Merge tag 'platform-drivers-x86-v5.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86

Pull x86 platform driver updates from Hans de Goede:
 "Highlights:

   - Microsoft Surface devices System Aggregator Module support

   - SW_TABLET_MODE reporting improvements

   - thinkpad_acpi keyboard language setting support

   - platform / DPTF profile settings support:

      - Base / userspace API parts merged from Rafael's acpi-platform
        branch

      - thinkpad_acpi and ideapad-laptop support through pdx86

   - Remove support for some obsolete Intel MID platforms through
     merging of the shared intel-mid-removal branch

   - Big cleanup of the ideapad-laptop driver

   - Misc other fixes / new hw support / quirks"

* tag 'platform-drivers-x86-v5.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86: (99 commits)
  platform/x86: intel_scu_ipc: Increase virtual timeout from 3 to 5 seconds
  platform/surface: aggregator: Fix access of unaligned value
  tools/power/x86/intel-speed-select: Update version to 1.8
  tools/power/x86/intel-speed-select: Add new command to get/set TRL
  tools/power/x86/intel-speed-select: Add new command turbo-mode
  Platform: OLPC: Constify static struct regulator_ops
  platform/surface: Add Surface Hot-Plug driver
  platform/x86: intel_scu_wdt: Drop mistakenly added const
  platform/x86: Kconfig: add missing selects for ideapad-laptop
  platform/x86: acer-wmi: Don't use ACPI_EXCEPTION()
  platform/x86: thinkpad_acpi: Replace ifdef CONFIG_ACPI_PLATFORM_PROFILE with depends on
  platform/x86: thinkpad_acpi: Fix 'warning: no previous prototype for' warnings
  platform/x86: msi-wmi: Fix variable 'status' set but not used compiler warning
  platform/surface: surface3-wmi: Fix variable 'status' set but not used compiler warning
  platform/x86: Move all dell drivers to their own subdirectory
  Documentation/ABI: sysfs-platform-ideapad-laptop: conservation_mode attribute
  Documentation/ABI: sysfs-platform-ideapad-laptop: update device attribute paths
  platform/x86: ideapad-laptop: add "always on USB charging" control support
  platform/x86: ideapad-laptop: add keyboard backlight control support
  platform/x86: ideapad-laptop: send notification about touchpad state change to sysfs
  ...
This commit is contained in:
Linus Torvalds
2021-02-22 08:50:01 -08:00
108 changed files with 16567 additions and 3474 deletions

View File

@@ -1,11 +1,11 @@
What: /sys/devices/platform/ideapad/camera_power
What: /sys/bus/platform/devices/VPC2004:*/camera_power
Date: Dec 2010
KernelVersion: 2.6.37
Contact: "Ike Panhc <ike.pan@canonical.com>"
Description:
Control the power of camera module. 1 means on, 0 means off.
What: /sys/devices/platform/ideapad/fan_mode
What: /sys/bus/platform/devices/VPC2004:*/fan_mode
Date: June 2012
KernelVersion: 3.6
Contact: "Maxim Mikityanskiy <maxtram95@gmail.com>"
@@ -18,7 +18,7 @@ Description:
* 2 -> Dust Cleaning
* 4 -> Efficient Thermal Dissipation Mode
What: /sys/devices/platform/ideapad/touchpad
What: /sys/bus/platform/devices/VPC2004:*/touchpad
Date: May 2017
KernelVersion: 4.13
Contact: "Ritesh Raj Sarraf <rrs@debian.org>"
@@ -27,7 +27,16 @@ Description:
* 1 -> Switched On
* 0 -> Switched Off
What: /sys/bus/pci/devices/<bdf>/<device>/VPC2004:00/fn_lock
What: /sys/bus/platform/devices/VPC2004:*/conservation_mode
Date: Aug 2017
KernelVersion: 4.14
Contact: platform-driver-x86@vger.kernel.org
Description:
Controls whether the conservation mode is enabled or not.
This feature limits the maximum battery charge percentage to
around 50-60% in order to prolong the lifetime of the battery.
What: /sys/bus/platform/devices/VPC2004:*/fn_lock
Date: May 2018
KernelVersion: 4.18
Contact: "Oleg Keri <ezhi99@gmail.com>"
@@ -41,3 +50,12 @@ Description:
# echo "0" > \
/sys/bus/pci/devices/0000:00:1f.0/PNP0C09:00/VPC2004:00/fn_lock
What: /sys/bus/platform/devices/VPC2004:*/usb_charging
Date: Feb 2021
KernelVersion: 5.12
Contact: platform-driver-x86@vger.kernel.org
Description:
Controls whether the "always on USB charging" feature is
enabled or not. This feature enables charging USB devices
even if the computer is not turned on.

View File

@@ -51,6 +51,7 @@ detailed description):
- UWB enable and disable
- LCD Shadow (PrivacyGuard) enable and disable
- Lap mode sensor
- Setting keyboard language
A compatibility table by model and feature is maintained on the web
site, http://ibm-acpi.sf.net/. I appreciate any success or failure
@@ -1466,6 +1467,30 @@ Sysfs notes
rfkill controller switch "tpacpi_uwb_sw": refer to
Documentation/driver-api/rfkill.rst for details.
Setting keyboard language
-------------------------
sysfs: keyboard_lang
This feature is used to set keyboard language to ECFW using ASL interface.
Fewer thinkpads models like T580 , T590 , T15 Gen 1 etc.. has "=", "(',
")" numeric keys, which are not displaying correctly, when keyboard language
is other than "english". This is because the default keyboard language in ECFW
is set as "english". Hence using this sysfs, user can set the correct keyboard
language to ECFW and then these key's will work correctly.
Example of command to set keyboard language is mentioned below::
echo jp > /sys/devices/platform/thinkpad_acpi/keyboard_lang
Text corresponding to keyboard layout to be set in sysfs are: be(Belgian),
cz(Czech), da(Danish), de(German), en(English), es(Spain), et(Estonian),
fr(French), fr-ch(French(Switzerland)), hu(Hungarian), it(Italy), jp (Japan),
nl(Dutch), nn(Norway), pl(Polish), pt(portugese), sl(Slovenian), sv(Sweden),
tr(Turkey)
Adaptive keyboard
-----------------

View File

@@ -99,6 +99,7 @@ available subsections can be seen below.
rfkill
serial/index
sm501
surface_aggregator/index
switchtec
sync_file
vfio-mediated-device

View File

@@ -0,0 +1,38 @@
.. SPDX-License-Identifier: GPL-2.0+
===============================
Client Driver API Documentation
===============================
.. contents::
:depth: 2
Serial Hub Communication
========================
.. kernel-doc:: include/linux/surface_aggregator/serial_hub.h
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_packet_layer.c
:export:
Controller and Core Interface
=============================
.. kernel-doc:: include/linux/surface_aggregator/controller.h
.. kernel-doc:: drivers/platform/surface/aggregator/controller.c
:export:
.. kernel-doc:: drivers/platform/surface/aggregator/core.c
:export:
Client Bus and Client Device API
================================
.. kernel-doc:: include/linux/surface_aggregator/device.h
.. kernel-doc:: drivers/platform/surface/aggregator/bus.c
:export:

View File

@@ -0,0 +1,393 @@
.. SPDX-License-Identifier: GPL-2.0+
.. |ssam_controller| replace:: :c:type:`struct ssam_controller <ssam_controller>`
.. |ssam_device| replace:: :c:type:`struct ssam_device <ssam_device>`
.. |ssam_device_driver| replace:: :c:type:`struct ssam_device_driver <ssam_device_driver>`
.. |ssam_client_bind| replace:: :c:func:`ssam_client_bind`
.. |ssam_client_link| replace:: :c:func:`ssam_client_link`
.. |ssam_get_controller| replace:: :c:func:`ssam_get_controller`
.. |ssam_controller_get| replace:: :c:func:`ssam_controller_get`
.. |ssam_controller_put| replace:: :c:func:`ssam_controller_put`
.. |ssam_device_alloc| replace:: :c:func:`ssam_device_alloc`
.. |ssam_device_add| replace:: :c:func:`ssam_device_add`
.. |ssam_device_remove| replace:: :c:func:`ssam_device_remove`
.. |ssam_device_driver_register| replace:: :c:func:`ssam_device_driver_register`
.. |ssam_device_driver_unregister| replace:: :c:func:`ssam_device_driver_unregister`
.. |module_ssam_device_driver| replace:: :c:func:`module_ssam_device_driver`
.. |SSAM_DEVICE| replace:: :c:func:`SSAM_DEVICE`
.. |ssam_notifier_register| replace:: :c:func:`ssam_notifier_register`
.. |ssam_notifier_unregister| replace:: :c:func:`ssam_notifier_unregister`
.. |ssam_request_sync| replace:: :c:func:`ssam_request_sync`
.. |ssam_event_mask| replace:: :c:type:`enum ssam_event_mask <ssam_event_mask>`
======================
Writing Client Drivers
======================
For the API documentation, refer to:
.. toctree::
:maxdepth: 2
client-api
Overview
========
Client drivers can be set up in two main ways, depending on how the
corresponding device is made available to the system. We specifically
differentiate between devices that are presented to the system via one of
the conventional ways, e.g. as platform devices via ACPI, and devices that
are non-discoverable and instead need to be explicitly provided by some
other mechanism, as discussed further below.
Non-SSAM Client Drivers
=======================
All communication with the SAM EC is handled via the |ssam_controller|
representing that EC to the kernel. Drivers targeting a non-SSAM device (and
thus not being a |ssam_device_driver|) need to explicitly establish a
connection/relation to that controller. This can be done via the
|ssam_client_bind| function. Said function returns a reference to the SSAM
controller, but, more importantly, also establishes a device link between
client device and controller (this can also be done separate via
|ssam_client_link|). It is important to do this, as it, first, guarantees
that the returned controller is valid for use in the client driver for as
long as this driver is bound to its device, i.e. that the driver gets
unbound before the controller ever becomes invalid, and, second, as it
ensures correct suspend/resume ordering. This setup should be done in the
driver's probe function, and may be used to defer probing in case the SSAM
subsystem is not ready yet, for example:
.. code-block:: c
static int client_driver_probe(struct platform_device *pdev)
{
struct ssam_controller *ctrl;
ctrl = ssam_client_bind(&pdev->dev);
if (IS_ERR(ctrl))
return PTR_ERR(ctrl) == -ENODEV ? -EPROBE_DEFER : PTR_ERR(ctrl);
// ...
return 0;
}
The controller may be separately obtained via |ssam_get_controller| and its
lifetime be guaranteed via |ssam_controller_get| and |ssam_controller_put|.
Note that none of these functions, however, guarantee that the controller
will not be shut down or suspended. These functions essentially only operate
on the reference, i.e. only guarantee a bare minimum of accessibility
without any guarantees at all on practical operability.
Adding SSAM Devices
===================
If a device does not already exist/is not already provided via conventional
means, it should be provided as |ssam_device| via the SSAM client device
hub. New devices can be added to this hub by entering their UID into the
corresponding registry. SSAM devices can also be manually allocated via
|ssam_device_alloc|, subsequently to which they have to be added via
|ssam_device_add| and eventually removed via |ssam_device_remove|. By
default, the parent of the device is set to the controller device provided
for allocation, however this may be changed before the device is added. Note
that, when changing the parent device, care must be taken to ensure that the
controller lifetime and suspend/resume ordering guarantees, in the default
setup provided through the parent-child relation, are preserved. If
necessary, by use of |ssam_client_link| as is done for non-SSAM client
drivers and described in more detail above.
A client device must always be removed by the party which added the
respective device before the controller shuts down. Such removal can be
guaranteed by linking the driver providing the SSAM device to the controller
via |ssam_client_link|, causing it to unbind before the controller driver
unbinds. Client devices registered with the controller as parent are
automatically removed when the controller shuts down, but this should not be
relied upon, especially as this does not extend to client devices with a
different parent.
SSAM Client Drivers
===================
SSAM client device drivers are, in essence, no different than other device
driver types. They are represented via |ssam_device_driver| and bind to a
|ssam_device| via its UID (:c:type:`struct ssam_device.uid <ssam_device>`)
member and the match table
(:c:type:`struct ssam_device_driver.match_table <ssam_device_driver>`),
which should be set when declaring the driver struct instance. Refer to the
|SSAM_DEVICE| macro documentation for more details on how to define members
of the driver's match table.
The UID for SSAM client devices consists of a ``domain``, a ``category``,
a ``target``, an ``instance``, and a ``function``. The ``domain`` is used
differentiate between physical SAM devices
(:c:type:`SSAM_DOMAIN_SERIALHUB <ssam_device_domain>`), i.e. devices that can
be accessed via the Surface Serial Hub, and virtual ones
(:c:type:`SSAM_DOMAIN_VIRTUAL <ssam_device_domain>`), such as client-device
hubs, that have no real representation on the SAM EC and are solely used on
the kernel/driver-side. For physical devices, ``category`` represents the
target category, ``target`` the target ID, and ``instance`` the instance ID
used to access the physical SAM device. In addition, ``function`` references
a specific device functionality, but has no meaning to the SAM EC. The
(default) name of a client device is generated based on its UID.
A driver instance can be registered via |ssam_device_driver_register| and
unregistered via |ssam_device_driver_unregister|. For convenience, the
|module_ssam_device_driver| macro may be used to define module init- and
exit-functions registering the driver.
The controller associated with a SSAM client device can be found in its
:c:type:`struct ssam_device.ctrl <ssam_device>` member. This reference is
guaranteed to be valid for at least as long as the client driver is bound,
but should also be valid for as long as the client device exists. Note,
however, that access outside of the bound client driver must ensure that the
controller device is not suspended while making any requests or
(un-)registering event notifiers (and thus should generally be avoided). This
is guaranteed when the controller is accessed from inside the bound client
driver.
Making Synchronous Requests
===========================
Synchronous requests are (currently) the main form of host-initiated
communication with the EC. There are a couple of ways to define and execute
such requests, however, most of them boil down to something similar as shown
in the example below. This example defines a write-read request, meaning
that the caller provides an argument to the SAM EC and receives a response.
The caller needs to know the (maximum) length of the response payload and
provide a buffer for it.
Care must be taken to ensure that any command payload data passed to the SAM
EC is provided in little-endian format and, similarly, any response payload
data received from it is converted from little-endian to host endianness.
.. code-block:: c
int perform_request(struct ssam_controller *ctrl, u32 arg, u32 *ret)
{
struct ssam_request rqst;
struct ssam_response resp;
int status;
/* Convert request argument to little-endian. */
__le32 arg_le = cpu_to_le32(arg);
__le32 ret_le = cpu_to_le32(0);
/*
* Initialize request specification. Replace this with your values.
* The rqst.payload field may be NULL if rqst.length is zero,
* indicating that the request does not have any argument.
*
* Note: The request parameters used here are not valid, i.e.
* they do not correspond to an actual SAM/EC request.
*/
rqst.target_category = SSAM_SSH_TC_SAM;
rqst.target_id = 0x01;
rqst.command_id = 0x02;
rqst.instance_id = 0x03;
rqst.flags = SSAM_REQUEST_HAS_RESPONSE;
rqst.length = sizeof(arg_le);
rqst.payload = (u8 *)&arg_le;
/* Initialize request response. */
resp.capacity = sizeof(ret_le);
resp.length = 0;
resp.pointer = (u8 *)&ret_le;
/*
* Perform actual request. The response pointer may be null in case
* the request does not have any response. This must be consistent
* with the SSAM_REQUEST_HAS_RESPONSE flag set in the specification
* above.
*/
status = ssam_request_sync(ctrl, &rqst, &resp);
/*
* Alternatively use
*
* ssam_request_sync_onstack(ctrl, &rqst, &resp, sizeof(arg_le));
*
* to perform the request, allocating the message buffer directly
* on the stack as opposed to allocation via kzalloc().
*/
/*
* Convert request response back to native format. Note that in the
* error case, this value is not touched by the SSAM core, i.e.
* 'ret_le' will be zero as specified in its initialization.
*/
*ret = le32_to_cpu(ret_le);
return status;
}
Note that |ssam_request_sync| in its essence is a wrapper over lower-level
request primitives, which may also be used to perform requests. Refer to its
implementation and documentation for more details.
An arguably more user-friendly way of defining such functions is by using
one of the generator macros, for example via:
.. code-block:: c
SSAM_DEFINE_SYNC_REQUEST_W(__ssam_tmp_perf_mode_set, __le32, {
.target_category = SSAM_SSH_TC_TMP,
.target_id = 0x01,
.command_id = 0x03,
.instance_id = 0x00,
});
This example defines a function
.. code-block:: c
int __ssam_tmp_perf_mode_set(struct ssam_controller *ctrl, const __le32 *arg);
executing the specified request, with the controller passed in when calling
said function. In this example, the argument is provided via the ``arg``
pointer. Note that the generated function allocates the message buffer on
the stack. Thus, if the argument provided via the request is large, these
kinds of macros should be avoided. Also note that, in contrast to the
previous non-macro example, this function does not do any endianness
conversion, which has to be handled by the caller. Apart from those
differences the function generated by the macro is similar to the one
provided in the non-macro example above.
The full list of such function-generating macros is
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_N` for requests without return value and
without argument.
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_R` for requests with return value but no
argument.
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_W` for requests without return value but
with argument.
Refer to their respective documentation for more details. For each one of
these macros, a special variant is provided, which targets request types
applicable to multiple instances of the same device type:
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_MD_N`
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_MD_R`
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_MD_W`
The difference of those macros to the previously mentioned versions is, that
the device target and instance IDs are not fixed for the generated function,
but instead have to be provided by the caller of said function.
Additionally, variants for direct use with client devices, i.e.
|ssam_device|, are also provided. These can, for example, be used as
follows:
.. code-block:: c
SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_sta, __le32, {
.target_category = SSAM_SSH_TC_BAT,
.command_id = 0x01,
});
This invocation of the macro defines a function
.. code-block:: c
int ssam_bat_get_sta(struct ssam_device *sdev, __le32 *ret);
executing the specified request, using the device IDs and controller given
in the client device. The full list of such macros for client devices is:
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_CL_N`
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_CL_R`
- :c:func:`SSAM_DEFINE_SYNC_REQUEST_CL_W`
Handling Events
===============
To receive events from the SAM EC, an event notifier must be registered for
the desired event via |ssam_notifier_register|. The notifier must be
unregistered via |ssam_notifier_unregister| once it is not required any
more.
Event notifiers are registered by providing (at minimum) a callback to call
in case an event has been received, the registry specifying how the event
should be enabled, an event ID specifying for which target category and,
optionally and depending on the registry used, for which instance ID events
should be enabled, and finally, flags describing how the EC will send these
events. If the specific registry does not enable events by instance ID, the
instance ID must be set to zero. Additionally, a priority for the respective
notifier may be specified, which determines its order in relation to any
other notifier registered for the same target category.
By default, event notifiers will receive all events for the specific target
category, regardless of the instance ID specified when registering the
notifier. The core may be instructed to only call a notifier if the target
ID or instance ID (or both) of the event match the ones implied by the
notifier IDs (in case of target ID, the target ID of the registry), by
providing an event mask (see |ssam_event_mask|).
In general, the target ID of the registry is also the target ID of the
enabled event (with the notable exception being keyboard input events on the
Surface Laptop 1 and 2, which are enabled via a registry with target ID 1,
but provide events with target ID 2).
A full example for registering an event notifier and handling received
events is provided below:
.. code-block:: c
u32 notifier_callback(struct ssam_event_notifier *nf,
const struct ssam_event *event)
{
int status = ...
/* Handle the event here ... */
/* Convert return value and indicate that we handled the event. */
return ssam_notifier_from_errno(status) | SSAM_NOTIF_HANDLED;
}
int setup_notifier(struct ssam_device *sdev,
struct ssam_event_notifier *nf)
{
/* Set priority wrt. other handlers of same target category. */
nf->base.priority = 1;
/* Set event/notifier callback. */
nf->base.fn = notifier_callback;
/* Specify event registry, i.e. how events get enabled/disabled. */
nf->event.reg = SSAM_EVENT_REGISTRY_KIP;
/* Specify which event to enable/disable */
nf->event.id.target_category = sdev->uid.category;
nf->event.id.instance = sdev->uid.instance;
/*
* Specify for which events the notifier callback gets executed.
* This essentially tells the core if it can skip notifiers that
* don't have target or instance IDs matching those of the event.
*/
nf->event.mask = SSAM_EVENT_MASK_STRICT;
/* Specify event flags. */
nf->event.flags = SSAM_EVENT_SEQUENCED;
return ssam_notifier_register(sdev->ctrl, nf);
}
Multiple event notifiers can be registered for the same event. The event
handler core takes care of enabling and disabling events when notifiers are
registered and unregistered, by keeping track of how many notifiers for a
specific event (combination of registry, event target category, and event
instance ID) are currently registered. This means that a specific event will
be enabled when the first notifier for it is being registered and disabled
when the last notifier for it is being unregistered. Note that the event
flags are therefore only used on the first registered notifier, however, one
should take care that notifiers for a specific event are always registered
with the same flag and it is considered a bug to do otherwise.

View File

@@ -0,0 +1,87 @@
.. SPDX-License-Identifier: GPL-2.0+
.. |u8| replace:: :c:type:`u8 <u8>`
.. |u16| replace:: :c:type:`u16 <u16>`
.. |ssam_cdev_request| replace:: :c:type:`struct ssam_cdev_request <ssam_cdev_request>`
.. |ssam_cdev_request_flags| replace:: :c:type:`enum ssam_cdev_request_flags <ssam_cdev_request_flags>`
==============================
User-Space EC Interface (cdev)
==============================
The ``surface_aggregator_cdev`` module provides a misc-device for the SSAM
controller to allow for a (more or less) direct connection from user-space to
the SAM EC. It is intended to be used for development and debugging, and
therefore should not be used or relied upon in any other way. Note that this
module is not loaded automatically, but instead must be loaded manually.
The provided interface is accessible through the ``/dev/surface/aggregator``
device-file. All functionality of this interface is provided via IOCTLs.
These IOCTLs and their respective input/output parameter structs are defined in
``include/uapi/linux/surface_aggregator/cdev.h``.
A small python library and scripts for accessing this interface can be found
at https://github.com/linux-surface/surface-aggregator-module/tree/master/scripts/ssam.
Controller IOCTLs
=================
The following IOCTLs are provided:
.. flat-table:: Controller IOCTLs
:widths: 1 1 1 1 4
:header-rows: 1
* - Type
- Number
- Direction
- Name
- Description
* - ``0xA5``
- ``1``
- ``WR``
- ``REQUEST``
- Perform synchronous SAM request.
``REQUEST``
-----------
Defined as ``_IOWR(0xA5, 1, struct ssam_cdev_request)``.
Executes a synchronous SAM request. The request specification is passed in
as argument of type |ssam_cdev_request|, which is then written to/modified
by the IOCTL to return status and result of the request.
Request payload data must be allocated separately and is passed in via the
``payload.data`` and ``payload.length`` members. If a response is required,
the response buffer must be allocated by the caller and passed in via the
``response.data`` member. The ``response.length`` member must be set to the
capacity of this buffer, or if no response is required, zero. Upon
completion of the request, the call will write the response to the response
buffer (if its capacity allows it) and overwrite the length field with the
actual size of the response, in bytes.
Additionally, if the request has a response, this must be indicated via the
request flags, as is done with in-kernel requests. Request flags can be set
via the ``flags`` member and the values correspond to the values found in
|ssam_cdev_request_flags|.
Finally, the status of the request itself is returned in the ``status``
member (a negative errno value indicating failure). Note that failure
indication of the IOCTL is separated from failure indication of the request:
The IOCTL returns a negative status code if anything failed during setup of
the request (``-EFAULT``) or if the provided argument or any of its fields
are invalid (``-EINVAL``). In this case, the status value of the request
argument may be set, providing more detail on what went wrong (e.g.
``-ENOMEM`` for out-of-memory), but this value may also be zero. The IOCTL
will return with a zero status code in case the request has been set up,
submitted, and completed (i.e. handed back to user-space) successfully from
inside the IOCTL, but the request ``status`` member may still be negative in
case the actual execution of the request failed after it has been submitted.
A full definition of the argument struct is provided below:
.. kernel-doc:: include/uapi/linux/surface_aggregator/cdev.h

View File

@@ -0,0 +1,21 @@
.. SPDX-License-Identifier: GPL-2.0+
===========================
Client Driver Documentation
===========================
This is the documentation for client drivers themselves. Refer to
:doc:`../client` for documentation on how to write client drivers.
.. toctree::
:maxdepth: 1
cdev
san
.. only:: subproject and html
Indices
=======
* :ref:`genindex`

View File

@@ -0,0 +1,44 @@
.. SPDX-License-Identifier: GPL-2.0+
.. |san_client_link| replace:: :c:func:`san_client_link`
.. |san_dgpu_notifier_register| replace:: :c:func:`san_dgpu_notifier_register`
.. |san_dgpu_notifier_unregister| replace:: :c:func:`san_dgpu_notifier_unregister`
===================
Surface ACPI Notify
===================
The Surface ACPI Notify (SAN) device provides the bridge between ACPI and
SAM controller. Specifically, ACPI code can execute requests and handle
battery and thermal events via this interface. In addition to this, events
relating to the discrete GPU (dGPU) of the Surface Book 2 can be sent from
ACPI code (note: the Surface Book 3 uses a different method for this). The
only currently known event sent via this interface is a dGPU power-on
notification. While this driver handles the former part internally, it only
relays the dGPU events to any other driver interested via its public API and
does not handle them.
The public interface of this driver is split into two parts: Client
registration and notifier-block registration.
A client to the SAN interface can be linked as consumer to the SAN device
via |san_client_link|. This can be used to ensure that the a client
receiving dGPU events does not miss any events due to the SAN interface not
being set up as this forces the client driver to unbind once the SAN driver
is unbound.
Notifier-blocks can be registered by any device for as long as the module is
loaded, regardless of being linked as client or not. Registration is done
with |san_dgpu_notifier_register|. If the notifier is not needed any more, it
should be unregistered via |san_dgpu_notifier_unregister|.
Consult the API documentation below for more details.
API Documentation
=================
.. kernel-doc:: include/linux/surface_acpi_notify.h
.. kernel-doc:: drivers/platform/surface/surface_acpi_notify.c
:export:

View File

@@ -0,0 +1,21 @@
.. SPDX-License-Identifier: GPL-2.0+
=======================================
Surface System Aggregator Module (SSAM)
=======================================
.. toctree::
:maxdepth: 2
overview
client
clients/index
ssh
internal
.. only:: subproject and html
Indices
=======
* :ref:`genindex`

View File

@@ -0,0 +1,67 @@
.. SPDX-License-Identifier: GPL-2.0+
==========================
Internal API Documentation
==========================
.. contents::
:depth: 2
Packet Transport Layer
======================
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_parser.h
:internal:
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_parser.c
:internal:
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_msgb.h
:internal:
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_packet_layer.h
:internal:
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_packet_layer.c
:internal:
Request Transport Layer
=======================
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_request_layer.h
:internal:
.. kernel-doc:: drivers/platform/surface/aggregator/ssh_request_layer.c
:internal:
Controller
==========
.. kernel-doc:: drivers/platform/surface/aggregator/controller.h
:internal:
.. kernel-doc:: drivers/platform/surface/aggregator/controller.c
:internal:
Client Device Bus
=================
.. kernel-doc:: drivers/platform/surface/aggregator/bus.c
:internal:
Core
====
.. kernel-doc:: drivers/platform/surface/aggregator/core.c
:internal:
Trace Helpers
=============
.. kernel-doc:: drivers/platform/surface/aggregator/trace.h

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,77 @@
.. SPDX-License-Identifier: GPL-2.0+
========
Overview
========
The Surface/System Aggregator Module (SAM, SSAM) is an (arguably *the*)
embedded controller (EC) on Microsoft Surface devices. It has been originally
introduced on 4th generation devices (Surface Pro 4, Surface Book 1), but
its responsibilities and feature-set have since been expanded significantly
with the following generations.
Features and Integration
========================
Not much is currently known about SAM on 4th generation devices (Surface Pro
4, Surface Book 1), due to the use of a different communication interface
between host and EC (as detailed below). On 5th (Surface Pro 2017, Surface
Book 2, Surface Laptop 1) and later generation devices, SAM is responsible
for providing battery information (both current status and static values,
such as maximum capacity etc.), as well as an assortment of temperature
sensors (e.g. skin temperature) and cooling/performance-mode setting to the
host. On the Surface Book 2, specifically, it additionally provides an
interface for properly handling clipboard detachment (i.e. separating the
display part from the keyboard part of the device), on the Surface Laptop 1
and 2 it is required for keyboard HID input. This HID subsystem has been
restructured for 7th generation devices and on those, specifically Surface
Laptop 3 and Surface Book 3, is responsible for all major HID input (i.e.
keyboard and touchpad).
While features have not changed much on a coarse level since the 5th
generation, internal interfaces have undergone some rather large changes. On
5th and 6th generation devices, both battery and temperature information is
exposed to ACPI via a shim driver (referred to as Surface ACPI Notify, or
SAN), translating ACPI generic serial bus write-/read-accesses to SAM
requests. On 7th generation devices, this additional layer is gone and these
devices require a driver hooking directly into the SAM interface. Equally,
on newer generations, less devices are declared in ACPI, making them a bit
harder to discover and requiring us to hard-code a sort of device registry.
Due to this, a SSAM bus and subsystem with client devices
(:c:type:`struct ssam_device <ssam_device>`) has been implemented.
Communication
=============
The type of communication interface between host and EC depends on the
generation of the Surface device. On 4th generation devices, host and EC
communicate via HID, specifically using a HID-over-I2C device, whereas on
5th and later generations, communication takes place via a USART serial
device. In accordance to the drivers found on other operating systems, we
refer to the serial device and its driver as Surface Serial Hub (SSH). When
needed, we differentiate between both types of SAM by referring to them as
SAM-over-SSH and SAM-over-HID.
Currently, this subsystem only supports SAM-over-SSH. The SSH communication
interface is described in more detail below. The HID interface has not been
reverse engineered yet and it is, at the moment, unclear how many (and
which) concepts of the SSH interface detailed below can be transferred to
it.
Surface Serial Hub
------------------
As already elaborated above, the Surface Serial Hub (SSH) is the
communication interface for SAM on 5th- and all later-generation Surface
devices. On the highest level, communication can be separated into two main
types: Requests, messages sent from host to EC that may trigger a direct
response from the EC (explicitly associated with the request), and events
(sometimes also referred to as notifications), sent from EC to host without
being a direct response to a previous request. We may also refer to requests
without response as commands. In general, events need to be enabled via one
of multiple dedicated requests before they are sent by the EC.
See :doc:`ssh` for a more technical protocol documentation and
:doc:`internal` for an overview of the internal driver architecture.

View File

@@ -0,0 +1,344 @@
.. SPDX-License-Identifier: GPL-2.0+
.. |u8| replace:: :c:type:`u8 <u8>`
.. |u16| replace:: :c:type:`u16 <u16>`
.. |TYPE| replace:: ``TYPE``
.. |LEN| replace:: ``LEN``
.. |SEQ| replace:: ``SEQ``
.. |SYN| replace:: ``SYN``
.. |NAK| replace:: ``NAK``
.. |ACK| replace:: ``ACK``
.. |DATA| replace:: ``DATA``
.. |DATA_SEQ| replace:: ``DATA_SEQ``
.. |DATA_NSQ| replace:: ``DATA_NSQ``
.. |TC| replace:: ``TC``
.. |TID| replace:: ``TID``
.. |IID| replace:: ``IID``
.. |RQID| replace:: ``RQID``
.. |CID| replace:: ``CID``
===========================
Surface Serial Hub Protocol
===========================
The Surface Serial Hub (SSH) is the central communication interface for the
embedded Surface Aggregator Module controller (SAM or EC), found on newer
Surface generations. We will refer to this protocol and interface as
SAM-over-SSH, as opposed to SAM-over-HID for the older generations.
On Surface devices with SAM-over-SSH, SAM is connected to the host via UART
and defined in ACPI as device with ID ``MSHW0084``. On these devices,
significant functionality is provided via SAM, including access to battery
and power information and events, thermal read-outs and events, and many
more. For Surface Laptops, keyboard input is handled via HID directed
through SAM, on the Surface Laptop 3 and Surface Book 3 this also includes
touchpad input.
Note that the standard disclaimer for this subsystem also applies to this
document: All of this has been reverse-engineered and may thus be erroneous
and/or incomplete.
All CRCs used in the following are two-byte ``crc_ccitt_false(0xffff, ...)``.
All multi-byte values are little-endian, there is no implicit padding between
values.
SSH Packet Protocol: Definitions
================================
The fundamental communication unit of the SSH protocol is a frame
(:c:type:`struct ssh_frame <ssh_frame>`). A frame consists of the following
fields, packed together and in order:
.. flat-table:: SSH Frame
:widths: 1 1 4
:header-rows: 1
* - Field
- Type
- Description
* - |TYPE|
- |u8|
- Type identifier of the frame.
* - |LEN|
- |u16|
- Length of the payload associated with the frame.
* - |SEQ|
- |u8|
- Sequence ID (see explanation below).
Each frame structure is followed by a CRC over this structure. The CRC over
the frame structure (|TYPE|, |LEN|, and |SEQ| fields) is placed directly
after the frame structure and before the payload. The payload is followed by
its own CRC (over all payload bytes). If the payload is not present (i.e.
the frame has ``LEN=0``), the CRC of the payload is still present and will
evaluate to ``0xffff``. The |LEN| field does not include any of the CRCs, it
equals the number of bytes inbetween the CRC of the frame and the CRC of the
payload.
Additionally, the following fixed two-byte sequences are used:
.. flat-table:: SSH Byte Sequences
:widths: 1 1 4
:header-rows: 1
* - Name
- Value
- Description
* - |SYN|
- ``[0xAA, 0x55]``
- Synchronization bytes.
A message consists of |SYN|, followed by the frame (|TYPE|, |LEN|, |SEQ| and
CRC) and, if specified in the frame (i.e. ``LEN > 0``), payload bytes,
followed finally, regardless if the payload is present, the payload CRC. The
messages corresponding to an exchange are, in part, identified by having the
same sequence ID (|SEQ|), stored inside the frame (more on this in the next
section). The sequence ID is a wrapping counter.
A frame can have the following types
(:c:type:`enum ssh_frame_type <ssh_frame_type>`):
.. flat-table:: SSH Frame Types
:widths: 1 1 4
:header-rows: 1
* - Name
- Value
- Short Description
* - |NAK|
- ``0x04``
- Sent on error in previously received message.
* - |ACK|
- ``0x40``
- Sent to acknowledge receival of |DATA| frame.
* - |DATA_SEQ|
- ``0x80``
- Sent to transfer data. Sequenced.
* - |DATA_NSQ|
- ``0x00``
- Same as |DATA_SEQ|, but does not need to be ACKed.
Both |NAK|- and |ACK|-type frames are used to control flow of messages and
thus do not carry a payload. |DATA_SEQ|- and |DATA_NSQ|-type frames on the
other hand must carry a payload. The flow sequence and interaction of
different frame types will be described in more depth in the next section.
SSH Packet Protocol: Flow Sequence
==================================
Each exchange begins with |SYN|, followed by a |DATA_SEQ|- or
|DATA_NSQ|-type frame, followed by its CRC, payload, and payload CRC. In
case of a |DATA_NSQ|-type frame, the exchange is then finished. In case of a
|DATA_SEQ|-type frame, the receiving party has to acknowledge receival of
the frame by responding with a message containing an |ACK|-type frame with
the same sequence ID of the |DATA| frame. In other words, the sequence ID of
the |ACK| frame specifies the |DATA| frame to be acknowledged. In case of an
error, e.g. an invalid CRC, the receiving party responds with a message
containing an |NAK|-type frame. As the sequence ID of the previous data
frame, for which an error is indicated via the |NAK| frame, cannot be relied
upon, the sequence ID of the |NAK| frame should not be used and is set to
zero. After receival of an |NAK| frame, the sending party should re-send all
outstanding (non-ACKed) messages.
Sequence IDs are not synchronized between the two parties, meaning that they
are managed independently for each party. Identifying the messages
corresponding to a single exchange thus relies on the sequence ID as well as
the type of the message, and the context. Specifically, the sequence ID is
used to associate an ``ACK`` with its ``DATA_SEQ``-type frame, but not
``DATA_SEQ``- or ``DATA_NSQ``-type frames with other ``DATA``- type frames.
An example exchange might look like this:
::
tx: -- SYN FRAME(D) CRC(F) PAYLOAD CRC(P) -----------------------------
rx: ------------------------------------- SYN FRAME(A) CRC(F) CRC(P) --
where both frames have the same sequence ID (``SEQ``). Here, ``FRAME(D)``
indicates a |DATA_SEQ|-type frame, ``FRAME(A)`` an ``ACK``-type frame,
``CRC(F)`` the CRC over the previous frame, ``CRC(P)`` the CRC over the
previous payload. In case of an error, the exchange would look like this:
::
tx: -- SYN FRAME(D) CRC(F) PAYLOAD CRC(P) -----------------------------
rx: ------------------------------------- SYN FRAME(N) CRC(F) CRC(P) --
upon which the sender should re-send the message. ``FRAME(N)`` indicates an
|NAK|-type frame. Note that the sequence ID of the |NAK|-type frame is fixed
to zero. For |DATA_NSQ|-type frames, both exchanges are the same:
::
tx: -- SYN FRAME(DATA_NSQ) CRC(F) PAYLOAD CRC(P) ----------------------
rx: -------------------------------------------------------------------
Here, an error can be detected, but not corrected or indicated to the
sending party. These exchanges are symmetric, i.e. switching ``rx`` and
``tx`` results again in a valid exchange. Currently, no longer exchanges are
known.
Commands: Requests, Responses, and Events
=========================================
Commands are sent as payload inside a data frame. Currently, this is the
only known payload type of |DATA| frames, with a payload-type value of
``0x80`` (:c:type:`SSH_PLD_TYPE_CMD <ssh_payload_type>`).
The command-type payload (:c:type:`struct ssh_command <ssh_command>`)
consists of an eight-byte command structure, followed by optional and
variable length command data. The length of this optional data is derived
from the frame payload length given in the corresponding frame, i.e. it is
``frame.len - sizeof(struct ssh_command)``. The command struct contains the
following fields, packed together and in order:
.. flat-table:: SSH Command
:widths: 1 1 4
:header-rows: 1
* - Field
- Type
- Description
* - |TYPE|
- |u8|
- Type of the payload. For commands always ``0x80``.
* - |TC|
- |u8|
- Target category.
* - |TID| (out)
- |u8|
- Target ID for outgoing (host to EC) commands.
* - |TID| (in)
- |u8|
- Target ID for incoming (EC to host) commands.
* - |IID|
- |u8|
- Instance ID.
* - |RQID|
- |u16|
- Request ID.
* - |CID|
- |u8|
- Command ID.
The command struct and data, in general, does not contain any failure
detection mechanism (e.g. CRCs), this is solely done on the frame level.
Command-type payloads are used by the host to send commands and requests to
the EC as well as by the EC to send responses and events back to the host.
We differentiate between requests (sent by the host), responses (sent by the
EC in response to a request), and events (sent by the EC without a preceding
request).
Commands and events are uniquely identified by their target category
(``TC``) and command ID (``CID``). The target category specifies a general
category for the command (e.g. system in general, vs. battery and AC, vs.
temperature, and so on), while the command ID specifies the command inside
that category. Only the combination of |TC| + |CID| is unique. Additionally,
commands have an instance ID (``IID``), which is used to differentiate
between different sub-devices. For example ``TC=3`` ``CID=1`` is a
request to get the temperature on a thermal sensor, where |IID| specifies
the respective sensor. If the instance ID is not used, it should be set to
zero. If instance IDs are used, they, in general, start with a value of one,
whereas zero may be used for instance independent queries, if applicable. A
response to a request should have the same target category, command ID, and
instance ID as the corresponding request.
Responses are matched to their corresponding request via the request ID
(``RQID``) field. This is a 16 bit wrapping counter similar to the sequence
ID on the frames. Note that the sequence ID of the frames for a
request-response pair does not match. Only the request ID has to match.
Frame-protocol wise these are two separate exchanges, and may even be
separated, e.g. by an event being sent after the request but before the
response. Not all commands produce a response, and this is not detectable by
|TC| + |CID|. It is the responsibility of the issuing party to wait for a
response (or signal this to the communication framework, as is done in
SAN/ACPI via the ``SNC`` flag).
Events are identified by unique and reserved request IDs. These IDs should
not be used by the host when sending a new request. They are used on the
host to, first, detect events and, second, match them with a registered
event handler. Request IDs for events are chosen by the host and directed to
the EC when setting up and enabling an event source (via the
enable-event-source request). The EC then uses the specified request ID for
events sent from the respective source. Note that an event should still be
identified by its target category, command ID, and, if applicable, instance
ID, as a single event source can send multiple different event types. In
general, however, a single target category should map to a single reserved
event request ID.
Furthermore, requests, responses, and events have an associated target ID
(``TID``). This target ID is split into output (host to EC) and input (EC to
host) fields, with the respecting other field (e.g. output field on incoming
messages) set to zero. Two ``TID`` values are known: Primary (``0x01``) and
secondary (``0x02``). In general, the response to a request should have the
same ``TID`` value, however, the field (output vs. input) should be used in
accordance to the direction in which the response is sent (i.e. on the input
field, as responses are generally sent from the EC to the host).
Note that, even though requests and events should be uniquely identifiable
by target category and command ID alone, the EC may require specific
target ID and instance ID values to accept a command. A command that is
accepted for ``TID=1``, for example, may not be accepted for ``TID=2``
and vice versa.
Limitations and Observations
============================
The protocol can, in theory, handle up to ``U8_MAX`` frames in parallel,
with up to ``U16_MAX`` pending requests (neglecting request IDs reserved for
events). In practice, however, this is more limited. From our testing
(although via a python and thus a user-space program), it seems that the EC
can handle up to four requests (mostly) reliably in parallel at a certain
time. With five or more requests in parallel, consistent discarding of
commands (ACKed frame but no command response) has been observed. For five
simultaneous commands, this reproducibly resulted in one command being
dropped and four commands being handled.
However, it has also been noted that, even with three requests in parallel,
occasional frame drops happen. Apart from this, with a limit of three
pending requests, no dropped commands (i.e. command being dropped but frame
carrying command being ACKed) have been observed. In any case, frames (and
possibly also commands) should be re-sent by the host if a certain timeout
is exceeded. This is done by the EC for frames with a timeout of one second,
up to two re-tries (i.e. three transmissions in total). The limit of
re-tries also applies to received NAKs, and, in a worst case scenario, can
lead to entire messages being dropped.
While this also seems to work fine for pending data frames as long as no
transmission failures occur, implementation and handling of these seems to
depend on the assumption that there is only one non-acknowledged data frame.
In particular, the detection of repeated frames relies on the last sequence
number. This means that, if a frame that has been successfully received by
the EC is sent again, e.g. due to the host not receiving an |ACK|, the EC
will only detect this if it has the sequence ID of the last frame received
by the EC. As an example: Sending two frames with ``SEQ=0`` and ``SEQ=1``
followed by a repetition of ``SEQ=0`` will not detect the second ``SEQ=0``
frame as such, and thus execute the command in this frame each time it has
been received, i.e. twice in this example. Sending ``SEQ=0``, ``SEQ=1`` and
then repeating ``SEQ=1`` will detect the second ``SEQ=1`` as repetition of
the first one and ignore it, thus executing the contained command only once.
In conclusion, this suggests a limit of at most one pending un-ACKed frame
(per party, effectively leading to synchronous communication regarding
frames) and at most three pending commands. The limit to synchronous frame
transfers seems to be consistent with behavior observed on Windows.

View File

@@ -324,6 +324,8 @@ Code Seq# Include File Comments
0xA3 90-9F linux/dtlk.h
0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
0xA4 00-1F uapi/asm/sgx.h <mailto:linux-sgx@vger.kernel.org>
0xA5 01 linux/surface_aggregator/cdev.h Microsoft Surface Platform System Aggregator
<mailto:luzmaximilian@gmail.com>
0xAA 00-3F linux/uapi/linux/userfaultfd.h
0xAB 00-1F linux/nbd.h
0xAC 00-1F linux/raw.h

View File

@@ -4946,17 +4946,17 @@ M: Matthew Garrett <mjg59@srcf.ucam.org>
M: Pali Rohár <pali@kernel.org>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: drivers/platform/x86/dell-laptop.c
F: drivers/platform/x86/dell/dell-laptop.c
DELL LAPTOP FREEFALL DRIVER
M: Pali Rohár <pali@kernel.org>
S: Maintained
F: drivers/platform/x86/dell-smo8800.c
F: drivers/platform/x86/dell/dell-smo8800.c
DELL LAPTOP RBTN DRIVER
M: Pali Rohár <pali@kernel.org>
S: Maintained
F: drivers/platform/x86/dell-rbtn.*
F: drivers/platform/x86/dell/dell-rbtn.*
DELL LAPTOP SMM DRIVER
M: Pali Rohár <pali@kernel.org>
@@ -4968,26 +4968,26 @@ DELL REMOTE BIOS UPDATE DRIVER
M: Stuart Hayes <stuart.w.hayes@gmail.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: drivers/platform/x86/dell_rbu.c
F: drivers/platform/x86/dell/dell_rbu.c
DELL SMBIOS DRIVER
M: Pali Rohár <pali@kernel.org>
M: Mario Limonciello <mario.limonciello@dell.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: drivers/platform/x86/dell-smbios.*
F: drivers/platform/x86/dell/dell-smbios.*
DELL SMBIOS SMM DRIVER
M: Mario Limonciello <mario.limonciello@dell.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: drivers/platform/x86/dell-smbios-smm.c
F: drivers/platform/x86/dell/dell-smbios-smm.c
DELL SMBIOS WMI DRIVER
M: Mario Limonciello <mario.limonciello@dell.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: drivers/platform/x86/dell-smbios-wmi.c
F: drivers/platform/x86/dell/dell-smbios-wmi.c
F: tools/wmi/dell-smbios-example.c
DELL SYSTEMS MANAGEMENT BASE DRIVER (dcdbas)
@@ -4995,12 +4995,12 @@ M: Stuart Hayes <stuart.w.hayes@gmail.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: Documentation/driver-api/dcdbas.rst
F: drivers/platform/x86/dcdbas.*
F: drivers/platform/x86/dell/dcdbas.*
DELL WMI DESCRIPTOR DRIVER
M: Mario Limonciello <mario.limonciello@dell.com>
S: Maintained
F: drivers/platform/x86/dell-wmi-descriptor.c
F: drivers/platform/x86/dell/dell-wmi-descriptor.c
DELL WMI SYSMAN DRIVER
M: Divya Bharathi <divya.bharathi@dell.com>
@@ -5009,13 +5009,13 @@ M: Prasanth Ksr <prasanth.ksr@dell.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: Documentation/ABI/testing/sysfs-class-firmware-attributes
F: drivers/platform/x86/dell-wmi-sysman/
F: drivers/platform/x86/dell/dell-wmi-sysman/
DELL WMI NOTIFICATIONS DRIVER
M: Matthew Garrett <mjg59@srcf.ucam.org>
M: Pali Rohár <pali@kernel.org>
S: Maintained
F: drivers/platform/x86/dell-wmi.c
F: drivers/platform/x86/dell/dell-wmi.c
DELTA ST MEDIA DRIVER
M: Hugues Fruchet <hugues.fruchet@st.com>
@@ -8908,7 +8908,6 @@ L: linux-gpio@vger.kernel.org
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/andy/linux-gpio-intel.git
F: drivers/gpio/gpio-ich.c
F: drivers/gpio/gpio-intel-mid.c
F: drivers/gpio/gpio-merrifield.c
F: drivers/gpio/gpio-ml-ioh.c
F: drivers/gpio/gpio-pch.c
@@ -9080,7 +9079,6 @@ M: Andy Shevchenko <andy@kernel.org>
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/andy/linux-gpio-intel.git
F: drivers/gpio/gpio-*cove.c
F: drivers/gpio/gpio-msic.c
INTEL PMIC MULTIFUNCTION DEVICE DRIVERS
M: Andy Shevchenko <andy@kernel.org>
@@ -11798,12 +11796,31 @@ S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86.git
F: drivers/platform/surface/
MICROSOFT SURFACE HOT-PLUG DRIVER
M: Maximilian Luz <luzmaximilian@gmail.com>
L: platform-driver-x86@vger.kernel.org
S: Maintained
F: drivers/platform/surface/surface_hotplug.c
MICROSOFT SURFACE PRO 3 BUTTON DRIVER
M: Chen Yu <yu.c.chen@intel.com>
L: platform-driver-x86@vger.kernel.org
S: Supported
F: drivers/platform/surface/surfacepro3_button.c
MICROSOFT SURFACE SYSTEM AGGREGATOR SUBSYSTEM
M: Maximilian Luz <luzmaximilian@gmail.com>
S: Maintained
W: https://github.com/linux-surface/surface-aggregator-module
C: irc://chat.freenode.net/##linux-surface
F: Documentation/driver-api/surface_aggregator/
F: drivers/platform/surface/aggregator/
F: drivers/platform/surface/surface_acpi_notify.c
F: drivers/platform/surface/surface_aggregator_cdev.c
F: include/linux/surface_acpi_notify.h
F: include/linux/surface_aggregator/
F: include/uapi/linux/surface_aggregator/
MICROTEK X6 SCANNER
M: Oliver Neukum <oliver@neukum.org>
S: Maintained
@@ -17656,7 +17673,7 @@ F: drivers/thermal/gov_power_allocator.c
F: include/trace/events/thermal_power_allocator.h
THINKPAD ACPI EXTRAS DRIVER
M: Henrique de Moraes Holschuh <ibm-acpi@hmh.eng.br>
M: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
L: ibm-acpi-devel@lists.sourceforge.net
L: platform-driver-x86@vger.kernel.org
S: Maintained

View File

@@ -30,4 +30,3 @@ obj-$(subst m,y,$(CONFIG_GPIO_PCA953X)) += platform_tca6416.o
obj-$(subst m,y,$(CONFIG_KEYBOARD_GPIO)) += platform_gpio_keys.o
obj-$(subst m,y,$(CONFIG_INTEL_MID_POWER_BUTTON)) += platform_mrfld_power_btn.o
obj-$(subst m,y,$(CONFIG_RTC_DRV_CMOS)) += platform_mrfld_rtc.o
obj-$(subst m,y,$(CONFIG_INTEL_MID_WATCHDOG)) += platform_mrfld_wdt.o

View File

@@ -1253,13 +1253,6 @@ config GPIO_MAX77650
GPIO driver for MAX77650/77651 PMIC from Maxim Semiconductor.
These chips have a single pin that can be configured as GPIO.
config GPIO_MSIC
bool "Intel MSIC mixed signal gpio support"
depends on (X86 || COMPILE_TEST) && MFD_INTEL_MSIC
help
Enable support for GPIO on intel MSIC controllers found in
intel MID devices
config GPIO_PALMAS
bool "TI PALMAS series PMICs GPIO"
depends on MFD_PALMAS
@@ -1455,13 +1448,6 @@ config GPIO_BT8XX
If unsure, say N.
config GPIO_INTEL_MID
bool "Intel MID GPIO support"
depends on X86_INTEL_MID
select GPIOLIB_IRQCHIP
help
Say Y here to support Intel MID GPIO.
config GPIO_MERRIFIELD
tristate "Intel Merrifield GPIO support"
depends on X86_INTEL_MID

View File

@@ -67,7 +67,6 @@ obj-$(CONFIG_GPIO_HISI) += gpio-hisi.o
obj-$(CONFIG_GPIO_HLWD) += gpio-hlwd.o
obj-$(CONFIG_HTC_EGPIO) += gpio-htc-egpio.o
obj-$(CONFIG_GPIO_ICH) += gpio-ich.o
obj-$(CONFIG_GPIO_INTEL_MID) += gpio-intel-mid.o
obj-$(CONFIG_GPIO_IOP) += gpio-iop.o
obj-$(CONFIG_GPIO_IT87) += gpio-it87.o
obj-$(CONFIG_GPIO_IXP4XX) += gpio-ixp4xx.o

View File

@@ -101,7 +101,7 @@ for a few GPIOs. Those should stay where they are.
At the same time it makes sense to get rid of code duplication in existing or
new coming drivers. For example, gpio-ml-ioh should be incorporated into
gpio-pch. In similar way gpio-intel-mid into gpio-pxa.
gpio-pch.
Generic MMIO GPIO

View File

@@ -1,414 +0,0 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Intel MID GPIO driver
*
* Copyright (c) 2008-2014,2016 Intel Corporation.
*/
/* Supports:
* Moorestown platform Langwell chip.
* Medfield platform Penwell chip.
* Clovertrail platform Cloverview chip.
*/
#include <linux/delay.h>
#include <linux/gpio/driver.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#define INTEL_MID_IRQ_TYPE_EDGE (1 << 0)
#define INTEL_MID_IRQ_TYPE_LEVEL (1 << 1)
/*
* Langwell chip has 64 pins and thus there are 2 32bit registers to control
* each feature, while Penwell chip has 96 pins for each block, and need 3 32bit
* registers to control them, so we only define the order here instead of a
* structure, to get a bit offset for a pin (use GPDR as an example):
*
* nreg = ngpio / 32;
* reg = offset / 32;
* bit = offset % 32;
* reg_addr = reg_base + GPDR * nreg * 4 + reg * 4;
*
* so the bit of reg_addr is to control pin offset's GPDR feature
*/
enum GPIO_REG {
GPLR = 0, /* pin level read-only */
GPDR, /* pin direction */
GPSR, /* pin set */
GPCR, /* pin clear */
GRER, /* rising edge detect */
GFER, /* falling edge detect */
GEDR, /* edge detect result */
GAFR, /* alt function */
};
/* intel_mid gpio driver data */
struct intel_mid_gpio_ddata {
u16 ngpio; /* number of gpio pins */
u32 chip_irq_type; /* chip interrupt type */
};
struct intel_mid_gpio {
struct gpio_chip chip;
void __iomem *reg_base;
spinlock_t lock;
struct pci_dev *pdev;
};
static void __iomem *gpio_reg(struct gpio_chip *chip, unsigned offset,
enum GPIO_REG reg_type)
{
struct intel_mid_gpio *priv = gpiochip_get_data(chip);
unsigned nreg = chip->ngpio / 32;
u8 reg = offset / 32;
return priv->reg_base + reg_type * nreg * 4 + reg * 4;
}
static void __iomem *gpio_reg_2bit(struct gpio_chip *chip, unsigned offset,
enum GPIO_REG reg_type)
{
struct intel_mid_gpio *priv = gpiochip_get_data(chip);
unsigned nreg = chip->ngpio / 32;
u8 reg = offset / 16;
return priv->reg_base + reg_type * nreg * 4 + reg * 4;
}
static int intel_gpio_request(struct gpio_chip *chip, unsigned offset)
{
void __iomem *gafr = gpio_reg_2bit(chip, offset, GAFR);
u32 value = readl(gafr);
int shift = (offset % 16) << 1, af = (value >> shift) & 3;
if (af) {
value &= ~(3 << shift);
writel(value, gafr);
}
return 0;
}
static int intel_gpio_get(struct gpio_chip *chip, unsigned offset)
{
void __iomem *gplr = gpio_reg(chip, offset, GPLR);
return !!(readl(gplr) & BIT(offset % 32));
}
static void intel_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
void __iomem *gpsr, *gpcr;
if (value) {
gpsr = gpio_reg(chip, offset, GPSR);
writel(BIT(offset % 32), gpsr);
} else {
gpcr = gpio_reg(chip, offset, GPCR);
writel(BIT(offset % 32), gpcr);
}
}
static int intel_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct intel_mid_gpio *priv = gpiochip_get_data(chip);
void __iomem *gpdr = gpio_reg(chip, offset, GPDR);
u32 value;
unsigned long flags;
if (priv->pdev)
pm_runtime_get(&priv->pdev->dev);
spin_lock_irqsave(&priv->lock, flags);
value = readl(gpdr);
value &= ~BIT(offset % 32);
writel(value, gpdr);
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->pdev)
pm_runtime_put(&priv->pdev->dev);
return 0;
}
static int intel_gpio_direction_output(struct gpio_chip *chip,
unsigned offset, int value)
{
struct intel_mid_gpio *priv = gpiochip_get_data(chip);
void __iomem *gpdr = gpio_reg(chip, offset, GPDR);
unsigned long flags;
intel_gpio_set(chip, offset, value);
if (priv->pdev)
pm_runtime_get(&priv->pdev->dev);
spin_lock_irqsave(&priv->lock, flags);
value = readl(gpdr);
value |= BIT(offset % 32);
writel(value, gpdr);
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->pdev)
pm_runtime_put(&priv->pdev->dev);
return 0;
}
static int intel_mid_irq_type(struct irq_data *d, unsigned type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct intel_mid_gpio *priv = gpiochip_get_data(gc);
u32 gpio = irqd_to_hwirq(d);
unsigned long flags;
u32 value;
void __iomem *grer = gpio_reg(&priv->chip, gpio, GRER);
void __iomem *gfer = gpio_reg(&priv->chip, gpio, GFER);
if (gpio >= priv->chip.ngpio)
return -EINVAL;
if (priv->pdev)
pm_runtime_get(&priv->pdev->dev);
spin_lock_irqsave(&priv->lock, flags);
if (type & IRQ_TYPE_EDGE_RISING)
value = readl(grer) | BIT(gpio % 32);
else
value = readl(grer) & (~BIT(gpio % 32));
writel(value, grer);
if (type & IRQ_TYPE_EDGE_FALLING)
value = readl(gfer) | BIT(gpio % 32);
else
value = readl(gfer) & (~BIT(gpio % 32));
writel(value, gfer);
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->pdev)
pm_runtime_put(&priv->pdev->dev);
return 0;
}
static void intel_mid_irq_unmask(struct irq_data *d)
{
}
static void intel_mid_irq_mask(struct irq_data *d)
{
}
static struct irq_chip intel_mid_irqchip = {
.name = "INTEL_MID-GPIO",
.irq_mask = intel_mid_irq_mask,
.irq_unmask = intel_mid_irq_unmask,
.irq_set_type = intel_mid_irq_type,
};
static const struct intel_mid_gpio_ddata gpio_lincroft = {
.ngpio = 64,
};
static const struct intel_mid_gpio_ddata gpio_penwell_aon = {
.ngpio = 96,
.chip_irq_type = INTEL_MID_IRQ_TYPE_EDGE,
};
static const struct intel_mid_gpio_ddata gpio_penwell_core = {
.ngpio = 96,
.chip_irq_type = INTEL_MID_IRQ_TYPE_EDGE,
};
static const struct intel_mid_gpio_ddata gpio_cloverview_aon = {
.ngpio = 96,
.chip_irq_type = INTEL_MID_IRQ_TYPE_EDGE | INTEL_MID_IRQ_TYPE_LEVEL,
};
static const struct intel_mid_gpio_ddata gpio_cloverview_core = {
.ngpio = 96,
.chip_irq_type = INTEL_MID_IRQ_TYPE_EDGE,
};
static const struct pci_device_id intel_gpio_ids[] = {
{
/* Lincroft */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080f),
.driver_data = (kernel_ulong_t)&gpio_lincroft,
},
{
/* Penwell AON */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081f),
.driver_data = (kernel_ulong_t)&gpio_penwell_aon,
},
{
/* Penwell Core */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081a),
.driver_data = (kernel_ulong_t)&gpio_penwell_core,
},
{
/* Cloverview Aon */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x08eb),
.driver_data = (kernel_ulong_t)&gpio_cloverview_aon,
},
{
/* Cloverview Core */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x08f7),
.driver_data = (kernel_ulong_t)&gpio_cloverview_core,
},
{ }
};
static void intel_mid_irq_handler(struct irq_desc *desc)
{
struct gpio_chip *gc = irq_desc_get_handler_data(desc);
struct intel_mid_gpio *priv = gpiochip_get_data(gc);
struct irq_data *data = irq_desc_get_irq_data(desc);
struct irq_chip *chip = irq_data_get_irq_chip(data);
u32 base, gpio, mask;
unsigned long pending;
void __iomem *gedr;
/* check GPIO controller to check which pin triggered the interrupt */
for (base = 0; base < priv->chip.ngpio; base += 32) {
gedr = gpio_reg(&priv->chip, base, GEDR);
while ((pending = readl(gedr))) {
gpio = __ffs(pending);
mask = BIT(gpio);
/* Clear before handling so we can't lose an edge */
writel(mask, gedr);
generic_handle_irq(irq_find_mapping(gc->irq.domain,
base + gpio));
}
}
chip->irq_eoi(data);
}
static int intel_mid_irq_init_hw(struct gpio_chip *chip)
{
struct intel_mid_gpio *priv = gpiochip_get_data(chip);
void __iomem *reg;
unsigned base;
for (base = 0; base < priv->chip.ngpio; base += 32) {
/* Clear the rising-edge detect register */
reg = gpio_reg(&priv->chip, base, GRER);
writel(0, reg);
/* Clear the falling-edge detect register */
reg = gpio_reg(&priv->chip, base, GFER);
writel(0, reg);
/* Clear the edge detect status register */
reg = gpio_reg(&priv->chip, base, GEDR);
writel(~0, reg);
}
return 0;
}
static int __maybe_unused intel_gpio_runtime_idle(struct device *dev)
{
int err = pm_schedule_suspend(dev, 500);
return err ?: -EBUSY;
}
static const struct dev_pm_ops intel_gpio_pm_ops = {
SET_RUNTIME_PM_OPS(NULL, NULL, intel_gpio_runtime_idle)
};
static int intel_gpio_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
void __iomem *base;
struct intel_mid_gpio *priv;
u32 gpio_base;
u32 irq_base;
int retval;
struct gpio_irq_chip *girq;
struct intel_mid_gpio_ddata *ddata =
(struct intel_mid_gpio_ddata *)id->driver_data;
retval = pcim_enable_device(pdev);
if (retval)
return retval;
retval = pcim_iomap_regions(pdev, 1 << 0 | 1 << 1, pci_name(pdev));
if (retval) {
dev_err(&pdev->dev, "I/O memory mapping error\n");
return retval;
}
base = pcim_iomap_table(pdev)[1];
irq_base = readl(base);
gpio_base = readl(sizeof(u32) + base);
/* release the IO mapping, since we already get the info from bar1 */
pcim_iounmap_regions(pdev, 1 << 1);
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->reg_base = pcim_iomap_table(pdev)[0];
priv->chip.label = dev_name(&pdev->dev);
priv->chip.parent = &pdev->dev;
priv->chip.request = intel_gpio_request;
priv->chip.direction_input = intel_gpio_direction_input;
priv->chip.direction_output = intel_gpio_direction_output;
priv->chip.get = intel_gpio_get;
priv->chip.set = intel_gpio_set;
priv->chip.base = gpio_base;
priv->chip.ngpio = ddata->ngpio;
priv->chip.can_sleep = false;
priv->pdev = pdev;
spin_lock_init(&priv->lock);
girq = &priv->chip.irq;
girq->chip = &intel_mid_irqchip;
girq->init_hw = intel_mid_irq_init_hw;
girq->parent_handler = intel_mid_irq_handler;
girq->num_parents = 1;
girq->parents = devm_kcalloc(&pdev->dev, girq->num_parents,
sizeof(*girq->parents),
GFP_KERNEL);
if (!girq->parents)
return -ENOMEM;
girq->parents[0] = pdev->irq;
girq->first = irq_base;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_simple_irq;
pci_set_drvdata(pdev, priv);
retval = devm_gpiochip_add_data(&pdev->dev, &priv->chip, priv);
if (retval) {
dev_err(&pdev->dev, "gpiochip_add error %d\n", retval);
return retval;
}
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_allow(&pdev->dev);
return 0;
}
static struct pci_driver intel_gpio_driver = {
.name = "intel_mid_gpio",
.id_table = intel_gpio_ids,
.probe = intel_gpio_probe,
.driver = {
.pm = &intel_gpio_pm_ops,
},
};
builtin_pci_driver(intel_gpio_driver);

Some files were not shown because too many files have changed in this diff Show More