Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6

This commit is contained in:
Dmitry Torokhov
2006-09-19 01:56:44 -04:00
2417 changed files with 59491 additions and 27087 deletions

8
.gitignore vendored
View File

@@ -12,6 +12,9 @@
*.ko
*.so
*.mod.c
*.i
*.lst
*.symtypes
#
# Top-level generic files
@@ -30,6 +33,11 @@ include/config
include/linux/autoconf.h
include/linux/compile.h
include/linux/version.h
include/linux/utsrelease.h
# stgit generated dirs
patches-*
# quilt's files
patches
series

12
CREDITS
View File

@@ -528,11 +528,11 @@ S: Oxford
S: United Kingdom
N: Luiz Fernando N. Capitulino
E: lcapitulino@terra.com.br
E: lcapitulino@prefeitura.sp.gov.br
W: http://www.telecentros.sp.gov.br
D: Little fixes and a lot of janitorial work
S: E-GOV Telecentros SP
E: lcapitulino@mandriva.com.br
E: lcapitulino@gmail.com
W: http://www.cpu.eti.br
D: misc kernel hacking
S: Mandriva
S: Brazil
N: Remy Card
@@ -2209,7 +2209,7 @@ S: (address available on request)
S: USA
N: Ian McDonald
E: iam4@cs.waikato.ac.nz
E: ian.mcdonald@jandi.co.nz
E: imcdnzl@gmail.com
W: http://wand.net.nz/~iam4
W: http://imcdnzl.blogspot.com

View File

@@ -698,12 +698,12 @@ these interfaces. Remember that, as defined, consistent mappings are
always going to be SAC addressable.
The first thing your driver needs to do is query the PCI platform
layer with your devices DAC addressing capabilities:
layer if it is capable of handling your devices DAC addressing
capabilities:
int pci_dac_set_dma_mask(struct pci_dev *pdev, u64 mask);
int pci_dac_dma_supported(struct pci_dev *hwdev, u64 mask);
This routine behaves identically to pci_set_dma_mask. You may not
use the following interfaces if this routine fails.
You may not use the following interfaces if this routine fails.
Next, DMA addresses using this API are kept track of using the
dma64_addr_t type. It is guaranteed to be big enough to hold any

View File

@@ -58,6 +58,9 @@
!Iinclude/linux/ktime.h
!Iinclude/linux/hrtimer.h
!Ekernel/hrtimer.c
</sect1>
<sect1><title>Workqueues and Kevents</title>
!Ekernel/workqueue.c
</sect1>
<sect1><title>Internal Functions</title>
!Ikernel/exit.c
@@ -300,7 +303,7 @@ X!Ekernel/module.c
</sect1>
<sect1><title>Resources Management</title>
!Ekernel/resource.c
!Ikernel/resource.c
</sect1>
<sect1><title>MTRR Handling</title>
@@ -312,9 +315,7 @@ X!Ekernel/module.c
!Edrivers/pci/pci-driver.c
!Edrivers/pci/remove.c
!Edrivers/pci/pci-acpi.c
<!-- kerneldoc does not understand __devinit
X!Edrivers/pci/search.c
-->
!Edrivers/pci/search.c
!Edrivers/pci/msi.c
!Edrivers/pci/bus.c
<!-- FIXME: Removed for now since no structured comments in source

View File

@@ -687,8 +687,9 @@ diff shows how closely related RCU and reader-writer locking can be.
+ spin_lock(&listmutex);
list_for_each_entry(p, head, lp) {
if (p->key == key) {
list_del(&p->list);
- list_del(&p->list);
- write_unlock(&listmutex);
+ list_del_rcu(&p->list);
+ spin_unlock(&listmutex);
+ synchronize_rcu();
kfree(p);
@@ -736,7 +737,7 @@ Or, for those who prefer a side-by-side listing:
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->list); 8 list_del(&p->list);
8 list_del(&p->list); 8 list_del_rcu(&p->list);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);
10 synchronize_rcu();
10 kfree(p); 11 kfree(p);

View File

@@ -1,57 +1,63 @@
Linux Kernel patch sumbittal checklist
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here are some basic things that developers should do if they
want to see their kernel patch submittals accepted quicker.
Here are some basic things that developers should do if they want to see their
kernel patch submissions accepted more quickly.
These are all above and beyond the documentation that is provided
in Documentation/SubmittingPatches and elsewhere about submitting
Linux kernel patches.
These are all above and beyond the documentation that is provided in
Documentation/SubmittingPatches and elsewhere regarding submitting Linux
kernel patches.
- Builds cleanly with applicable or modified CONFIG options =y, =m, and =n.
No gcc warnings/errors, no linker warnings/errors.
1: Builds cleanly with applicable or modified CONFIG options =y, =m, and
=n. No gcc warnings/errors, no linker warnings/errors.
- Passes allnoconfig, allmodconfig
2: Passes allnoconfig, allmodconfig
- Builds on multiple CPU arch-es by using local cross-compile tools
or something like PLM at OSDL.
3: Builds on multiple CPU architectures by using local cross-compile tools
or something like PLM at OSDL.
- ppc64 is a good architecture for cross-compilation checking because it
tends to use `unsigned long' for 64-bit quantities.
4: ppc64 is a good architecture for cross-compilation checking because it
tends to use `unsigned long' for 64-bit quantities.
- Matches kernel coding style(!)
5: Matches kernel coding style(!)
- Any new or modified CONFIG options don't muck up the config menu.
6: Any new or modified CONFIG options don't muck up the config menu.
- All new Kconfig options have help text.
7: All new Kconfig options have help text.
- Has been carefully reviewed with respect to relevant Kconfig
combinations. This is very hard to get right with testing --
brainpower pays off here.
8: Has been carefully reviewed with respect to relevant Kconfig
combinations. This is very hard to get right with testing -- brainpower
pays off here.
- Check cleanly with sparse.
9: Check cleanly with sparse.
- Use 'make checkstack' and 'make namespacecheck' and fix any
problems that they find. Note: checkstack does not point out
problems explicitly, but any one function that uses more than
512 bytes on the stack is a candidate for change.
10: Use 'make checkstack' and 'make namespacecheck' and fix any problems
that they find. Note: checkstack does not point out problems explicitly,
but any one function that uses more than 512 bytes on the stack is a
candidate for change.
- Include kernel-doc to document global kernel APIs. (Not required
for static functions, but OK there also.) Use 'make htmldocs'
or 'make mandocs' to check the kernel-doc and fix any issues.
11: Include kernel-doc to document global kernel APIs. (Not required for
static functions, but OK there also.) Use 'make htmldocs' or 'make
mandocs' to check the kernel-doc and fix any issues.
- Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_SPINLOCK_SLEEP all simultaneously
enabled.
12: Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_SPINLOCK_SLEEP all simultaneously
enabled.
- Has been build- and runtime tested with and without CONFIG_SMP and
CONFIG_PREEMPT.
13: Has been build- and runtime tested with and without CONFIG_SMP and
CONFIG_PREEMPT.
- If the patch affects IO/Disk, etc: has been tested with and without
CONFIG_LBD.
14: If the patch affects IO/Disk, etc: has been tested with and without
CONFIG_LBD.
15: All codepaths have been exercised with all lockdep features enabled.
2006-APR-27
16: All new /proc entries are documented under Documentation/
17: All new kernel boot parameters are documented in
Documentation/kernel-parameters.txt.
18: All new module parameters are documented with MODULE_PARM_DESC()

View File

@@ -10,7 +10,9 @@ kernel, the process can sometimes be daunting if you're not familiar
with "the system." This text is a collection of suggestions which
can greatly increase the chances of your change being accepted.
If you are submitting a driver, also read Documentation/SubmittingDrivers.
Read Documentation/SubmitChecklist for a list of items to check
before submitting code. If you are submitting a driver, also read
Documentation/SubmittingDrivers.
@@ -74,9 +76,6 @@ There are a number of scripts which can aid in this:
Quilt:
http://savannah.nongnu.org/projects/quilt
Randy Dunlap's patch scripts:
http://www.xenotime.net/linux/scripts/patching-scripts-002.tar.gz
Andrew Morton's patch scripts:
http://www.zip.com.au/~akpm/linux/patches/
Instead of these scripts, quilt is the recommended patch management
@@ -309,6 +308,8 @@ then you just add a line saying
Signed-off-by: Random J Developer <random@developer.example.org>
using your real name (sorry, no pseudonyms or anonymous contributions.)
Some people also put extra tags at the end. They'll just be ignored for
now, but you can do this to mark internal company procedures or just
point out some special detail about the sign-off.
@@ -484,7 +485,7 @@ Greg Kroah-Hartman "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/2005/10/19/>
<http://www.kroah.com/log/2006/01/11/>
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!.
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
Kernel Documentation/CodingStyle
@@ -493,4 +494,3 @@ Kernel Documentation/CodingStyle
Linus Torvald's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
--
Last updated on 17 Nov 2005.

View File

@@ -0,0 +1,112 @@
Delay accounting
----------------
Tasks encounter delays in execution when they wait
for some kernel resource to become available e.g. a
runnable task may wait for a free CPU to run on.
The per-task delay accounting functionality measures
the delays experienced by a task while
a) waiting for a CPU (while being runnable)
b) completion of synchronous block I/O initiated by the task
c) swapping in pages
and makes these statistics available to userspace through
the taskstats interface.
Such delays provide feedback for setting a task's cpu priority,
io priority and rss limit values appropriately. Long delays for
important tasks could be a trigger for raising its corresponding priority.
The functionality, through its use of the taskstats interface, also provides
delay statistics aggregated for all tasks (or threads) belonging to a
thread group (corresponding to a traditional Unix process). This is a commonly
needed aggregation that is more efficiently done by the kernel.
Userspace utilities, particularly resource management applications, can also
aggregate delay statistics into arbitrary groups. To enable this, delay
statistics of a task are available both during its lifetime as well as on its
exit, ensuring continuous and complete monitoring can be done.
Interface
---------
Delay accounting uses the taskstats interface which is described
in detail in a separate document in this directory. Taskstats returns a
generic data structure to userspace corresponding to per-pid and per-tgid
statistics. The delay accounting functionality populates specific fields of
this structure. See
include/linux/taskstats.h
for a description of the fields pertaining to delay accounting.
It will generally be in the form of counters returning the cumulative
delay seen for cpu, sync block I/O, swapin etc.
Taking the difference of two successive readings of a given
counter (say cpu_delay_total) for a task will give the delay
experienced by the task waiting for the corresponding resource
in that interval.
When a task exits, records containing the per-task statistics
are sent to userspace without requiring a command. If it is the last exiting
task of a thread group, the per-tgid statistics are also sent. More details
are given in the taskstats interface description.
The getdelays.c userspace utility in this directory allows simple commands to
be run and the corresponding delay statistics to be displayed. It also serves
as an example of using the taskstats interface.
Usage
-----
Compile the kernel with
CONFIG_TASK_DELAY_ACCT=y
CONFIG_TASKSTATS=y
Delay accounting is enabled by default at boot up.
To disable, add
nodelayacct
to the kernel boot options. The rest of the instructions
below assume this has not been done.
After the system has booted up, use a utility
similar to getdelays.c to access the delays
seen by a given task or a task group (tgid).
The utility also allows a given command to be
executed and the corresponding delays to be
seen.
General format of the getdelays command
getdelays [-t tgid] [-p pid] [-c cmd...]
Get delays, since system boot, for pid 10
# ./getdelays -p 10
(output similar to next case)
Get sum of delays, since system boot, for all pids with tgid 5
# ./getdelays -t 5
CPU count real total virtual total delay total
7876 92005750 100000000 24001500
IO count delay total
0 0
MEM count delay total
0 0
Get delays seen in executing a given simple command
# ./getdelays -c ls /
bin data1 data3 data5 dev home media opt root srv sys usr
boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp var
CPU count real total virtual total delay total
6 4000250 4000000 0
IO count delay total
0 0
MEM count delay total
0 0

View File

@@ -0,0 +1,396 @@
/* getdelays.c
*
* Utility to get per-pid and per-tgid delay accounting statistics
* Also illustrates usage of the taskstats interface
*
* Copyright (C) Shailabh Nagar, IBM Corp. 2005
* Copyright (C) Balbir Singh, IBM Corp. 2006
* Copyright (c) Jay Lan, SGI. 2006
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <poll.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <signal.h>
#include <linux/genetlink.h>
#include <linux/taskstats.h>
/*
* Generic macros for dealing with netlink sockets. Might be duplicated
* elsewhere. It is recommended that commercial grade applications use
* libnl or libnetlink and use the interfaces provided by the library
*/
#define GENLMSG_DATA(glh) ((void *)(NLMSG_DATA(glh) + GENL_HDRLEN))
#define GENLMSG_PAYLOAD(glh) (NLMSG_PAYLOAD(glh, 0) - GENL_HDRLEN)
#define NLA_DATA(na) ((void *)((char*)(na) + NLA_HDRLEN))
#define NLA_PAYLOAD(len) (len - NLA_HDRLEN)
#define err(code, fmt, arg...) do { printf(fmt, ##arg); exit(code); } while (0)
int done = 0;
int rcvbufsz=0;
char name[100];
int dbg=0, print_delays=0;
__u64 stime, utime;
#define PRINTF(fmt, arg...) { \
if (dbg) { \
printf(fmt, ##arg); \
} \
}
/* Maximum size of response requested or message sent */
#define MAX_MSG_SIZE 256
/* Maximum number of cpus expected to be specified in a cpumask */
#define MAX_CPUS 32
/* Maximum length of pathname to log file */
#define MAX_FILENAME 256
struct msgtemplate {
struct nlmsghdr n;
struct genlmsghdr g;
char buf[MAX_MSG_SIZE];
};
char cpumask[100+6*MAX_CPUS];
/*
* Create a raw netlink socket and bind
*/
static int create_nl_socket(int protocol)
{
int fd;
struct sockaddr_nl local;
fd = socket(AF_NETLINK, SOCK_RAW, protocol);
if (fd < 0)
return -1;
if (rcvbufsz)
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
&rcvbufsz, sizeof(rcvbufsz)) < 0) {
printf("Unable to set socket rcv buf size to %d\n",
rcvbufsz);
return -1;
}
memset(&local, 0, sizeof(local));
local.nl_family = AF_NETLINK;
if (bind(fd, (struct sockaddr *) &local, sizeof(local)) < 0)
goto error;
return fd;
error:
close(fd);
return -1;
}
int send_cmd(int sd, __u16 nlmsg_type, __u32 nlmsg_pid,
__u8 genl_cmd, __u16 nla_type,
void *nla_data, int nla_len)
{
struct nlattr *na;
struct sockaddr_nl nladdr;
int r, buflen;
char *buf;
struct msgtemplate msg;
msg.n.nlmsg_len = NLMSG_LENGTH(GENL_HDRLEN);
msg.n.nlmsg_type = nlmsg_type;
msg.n.nlmsg_flags = NLM_F_REQUEST;
msg.n.nlmsg_seq = 0;
msg.n.nlmsg_pid = nlmsg_pid;
msg.g.cmd = genl_cmd;
msg.g.version = 0x1;
na = (struct nlattr *) GENLMSG_DATA(&msg);
na->nla_type = nla_type;
na->nla_len = nla_len + 1 + NLA_HDRLEN;
memcpy(NLA_DATA(na), nla_data, nla_len);
msg.n.nlmsg_len += NLMSG_ALIGN(na->nla_len);
buf = (char *) &msg;
buflen = msg.n.nlmsg_len ;
memset(&nladdr, 0, sizeof(nladdr));
nladdr.nl_family = AF_NETLINK;
while ((r = sendto(sd, buf, buflen, 0, (struct sockaddr *) &nladdr,
sizeof(nladdr))) < buflen) {
if (r > 0) {
buf += r;
buflen -= r;
} else if (errno != EAGAIN)
return -1;
}
return 0;
}
/*
* Probe the controller in genetlink to find the family id
* for the TASKSTATS family
*/
int get_family_id(int sd)
{
struct {
struct nlmsghdr n;
struct genlmsghdr g;
char buf[256];
} ans;
int id, rc;
struct nlattr *na;
int rep_len;
strcpy(name, TASKSTATS_GENL_NAME);
rc = send_cmd(sd, GENL_ID_CTRL, getpid(), CTRL_CMD_GETFAMILY,
CTRL_ATTR_FAMILY_NAME, (void *)name,
strlen(TASKSTATS_GENL_NAME)+1);
rep_len = recv(sd, &ans, sizeof(ans), 0);
if (ans.n.nlmsg_type == NLMSG_ERROR ||
(rep_len < 0) || !NLMSG_OK((&ans.n), rep_len))
return 0;
na = (struct nlattr *) GENLMSG_DATA(&ans);
na = (struct nlattr *) ((char *) na + NLA_ALIGN(na->nla_len));
if (na->nla_type == CTRL_ATTR_FAMILY_ID) {
id = *(__u16 *) NLA_DATA(na);
}
return id;
}
void print_delayacct(struct taskstats *t)
{
printf("\n\nCPU %15s%15s%15s%15s\n"
" %15llu%15llu%15llu%15llu\n"
"IO %15s%15s\n"
" %15llu%15llu\n"
"MEM %15s%15s\n"
" %15llu%15llu\n\n",
"count", "real total", "virtual total", "delay total",
t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total,
t->cpu_delay_total,
"count", "delay total",
t->blkio_count, t->blkio_delay_total,
"count", "delay total", t->swapin_count, t->swapin_delay_total);
}
int main(int argc, char *argv[])
{
int c, rc, rep_len, aggr_len, len2, cmd_type;
__u16 id;
__u32 mypid;
struct nlattr *na;
int nl_sd = -1;
int len = 0;
pid_t tid = 0;
pid_t rtid = 0;
int fd = 0;
int count = 0;
int write_file = 0;
int maskset = 0;
char logfile[128];
int loop = 0;
struct msgtemplate msg;
while (1) {
c = getopt(argc, argv, "dw:r:m:t:p:v:l");
if (c < 0)
break;
switch (c) {
case 'd':
printf("print delayacct stats ON\n");
print_delays = 1;
break;
case 'w':
strncpy(logfile, optarg, MAX_FILENAME);
printf("write to file %s\n", logfile);
write_file = 1;
break;
case 'r':
rcvbufsz = atoi(optarg);
printf("receive buf size %d\n", rcvbufsz);
if (rcvbufsz < 0)
err(1, "Invalid rcv buf size\n");
break;
case 'm':
strncpy(cpumask, optarg, sizeof(cpumask));
maskset = 1;
printf("cpumask %s maskset %d\n", cpumask, maskset);
break;
case 't':
tid = atoi(optarg);
if (!tid)
err(1, "Invalid tgid\n");
cmd_type = TASKSTATS_CMD_ATTR_TGID;
print_delays = 1;
break;
case 'p':
tid = atoi(optarg);
if (!tid)
err(1, "Invalid pid\n");
cmd_type = TASKSTATS_CMD_ATTR_PID;
print_delays = 1;
break;
case 'v':
printf("debug on\n");
dbg = 1;
break;
case 'l':
printf("listen forever\n");
loop = 1;
break;
default:
printf("Unknown option %d\n", c);
exit(-1);
}
}
if (write_file) {
fd = open(logfile, O_WRONLY | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
if (fd == -1) {
perror("Cannot open output file\n");
exit(1);
}
}
if ((nl_sd = create_nl_socket(NETLINK_GENERIC)) < 0)
err(1, "error creating Netlink socket\n");
mypid = getpid();
id = get_family_id(nl_sd);
if (!id) {
printf("Error getting family id, errno %d", errno);
goto err;
}
PRINTF("family id %d\n", id);
if (maskset) {
rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
TASKSTATS_CMD_ATTR_REGISTER_CPUMASK,
&cpumask, sizeof(cpumask));
PRINTF("Sent register cpumask, retval %d\n", rc);
if (rc < 0) {
printf("error sending register cpumask\n");
goto err;
}
}
if (tid) {
rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
cmd_type, &tid, sizeof(__u32));
PRINTF("Sent pid/tgid, retval %d\n", rc);
if (rc < 0) {
printf("error sending tid/tgid cmd\n");
goto done;
}
}
do {
int i;
rep_len = recv(nl_sd, &msg, sizeof(msg), 0);
PRINTF("received %d bytes\n", rep_len);
if (rep_len < 0) {
printf("nonfatal reply error: errno %d\n", errno);
continue;
}
if (msg.n.nlmsg_type == NLMSG_ERROR ||
!NLMSG_OK((&msg.n), rep_len)) {
printf("fatal reply error, errno %d\n", errno);
goto done;
}
PRINTF("nlmsghdr size=%d, nlmsg_len=%d, rep_len=%d\n",
sizeof(struct nlmsghdr), msg.n.nlmsg_len, rep_len);
rep_len = GENLMSG_PAYLOAD(&msg.n);
na = (struct nlattr *) GENLMSG_DATA(&msg);
len = 0;
i = 0;
while (len < rep_len) {
len += NLA_ALIGN(na->nla_len);
switch (na->nla_type) {
case TASKSTATS_TYPE_AGGR_TGID:
/* Fall through */
case TASKSTATS_TYPE_AGGR_PID:
aggr_len = NLA_PAYLOAD(na->nla_len);
len2 = 0;
/* For nested attributes, na follows */
na = (struct nlattr *) NLA_DATA(na);
done = 0;
while (len2 < aggr_len) {
switch (na->nla_type) {
case TASKSTATS_TYPE_PID:
rtid = *(int *) NLA_DATA(na);
if (print_delays)
printf("PID\t%d\n", rtid);
break;
case TASKSTATS_TYPE_TGID:
rtid = *(int *) NLA_DATA(na);
if (print_delays)
printf("TGID\t%d\n", rtid);
break;
case TASKSTATS_TYPE_STATS:
count++;
if (print_delays)
print_delayacct((struct taskstats *) NLA_DATA(na));
if (fd) {
if (write(fd, NLA_DATA(na), na->nla_len) < 0) {
err(1,"write error\n");
}
}
if (!loop)
goto done;
break;
default:
printf("Unknown nested nla_type %d\n", na->nla_type);
break;
}
len2 += NLA_ALIGN(na->nla_len);
na = (struct nlattr *) ((char *) na + len2);
}
break;
default:
printf("Unknown nla_type %d\n", na->nla_type);
break;
}
na = (struct nlattr *) (GENLMSG_DATA(&msg) + len);
}
} while (loop);
done:
if (maskset) {
rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
TASKSTATS_CMD_ATTR_DEREGISTER_CPUMASK,
&cpumask, sizeof(cpumask));
printf("Sent deregister mask, retval %d\n", rc);
if (rc < 0)
err(rc, "error sending deregister cpumask\n");
}
err:
close(nl_sd);
if (fd)
close(fd);
return 0;
}

View File

@@ -0,0 +1,181 @@
Per-task statistics interface
-----------------------------
Taskstats is a netlink-based interface for sending per-task and
per-process statistics from the kernel to userspace.
Taskstats was designed for the following benefits:
- efficiently provide statistics during lifetime of a task and on its exit
- unified interface for multiple accounting subsystems
- extensibility for use by future accounting patches
Terminology
-----------
"pid", "tid" and "task" are used interchangeably and refer to the standard
Linux task defined by struct task_struct. per-pid stats are the same as
per-task stats.
"tgid", "process" and "thread group" are used interchangeably and refer to the
tasks that share an mm_struct i.e. the traditional Unix process. Despite the
use of tgid, there is no special treatment for the task that is thread group
leader - a process is deemed alive as long as it has any task belonging to it.
Usage
-----
To get statistics during a task's lifetime, userspace opens a unicast netlink
socket (NETLINK_GENERIC family) and sends commands specifying a pid or a tgid.
The response contains statistics for a task (if pid is specified) or the sum of
statistics for all tasks of the process (if tgid is specified).
To obtain statistics for tasks which are exiting, the userspace listener
sends a register command and specifies a cpumask. Whenever a task exits on
one of the cpus in the cpumask, its per-pid statistics are sent to the
registered listener. Using cpumasks allows the data received by one listener
to be limited and assists in flow control over the netlink interface and is
explained in more detail below.
If the exiting task is the last thread exiting its thread group,
an additional record containing the per-tgid stats is also sent to userspace.
The latter contains the sum of per-pid stats for all threads in the thread
group, both past and present.
getdelays.c is a simple utility demonstrating usage of the taskstats interface
for reporting delay accounting statistics. Users can register cpumasks,
send commands and process responses, listen for per-tid/tgid exit data,
write the data received to a file and do basic flow control by increasing
receive buffer sizes.
Interface
---------
The user-kernel interface is encapsulated in include/linux/taskstats.h
To avoid this documentation becoming obsolete as the interface evolves, only
an outline of the current version is given. taskstats.h always overrides the
description here.
struct taskstats is the common accounting structure for both per-pid and
per-tgid data. It is versioned and can be extended by each accounting subsystem
that is added to the kernel. The fields and their semantics are defined in the
taskstats.h file.
The data exchanged between user and kernel space is a netlink message belonging
to the NETLINK_GENERIC family and using the netlink attributes interface.
The messages are in the format
+----------+- - -+-------------+-------------------+
| nlmsghdr | Pad | genlmsghdr | taskstats payload |
+----------+- - -+-------------+-------------------+
The taskstats payload is one of the following three kinds:
1. Commands: Sent from user to kernel. Commands to get data on
a pid/tgid consist of one attribute, of type TASKSTATS_CMD_ATTR_PID/TGID,
containing a u32 pid or tgid in the attribute payload. The pid/tgid denotes
the task/process for which userspace wants statistics.
Commands to register/deregister interest in exit data from a set of cpus
consist of one attribute, of type
TASKSTATS_CMD_ATTR_REGISTER/DEREGISTER_CPUMASK and contain a cpumask in the
attribute payload. The cpumask is specified as an ascii string of
comma-separated cpu ranges e.g. to listen to exit data from cpus 1,2,3,5,7,8
the cpumask would be "1-3,5,7-8". If userspace forgets to deregister interest
in cpus before closing the listening socket, the kernel cleans up its interest
set over time. However, for the sake of efficiency, an explicit deregistration
is advisable.
2. Response for a command: sent from the kernel in response to a userspace
command. The payload is a series of three attributes of type:
a) TASKSTATS_TYPE_AGGR_PID/TGID : attribute containing no payload but indicates
a pid/tgid will be followed by some stats.
b) TASKSTATS_TYPE_PID/TGID: attribute whose payload is the pid/tgid whose stats
is being returned.
c) TASKSTATS_TYPE_STATS: attribute with a struct taskstsats as payload. The
same structure is used for both per-pid and per-tgid stats.
3. New message sent by kernel whenever a task exits. The payload consists of a
series of attributes of the following type:
a) TASKSTATS_TYPE_AGGR_PID: indicates next two attributes will be pid+stats
b) TASKSTATS_TYPE_PID: contains exiting task's pid
c) TASKSTATS_TYPE_STATS: contains the exiting task's per-pid stats
d) TASKSTATS_TYPE_AGGR_TGID: indicates next two attributes will be tgid+stats
e) TASKSTATS_TYPE_TGID: contains tgid of process to which task belongs
f) TASKSTATS_TYPE_STATS: contains the per-tgid stats for exiting task's process
per-tgid stats
--------------
Taskstats provides per-process stats, in addition to per-task stats, since
resource management is often done at a process granularity and aggregating task
stats in userspace alone is inefficient and potentially inaccurate (due to lack
of atomicity).
However, maintaining per-process, in addition to per-task stats, within the
kernel has space and time overheads. To address this, the taskstats code
accumalates each exiting task's statistics into a process-wide data structure.
When the last task of a process exits, the process level data accumalated also
gets sent to userspace (along with the per-task data).
When a user queries to get per-tgid data, the sum of all other live threads in
the group is added up and added to the accumalated total for previously exited
threads of the same thread group.
Extending taskstats
-------------------
There are two ways to extend the taskstats interface to export more
per-task/process stats as patches to collect them get added to the kernel
in future:
1. Adding more fields to the end of the existing struct taskstats. Backward
compatibility is ensured by the version number within the
structure. Userspace will use only the fields of the struct that correspond
to the version its using.
2. Defining separate statistic structs and using the netlink attributes
interface to return them. Since userspace processes each netlink attribute
independently, it can always ignore attributes whose type it does not
understand (because it is using an older version of the interface).
Choosing between 1. and 2. is a matter of trading off flexibility and
overhead. If only a few fields need to be added, then 1. is the preferable
path since the kernel and userspace don't need to incur the overhead of
processing new netlink attributes. But if the new fields expand the existing
struct too much, requiring disparate userspace accounting utilities to
unnecessarily receive large structures whose fields are of no interest, then
extending the attributes structure would be worthwhile.
Flow control for taskstats
--------------------------
When the rate of task exits becomes large, a listener may not be able to keep
up with the kernel's rate of sending per-tid/tgid exit data leading to data
loss. This possibility gets compounded when the taskstats structure gets
extended and the number of cpus grows large.
To avoid losing statistics, userspace should do one or more of the following:
- increase the receive buffer sizes for the netlink sockets opened by
listeners to receive exit data.
- create more listeners and reduce the number of cpus being listened to by
each listener. In the extreme case, there could be one listener for each cpu.
Users may also consider setting the cpu affinity of the listener to the subset
of cpus to which it listens, especially if they are listening to just one cpu.
Despite these measures, if the userspace receives ENOBUFS error messages
indicated overflow of receive buffers, it should take measures to handle the
loss of data.
----

View File

@@ -20,6 +20,7 @@ This driver is known to work with the following cards:
* SA P400i
* SA E200
* SA E200i
* SA E500
If nodes are not already created in the /dev/cciss directory, run as root:

View File

@@ -0,0 +1,206 @@
/*
* ucon.c
*
* Copyright (c) 2004+ Evgeniy Polyakov <johnpol@2ka.mipt.ru>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <asm/types.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/poll.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#include <linux/connector.h>
#define DEBUG
#define NETLINK_CONNECTOR 11
#ifdef DEBUG
#define ulog(f, a...) fprintf(stdout, f, ##a)
#else
#define ulog(f, a...) do {} while (0)
#endif
static int need_exit;
static __u32 seq;
static int netlink_send(int s, struct cn_msg *msg)
{
struct nlmsghdr *nlh;
unsigned int size;
int err;
char buf[128];
struct cn_msg *m;
size = NLMSG_SPACE(sizeof(struct cn_msg) + msg->len);
nlh = (struct nlmsghdr *)buf;
nlh->nlmsg_seq = seq++;
nlh->nlmsg_pid = getpid();
nlh->nlmsg_type = NLMSG_DONE;
nlh->nlmsg_len = NLMSG_LENGTH(size - sizeof(*nlh));
nlh->nlmsg_flags = 0;
m = NLMSG_DATA(nlh);
#if 0
ulog("%s: [%08x.%08x] len=%u, seq=%u, ack=%u.\n",
__func__, msg->id.idx, msg->id.val, msg->len, msg->seq, msg->ack);
#endif
memcpy(m, msg, sizeof(*m) + msg->len);
err = send(s, nlh, size, 0);
if (err == -1)
ulog("Failed to send: %s [%d].\n",
strerror(errno), errno);
return err;
}
int main(int argc, char *argv[])
{
int s;
char buf[1024];
int len;
struct nlmsghdr *reply;
struct sockaddr_nl l_local;
struct cn_msg *data;
FILE *out;
time_t tm;
struct pollfd pfd;
if (argc < 2)
out = stdout;
else {
out = fopen(argv[1], "a+");
if (!out) {
ulog("Unable to open %s for writing: %s\n",
argv[1], strerror(errno));
out = stdout;
}
}
memset(buf, 0, sizeof(buf));
s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
if (s == -1) {
perror("socket");
return -1;
}
l_local.nl_family = AF_NETLINK;
l_local.nl_groups = 0x123; /* bitmask of requested groups */
l_local.nl_pid = 0;
if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
perror("bind");
close(s);
return -1;
}
#if 0
{
int on = 0x57; /* Additional group number */
setsockopt(s, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP, &on, sizeof(on));
}
#endif
if (0) {
int i, j;
memset(buf, 0, sizeof(buf));
data = (struct cn_msg *)buf;
data->id.idx = 0x123;
data->id.val = 0x456;
data->seq = seq++;
data->ack = 0;
data->len = 0;
for (j=0; j<10; ++j) {
for (i=0; i<1000; ++i) {
len = netlink_send(s, data);
}
ulog("%d messages have been sent to %08x.%08x.\n", i, data->id.idx, data->id.val);
}
return 0;
}
pfd.fd = s;
while (!need_exit) {
pfd.events = POLLIN;
pfd.revents = 0;
switch (poll(&pfd, 1, -1)) {
case 0:
need_exit = 1;
break;
case -1:
if (errno != EINTR) {
need_exit = 1;
break;
}
continue;
}
if (need_exit)
break;
memset(buf, 0, sizeof(buf));
len = recv(s, buf, sizeof(buf), 0);
if (len == -1) {
perror("recv buf");
close(s);
return -1;
}
reply = (struct nlmsghdr *)buf;
switch (reply->nlmsg_type) {
case NLMSG_ERROR:
fprintf(out, "Error message received.\n");
fflush(out);
break;
case NLMSG_DONE:
data = (struct cn_msg *)NLMSG_DATA(reply);
time(&tm);
fprintf(out, "%.24s : [%x.%x] [%08u.%08u].\n",
ctime(&tm), data->id.idx, data->id.val, data->seq, data->ack);
fflush(out);
break;
default:
break;
}
}
close(s);
return 0;
}

View File

@@ -153,10 +153,13 @@ scaling_governor, and by "echoing" the name of another
that some governors won't load - they only
work on some specific architectures or
processors.
scaling_min_freq and
scaling_min_freq and
scaling_max_freq show the current "policy limits" (in
kHz). By echoing new values into these
files, you can change these limits.
NOTE: when setting a policy you need to
first set scaling_max_freq, then
scaling_min_freq.
If you have selected the "userspace" governor which allows you to

View File

@@ -251,16 +251,24 @@ A: This is what you would need in your kernel code to receive notifications.
return NOTIFY_OK;
}
static struct notifier_block foobar_cpu_notifer =
static struct notifier_block __cpuinitdata foobar_cpu_notifer =
{
.notifier_call = foobar_cpu_callback,
};
You need to call register_cpu_notifier() from your init function.
Init functions could be of two types:
1. early init (init function called when only the boot processor is online).
2. late init (init function called _after_ all the CPUs are online).
In your init function,
For the first case, you should add the following to your init function
register_cpu_notifier(&foobar_cpu_notifier);
For the second case, you should add the following to your init function
register_hotcpu_notifier(&foobar_cpu_notifier);
You can fail PREPARE notifiers if something doesn't work to prepare resources.
This will stop the activity and send a following CANCELED event back.

View File

@@ -217,6 +217,12 @@ exclusive cpuset. Also, the use of a Linux virtual file system (vfs)
to represent the cpuset hierarchy provides for a familiar permission
and name space for cpusets, with a minimum of additional kernel code.
The cpus file in the root (top_cpuset) cpuset is read-only.
It automatically tracks the value of cpu_online_map, using a CPU
hotplug notifier. If and when memory nodes can be hotplugged,
we expect to make the mems file in the root cpuset read-only
as well, and have it track the value of node_online_map.
1.4 What are exclusive cpusets ?
--------------------------------

View File

@@ -2565,10 +2565,10 @@ Your cooperation is appreciated.
243 = /dev/usb/dabusb3 Fourth dabusb device
180 block USB block devices
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device
16 = /dev/ubc Thrid USB block device
...
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device
16 = /dev/ubc Third USB block device
...
181 char Conrad Electronic parallel port radio clocks
0 = /dev/pcfclock0 First Conrad radio clock

View File

@@ -35,15 +35,14 @@ the vendor should tie the parity status bits to 0 if they do not intend
to generate parity. Some vendors do not do this, and thus the parity bit
can "float" giving false positives.
The PCI Parity EDAC device has the ability to "skip" known flaky
cards during the parity scan. These are set by the parity "blacklist"
interface in the sysfs for PCI Parity. (See the PCI section in the sysfs
section below.) There is also a parity "whitelist" which is used as
an explicit list of devices to scan, while the blacklist is a list
of devices to skip.
[There are patches in the kernel queue which will allow for storage of
quirks of PCI devices reporting false parity positives. The 2.6.18
kernel should have those patches included. When that becomes available,
then EDAC will be patched to utilize that information to "skip" such
devices.]
EDAC will have future error detectors that will be added or integrated
into EDAC in the following list:
EDAC will have future error detectors that will be integrated with
EDAC or added to it, in the following list:
MCE Machine Check Exception
MCA Machine Check Architecture
@@ -93,22 +92,24 @@ EDAC lives in the /sys/devices/system/edac directory. Within this directory
there currently reside 2 'edac' components:
mc memory controller(s) system
pci PCI status system
pci PCI control and status system
============================================================================
Memory Controller (mc) Model
First a background on the memory controller's model abstracted in EDAC.
Each mc device controls a set of DIMM memory modules. These modules are
Each 'mc' device controls a set of DIMM memory modules. These modules are
laid out in a Chip-Select Row (csrowX) and Channel table (chX). There can
be multiple csrows and two channels.
be multiple csrows and multiple channels.
Memory controllers allow for several csrows, with 8 csrows being a typical value.
Yet, the actual number of csrows depends on the electrical "loading"
of a given motherboard, memory controller and DIMM characteristics.
Dual channels allows for 128 bit data transfers to the CPU from memory.
Some newer chipsets allow for more than 2 channels, like Fully Buffered DIMMs
(FB-DIMMs). The following example will assume 2 channels:
Channel 0 Channel 1
@@ -234,23 +235,15 @@ Polling period control file:
The time period, in milliseconds, for polling for error information.
Too small a value wastes resources. Too large a value might delay
necessary handling of errors and might loose valuable information for
locating the error. 1000 milliseconds (once each second) is about
right for most uses.
locating the error. 1000 milliseconds (once each second) is the current
default. Systems which require all the bandwidth they can get, may
increase this.
LOAD TIME: module/kernel parameter: poll_msec=[0|1]
RUN TIME: echo "1000" >/sys/devices/system/edac/mc/poll_msec
Module Version read-only attribute file:
'mc_version'
The EDAC CORE module's version and compile date are shown here to
indicate what EDAC is running.
============================================================================
'mcX' DIRECTORIES
@@ -284,35 +277,6 @@ Seconds since last counter reset control file:
DIMM capability attribute file:
'edac_capability'
The EDAC (Error Detection and Correction) capabilities/modes of
the memory controller hardware.
DIMM Current Capability attribute file:
'edac_current_capability'
The EDAC capabilities available with the hardware
configuration. This may not be the same as "EDAC capability"
if the correct memory is not used. If a memory controller is
capable of EDAC, but DIMMs without check bits are in use, then
Parity, SECDED, S4ECD4ED capabilities will not be available
even though the memory controller might be capable of those
modes with the proper memory loaded.
Memory Type supported on this controller attribute file:
'supported_mem_type'
This attribute file displays the memory type, usually
buffered and unbuffered DIMMs.
Memory Controller name attribute file:
'mc_name'
@@ -321,16 +285,6 @@ Memory Controller name attribute file:
that is being utilized.
Memory Controller Module name attribute file:
'module_name'
This attribute file displays the memory controller module name,
version and date built. The name of the memory controller
hardware - some drivers work with multiple controllers and
this field shows which hardware is present.
Total memory managed by this memory controller attribute file:
'size_mb'
@@ -432,6 +386,9 @@ Memory Type attribute file:
This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory.
Examples:
Registered-DDR
Unbuffered-DDR
EDAC Mode of operation attribute file:
@@ -446,8 +403,13 @@ Device type attribute file:
'dev_type'
This attribute file will display what type of DIMM device is
being utilized. Example: x4
This attribute file will display what type of DRAM device is
being utilized on this DIMM.
Examples:
x1
x2
x4
x8
Channel 0 CE Count attribute file:
@@ -522,10 +484,10 @@ SYSTEM LOGGING
If logging for UEs and CEs are enabled then system logs will have
error notices indicating errors that have been detected:
MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
channel 1 "DIMM_B1": amd76x_edac
MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0,
EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0,
channel 1 "DIMM_B1": amd76x_edac
@@ -610,64 +572,4 @@ Parity Count:
PCI Device Whitelist:
'pci_parity_whitelist'
This control file allows for an explicit list of PCI devices to be
scanned for parity errors. Only devices found on this list will
be examined. The list is a line of hexadecimal VENDOR and DEVICE
ID tuples:
1022:7450,1434:16a6
One or more can be inserted, separated by a comma.
To write the above list doing the following as one command line:
echo "1022:7450,1434:16a6"
> /sys/devices/system/edac/pci/pci_parity_whitelist
To display what the whitelist is, simply 'cat' the same file.
PCI Device Blacklist:
'pci_parity_blacklist'
This control file allows for a list of PCI devices to be
skipped for scanning.
The list is a line of hexadecimal VENDOR and DEVICE ID tuples:
1022:7450,1434:16a6
One or more can be inserted, separated by a comma.
To write the above list doing the following as one command line:
echo "1022:7450,1434:16a6"
> /sys/devices/system/edac/pci/pci_parity_blacklist
To display what the whitelist currently contains,
simply 'cat' the same file.
=======================================================================
PCI Vendor and Devices IDs can be obtained with the lspci command. Using
the -n option lspci will display the vendor and device IDs. The system
administrator will have to determine which devices should be scanned or
skipped.
The two lists (white and black) are prioritized. blacklist is the lower
priority and will NOT be utilized when a whitelist has been set.
Turn OFF a whitelist by an empty echo command:
echo > /sys/devices/system/edac/pci/pci_parity_whitelist
and any previous blacklist will be utilized.

View File

@@ -0,0 +1,31 @@
What is imacfb?
===============
This is a generic EFI platform driver for Intel based Apple computers.
Imacfb is only for EFI booted Intel Macs.
Supported Hardware
==================
iMac 17"/20"
Macbook
Macbook Pro 15"/17"
MacMini
How to use it?
==============
Imacfb does not have any kind of autodetection of your machine.
You have to add the fillowing kernel parameters in your elilo.conf:
Macbook :
video=imacfb:macbook
MacMini :
video=imacfb:mini
Macbook Pro 15", iMac 17" :
video=imacfb:i17
Macbook Pro 17", iMac 20" :
video=imacfb:i20
--
Edgar Hucek <gimli@dark-green.com>

View File

@@ -55,14 +55,6 @@ Who: Mauro Carvalho Chehab <mchehab@brturbo.com.br>
---------------------------
What: remove EXPORT_SYMBOL(insert_resource)
When: April 2006
Files: kernel/resource.c
Why: No modular usage in the kernel.
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl])
When: November 2005
Files: drivers/pcmcia/: pcmcia_ioctl.c
@@ -128,6 +120,13 @@ Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: drivers depending on OSS_OBSOLETE_DRIVER
When: options in 2.6.20, code in 2.6.22
Why: OSS drivers with ALSA replacements
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: pci_module_init(driver)
When: January 2007
Why: Is replaced by pci_register_driver(pci_driver).
@@ -166,17 +165,6 @@ Who: Arjan van de Ven <arjan@linux.intel.com>
---------------------------
What: remove EXPORT_SYMBOL(tasklist_lock)
When: August 2006
Files: kernel/fork.c
Why: tasklist_lock protects the kernel internal task list. Modules have
no business looking at it, and all instances in drivers have been due
to use of too-lowlevel APIs. Having this symbol exported prevents
moving to more scalable locking schemes for the task list.
Who: Christoph Hellwig <hch@lst.de>
---------------------------
What: mount/umount uevents
When: February 2007
Why: These events are not correct, and do not properly let userspace know
@@ -266,3 +254,43 @@ Why: The interrupt related SA_* flags are replaced by IRQF_* to move them
Who: Thomas Gleixner <tglx@linutronix.de>
---------------------------
What: i2c-ite and i2c-algo-ite drivers
When: September 2006
Why: These drivers never compiled since they were added to the kernel
tree 5 years ago. This feature removal can be reevaluated if
someone shows interest in the drivers, fixes them and takes over
maintenance.
http://marc.theaimsgroup.com/?l=linux-mips&m=115040510817448
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: Bridge netfilter deferred IPv4/IPv6 output hook calling
When: January 2007
Why: The deferred output hooks are a layering violation causing unusual
and broken behaviour on bridge devices. Examples of things they
break include QoS classifation using the MARK or CLASSIFY targets,
the IPsec policy match and connection tracking with VLANs on a
bridge. Their only use is to enable bridge output port filtering
within iptables with the physdev match, which can also be done by
combining iptables and ebtables using netfilter marks. Until it
will get removed the hook deferral is disabled by default and is
only enabled when needed.
Who: Patrick McHardy <kaber@trash.net>
---------------------------
What: frame diverter
When: November 2006
Why: The frame diverter is included in most distribution kernels, but is
broken. It does not correctly handle many things:
- IPV6
- non-linear skb's
- network device RCU on removal
- input frames not correctly checked for protocol errors
It also adds allocation overhead even if not enabled.
It is not clear if anyone is still using it.
Who: Stephen Hemminger <shemminger@osdl.org>

View File

@@ -62,8 +62,8 @@ ramfs-rootfs-initramfs.txt
- info on the 'in memory' filesystems ramfs, rootfs and initramfs.
reiser4.txt
- info on the Reiser4 filesystem based on dancing tree algorithms.
relayfs.txt
- info on relayfs, for efficient streaming from kernel to user space.
relay.txt
- info on relay, for efficient streaming from kernel to user space.
romfs.txt
- description of the ROMFS filesystem.
smbfs.txt

Some files were not shown because too many files have changed in this diff Show More