The cleanup_srcu_struct_quiesced() function was added because NVME
used WQ_MEM_RECLAIM workqueues and SRCU did not, which meant that
NVME workqueues waiting on SRCU workqueues could result in deadlocks
during low-memory conditions. However, SRCU now also has WQ_MEM_RECLAIM
workqueues, so there is no longer a potential for deadlock. Furthermore,
it turns out to be extremely hard to use cleanup_srcu_struct_quiesced()
correctly due to the fact that SRCU callback invocation accesses the
srcu_struct structure's per-CPU data area just after callbacks are
invoked. Therefore, the usual practice of using srcu_barrier() to wait
for callbacks to be invoked before invoking cleanup_srcu_struct_quiesced()
fails because SRCU's callback-invocation workqueue handler might be
delayed, which can result in cleanup_srcu_struct_quiesced() being invoked
(and thus freeing the per-CPU data) before the SRCU's callback-invocation
workqueue handler is finished using that per-CPU data. Nor is this a
theoretical problem: KASAN emitted use-after-free warnings because of
this problem on actual runs.
In short, NVME can now safely invoke cleanup_srcu_struct(), which
avoids the use-after-free scenario. And cleanup_srcu_struct_quiesced()
is quite difficult to use safely. This commit therefore removes
cleanup_srcu_struct_quiesced(), switching its sole user back to
cleanup_srcu_struct(). This effectively reverts the following pair
of commits:
f7194ac32c ("srcu: Add cleanup_srcu_struct_quiesced()")
4317228ad9 ("nvme: Avoid flush dependency in delete controller flow")
Reported-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Tested-by: Bart Van Assche <bvanassche@acm.org>
Replace the license boiler plate with a SPDX license identifier.
While in the area, update an email address.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Update ,h SPDX format per Joe Perches. ]
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
The current SRCU implementation has an idx argument of zero or one,
and never anything else. This commit therefore adds a WARN_ON_ONCE()
to complain if this restriction is violated.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
In RCU, the distinction between "rsp", "rnp", and "rdp" has served well
for a great many years, but in SRCU, "sp" vs. "sdp" has proven confusing.
This commit therefore renames SRCU's "sp" pointers to "ssp", so that there
is "ssp" for srcu_struct pointer, "snp" for srcu_node pointer, and "sdp"
for srcu_data pointer.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
In the last patch in this series, we are making lockdep register hooks
onto the irq_{disable,enable} tracepoints. These tracepoints use the
_rcuidle tracepoint variant. In this series we switch the _rcuidle
tracepoint callers to use SRCU instead of sched-RCU. Inorder to
dereference the pointer to the probe functions, we could call
srcu_dereference, however this API will call back into lockdep to check
if the lock is held *before* the lockdep probe hooks have a chance to
run and annotate the IRQ enabled/disabled state.
For this reason we need a notrace variant of srcu_dereference since
otherwise we get lockdep splats. This patch adds the needed
srcu_dereference_notrace variant.
Link: http://lkml.kernel.org/r/20180628182149.226164-3-joel@joelfernandes.org
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This is needed for a future tracepoint patch that uses srcu, and to make
sure it doesn't call into lockdep.
tracepoint code already calls notrace variants for rcu_read_lock_sched
so this patch does the same for srcu which will be used in a later
patch. Keeps it consistent with rcu-sched.
[Joel: Added commit message]
Link: http://lkml.kernel.org/r/20180628182149.226164-2-joel@joelfernandes.org
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Paul McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The current cleanup_srcu_struct() flushes work, which prevents it
from being invoked from some workqueue contexts, as well as from
atomic (non-blocking) contexts. This patch therefore introduced a
cleanup_srcu_struct_quiesced(), which can be invoked only after all
activity on the specified srcu_struct has completed. This restriction
allows cleanup_srcu_struct_quiesced() to be invoked from workqueue
contexts as well as from atomic contexts.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Nitzan Carmi <nitzanc@mellanox.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
Because many of RCU's files have not been included into docbook, a
number of errors have accumulated. This commit fixes them.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Classic SRCU was only ever intended to be a fallback in case of issues
with Tree/Tiny SRCU, and the latter two are doing quite well in testing.
This commit therefore removes Classic SRCU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The call_srcu() docbook entry is currently in include/linux/srcu.h,
which causes needless processing for each include point. This commit
therefore moves this entry to kernel/rcu/srcutree.c, which the compiler
reads only once. In addition, the srcu_batches_completed() function is
used only within RCU and its torture-test suites. This commit therefore
also moves this function's declaration from include/linux/srcutiny.h,
include/linux/srcutree.h, and include/linux/srcuclassic.h to
kernel/rcu/rcu.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit d160a727c4 ("srcu: Make SRCU be built by default") in response
to build errors, which were caused by code that included srcu.h
despite !SRCU. However, srcutiny.o is almost 2K of code, which is not
insignificant for those attempting to run the Linux kernel on IoT devices.
This commit therefore makes SRCU be once again optional, and adjusts
srcu.h to allow error-free inclusion in !SRCU kernel builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Linu Cherian reported a WARN in cleanup_srcu_struct() when shutting
down a guest running iperf on a VFIO assigned device. This happens
because irqfd_wakeup() calls srcu_read_lock(&kvm->irq_srcu) in interrupt
context, while a worker thread does the same inside kvm_set_irq(). If the
interrupt happens while the worker thread is executing __srcu_read_lock(),
updates to the Classic SRCU ->lock_count[] field or the Tree SRCU
->srcu_lock_count[] field can be lost.
The docs say you are not supposed to call srcu_read_lock() and
srcu_read_unlock() from irq context, but KVM interrupt injection happens
from (host) interrupt context and it would be nice if SRCU supported the
use case. KVM is using SRCU here not really for the "sleepable" part,
but rather due to its IPI-free fast detection of grace periods. It is
therefore not desirable to switch back to RCU, which would effectively
revert commit 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING",
2014-01-16).
However, the docs are overly conservative. You can have an SRCU instance
only has users in irq context, and you can mix process and irq context
as long as process context users disable interrupts. In addition,
__srcu_read_unlock() actually uses this_cpu_dec() on both Tree SRCU and
Classic SRCU. For those two implementations, only srcu_read_lock()
is unsafe.
When Classic SRCU's __srcu_read_unlock() was changed to use this_cpu_dec(),
in commit 5a41344a3d ("srcu: Simplify __srcu_read_unlock() via
this_cpu_dec()", 2012-11-29), __srcu_read_lock() did two increments.
Therefore it kept __this_cpu_inc(), with preempt_disable/enable in
the caller. Tree SRCU however only does one increment, so on most
architectures it is more efficient for __srcu_read_lock() to use
this_cpu_inc(), and any performance differences appear to be down in
the noise.
Cc: stable@vger.kernel.org
Fixes: 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING")
Reported-by: Linu Cherian <linuc.decode@gmail.com>
Suggested-by: Linu Cherian <linuc.decode@gmail.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The TREE_SRCU rewrite is large and a bit on the non-simple side, so
this commit helps reduce risk by allowing the old v4.11 SRCU algorithm
to be selected using a new CLASSIC_SRCU Kconfig option that depends
on RCU_EXPERT. The default is to use the new TREE_SRCU and TINY_SRCU
algorithms, in order to help get these the testing that they need.
However, if your users do not require the update-side scalability that
is to be provided by TREE_SRCU, select RCU_EXPERT and then CLASSIC_SRCU
to revert back to the old classic SRCU algorithm.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In response to automated complaints about modifications to SRCU
increasing its size, this commit creates a tiny SRCU that is
used in SMP=n && PREEMPT=n builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU's implementation of expedited grace periods has always assumed
that the SRCU instance is idle when the expedited request arrives.
This commit improves this a bit by maintaining a count of the number
of outstanding expedited requests, thus allowing prior non-expedited
grace periods accommodate these requests by shifting to expedited mode.
However, any non-expedited wait already in progress will still wait for
the full duration.
Improved control of expedited grace periods is planned, but one step
at a time.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Updating ->srcu_state and ->srcu_gp_seq will lead to extremely complex
race conditions given multiple callback queues, so this commit takes
advantage of the two-bit state now available in rcu_seq counters to
store the state in the bottom two bits of ->srcu_gp_seq.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit switches SRCU from custom-built callback queues to the new
rcu_segcblist structure. This change associates grace-period sequence
numbers with groups of callbacks, which will be needed for efficient
processing of per-CPU callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds grace-period sequence numbers, which will be used to
handle mid-boot grace periods and per-CPU callback lists.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current SRCU grace-period processing might never reach the last
portion of srcu_advance_batches(). This is OK given the current
implementation, as the first portion, up to the try_check_zero()
following the srcu_flip() is sufficient to drive grace periods forward.
However, it has the unfortunate side-effect of making it impossible to
determine when a given grace period has ended, and it will be necessary
to efficiently trace ends of grace periods in order to efficiently handle
per-CPU SRCU callback lists.
This commit therefore adds states to the SRCU grace-period processing,
so that the end of a given SRCU grace period is marked by the transition
to the SRCU_STATE_DONE state.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU uses two per-cpu counters: a nesting counter to count the number of
active critical sections, and a sequence counter to ensure that the nesting
counters don't change while they are being added together in
srcu_readers_active_idx_check().
This patch instead uses per-cpu lock and unlock counters. Because both
counters only increase and srcu_readers_active_idx_check() reads the unlock
counter before the lock counter, this achieves the same end without having
to increment two different counters in srcu_read_lock(). This also saves a
smp_mb() in srcu_readers_active_idx_check().
Possible bug: There is no guarantee that the lock counter won't overflow
during srcu_readers_active_idx_check(), as there are no memory barriers
around srcu_flip() (see comment in srcu_readers_active_idx_check() for
details). However, this problem was already present before this patch.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Lance Roy <ldr709@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
SRCU uses per-CPU variables, and DEFINE_STATIC_SRCU() uses a static
per-CPU variable. However, per-CPU variables have significant
restrictions, for example, names of per-CPU variables must be globally
unique, even if declared static. These restrictions carry over to
DEFINE_STATIC_SRCU(), and this commit therefore documents these
restrictions.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Currently, __srcu_read_lock() cannot be invoked from restricted
environments because it contains calls to preempt_disable() and
preempt_enable(), both of which can invoke lockdep, which is a bad
idea in some restricted execution modes. This commit therefore moves
the preempt_disable() and preempt_enable() from __srcu_read_lock()
to srcu_read_lock(). It also inserts the preempt_disable() and
preempt_enable() around the call to __srcu_read_lock() in do_exit().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>