The helper functions can_len2dlc and can_dlc2len are only relevant for
CAN FD data length code (DLC) conversion.
To fit the introduced can_cc_dlc2len for Classical CAN we rename:
can_dlc2len -> can_fd_dlc2len to get the payload length from the DLC
can_len2dlc -> can_fd_len2dlc to get the DLC from the payload length
Suggested-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201110101852.1973-6-socketcan@hartkopp.net
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The naming of can_dlc as element of struct can_frame and also as variable
name is misleading as it claims to be a 'data length CODE' but in reality
it always was a plain data length.
With the indroduction of a new 'len' element in struct can_frame we can now
remove can_dlc as name and make clear which of the former uses was a plain
length (-> 'len') or a data length code (-> 'dlc') value.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201120100444.3199-1-socketcan@hartkopp.net
[mkl: gs_usb: keep struct gs_host_frame::can_dlc as is]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
All user space generated SKBs are owned by a socket (unless injected into the
key via AF_PACKET). If a socket is closed, all associated skbs will be cleaned
up.
This leads to a problem when a CAN driver calls can_put_echo_skb() on a
unshared SKB. If the socket is closed prior to the TX complete handler,
can_get_echo_skb() and the subsequent delivering of the echo SKB to all
registered callbacks, a SKB with a refcount of 0 is delivered.
To avoid the problem, in can_get_echo_skb() the original SKB is now always
cloned, regardless of shared SKB or not. If the process exists it can now
safely discard its SKBs, without disturbing the delivery of the echo SKB.
The problem shows up in the j1939 stack, when it clones the incoming skb, which
detects the already 0 refcount.
We can easily reproduce this with following example:
testj1939 -B -r can0: &
cansend can0 1823ff40#0123
WARNING: CPU: 0 PID: 293 at lib/refcount.c:25 refcount_warn_saturate+0x108/0x174
refcount_t: addition on 0; use-after-free.
Modules linked in: coda_vpu imx_vdoa videobuf2_vmalloc dw_hdmi_ahb_audio vcan
CPU: 0 PID: 293 Comm: cansend Not tainted 5.5.0-rc6-00376-g9e20dcb7040d #1
Hardware name: Freescale i.MX6 Quad/DualLite (Device Tree)
Backtrace:
[<c010f570>] (dump_backtrace) from [<c010f90c>] (show_stack+0x20/0x24)
[<c010f8ec>] (show_stack) from [<c0c3e1a4>] (dump_stack+0x8c/0xa0)
[<c0c3e118>] (dump_stack) from [<c0127fec>] (__warn+0xe0/0x108)
[<c0127f0c>] (__warn) from [<c01283c8>] (warn_slowpath_fmt+0xa8/0xcc)
[<c0128324>] (warn_slowpath_fmt) from [<c0539c0c>] (refcount_warn_saturate+0x108/0x174)
[<c0539b04>] (refcount_warn_saturate) from [<c0ad2cac>] (j1939_can_recv+0x20c/0x210)
[<c0ad2aa0>] (j1939_can_recv) from [<c0ac9dc8>] (can_rcv_filter+0xb4/0x268)
[<c0ac9d14>] (can_rcv_filter) from [<c0aca2cc>] (can_receive+0xb0/0xe4)
[<c0aca21c>] (can_receive) from [<c0aca348>] (can_rcv+0x48/0x98)
[<c0aca300>] (can_rcv) from [<c09b1fdc>] (__netif_receive_skb_one_core+0x64/0x88)
[<c09b1f78>] (__netif_receive_skb_one_core) from [<c09b2070>] (__netif_receive_skb+0x38/0x94)
[<c09b2038>] (__netif_receive_skb) from [<c09b2130>] (netif_receive_skb_internal+0x64/0xf8)
[<c09b20cc>] (netif_receive_skb_internal) from [<c09b21f8>] (netif_receive_skb+0x34/0x19c)
[<c09b21c4>] (netif_receive_skb) from [<c0791278>] (can_rx_offload_napi_poll+0x58/0xb4)
Fixes: 0ae89beb28 ("can: add destructor for self generated skbs")
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Link: http://lore.kernel.org/r/20200124132656.22156-1-o.rempel@pengutronix.de
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Rename macro CAN_CALC_SYNC_SEG to CAN_SYNC_SEG and make it available
through include/linux/can/dev.h
Add an helper function can_bit_time() which returns the duration (in
time quanta) of one CAN bit.
Rationale for this patch: the sync segment and the bit time are two
concepts which are defined in the CAN ISO standard. Device drivers for
CAN might need those.
Please refer to ISO 11898-1:2015, section 11.3.1.1 "Bit time" for
additional information.
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20201002154219.4887-6-mailhol.vincent@wanadoo.fr
[mkl: Let can_bit_time() return an unsinged int, make argument const]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch adds a new initialization function:
can_rx_offload_add_manual()
It should be used to add support rx-offload to a driver, if the callback
mechanism should not be used. Use e.g. can_rx_offload_queue_sorted() to queue
skbs into rx-offload.
Link: https://lore.kernel.org/r/20200915223527.1417033-33-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The function can_put_echo_skb() can fail for several reasons. It may
fail due to OOM, but when it fails it's usually due to locking problems
in the driver.
In order to help developing and debugging of new drivers propagate error
value in case of errors.
Link: https://lore.kernel.org/r/20200915223527.1417033-12-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
There is a regular need in the kernel to provide a way to declare having a
dynamically sized set of trailing elements in a structure. Kernel code should
always use “flexible array members”[1] for these cases. The older style of
one-element or zero-length arrays should no longer be used[2].
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://github.com/KSPP/linux/issues/21
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
KMSAN sysbot detected a read access to an untinitialized value in the
headroom of an outgoing CAN related sk_buff. When using CAN sockets this
area is filled appropriately - but when using a packet socket this
initialization is missing.
The problematic read access occurs in the CAN receive path which can
only be triggered when the sk_buff is sent through a (virtual) CAN
interface. So we check in the sending path whether we need to perform
the missing initializations.
Fixes: d3b58c47d3 ("can: replace timestamp as unique skb attribute")
Reported-by: syzbot+b02ff0707a97e4e79ebb@syzkaller.appspotmail.com
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Tested-by: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: linux-stable <stable@vger.kernel.org> # >= v4.1
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
In j1939 we need our own struct sock::sk_destruct callback. Export the
generic af_can can_sock_destruct() that allows us to chain-call it.
Fixes: 9d71dd0c70 ("can: add support of SAE J1939 protocol")
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
The skbs for classic CAN and CAN FD frames are allocated with seperate
functions: alloc_can_skb() and alloc_canfd_skb().
In order to support CAN FD frames via the rx-offload helper, the driver
itself has to allocate the skb (depending whether it received a classic
CAN or CAN FD frame), as the rx-offload helper cannot know which kind of
CAN frame the driver has received.
This patch moves the allocation of the skb into the struct
can_rx_offload::mailbox_read callbacks of the the flexcan and ti_hecc
driver and adjusts the rx-offload helper accordingly.
Signed-off-by: Joakim Zhang <qiangqing.zhang@nxp.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch removes the function can_rx_offload_reset(), as it does
nothing. If we ever need this function, add it back again.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Marc Kleine-Budde says:
====================
pull-request: can-next 2019-09-04 j1939
this is a pull request for net-next/master consisting of 21 patches.
the first 12 patches are by me and target the CAN core infrastructure.
They clean up the names of variables , structs and struct members,
convert can_rx_register() to use max() instead of open coding it and
remove unneeded code from the can_pernet_exit() callback.
The next three patches are also by me and they introduce and make use of
the CAN midlayer private structure. It is used to hold protocol specific
per device data structures.
The next patch is by Oleksij Rempel, switches the
&net->can.rcvlists_lock from a spin_lock() to a spin_lock_bh(), so that
it can be used from NAPI (soft IRQ) context.
The next 4 patches are by Kurt Van Dijck, he first updates his email
address via mailmap and then extends sockaddr_can to include j1939
members.
The final patch is the collective effort of many entities (The j1939
authors: Oliver Hartkopp, Bastian Stender, Elenita Hinds, kbuild test
robot, Kurt Van Dijck, Maxime Jayat, Robin van der Gracht, Oleksij
Rempel, Marc Kleine-Budde). It adds support of SAE J1939 protocol to the
CAN networking stack.
SAE J1939 is the vehicle bus recommended practice used for communication
and diagnostics among vehicle components. Originating in the car and
heavy-duty truck industry in the United States, it is now widely used in
other parts of the world.
P.S.: This pull request doesn't invalidate my last pull request:
"pull-request: can-next 2019-09-03".
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
SAE J1939 is the vehicle bus recommended practice used for communication
and diagnostics among vehicle components. Originating in the car and
heavy-duty truck industry in the United States, it is now widely used in
other parts of the world.
J1939, ISO 11783 and NMEA 2000 all share the same high level protocol.
SAE J1939 can be considered the replacement for the older SAE J1708 and
SAE J1587 specifications.
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Bastian Stender <bst@pengutronix.de>
Signed-off-by: Elenita Hinds <ecathinds@gmail.com>
Signed-off-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Kurt Van Dijck <dev.kurt@vandijck-laurijssen.be>
Signed-off-by: Maxime Jayat <maxime.jayat@mobile-devices.fr>
Signed-off-by: Robin van der Gracht <robin@protonic.nl>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The size of this structure will be increased with J1939 support. To stay
binary compatible, the CAN_REQUIRED_SIZE macro is introduced for
existing CAN protocols.
Signed-off-by: Kurt Van Dijck <dev.kurt@vandijck-laurijssen.be>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch removes the old method of allocating the per device protocol
specific memory via a netdevice_notifier. This had the drawback, that
the allocation can fail, leading to a lot of null pointer checks in the
code. This also makes the live cycle management of this memory quite
complicated.
This patch switches from the allocating the struct can_dev_rcv_lists in
a NETDEV_REGISTER call to using the dev->ml_priv, which is allocated by
the driver since the previous patch.
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch introduces the CAN midlayer private structure ("struct
can_ml_priv") which should be used to hold protocol specific per device
data structures. For now it's only member is "struct can_dev_rcv_lists".
The CAN midlayer private is allocated via alloc_netdev()'s private and
assigned to "struct net_device::ml_priv" during device creation. This is
done transparently for CAN drivers using alloc_candev(). The slcan, vcan
and vxcan drivers which are not using alloc_candev() have been adopted
manually. The memory layout of the netdev_priv allocated via
alloc_candev() will looke like this:
+-------------------------+
| driver's priv |
+-------------------------+
| struct can_ml_priv |
+-------------------------+
| array of struct sk_buff |
+-------------------------+
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>