:
Required root node properties:
- compatible = "mediatek,mt8135-evbp1", "mediatek,mt8135";

Some files were not shown because too many files have changed in this diff Show More