Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM64:

   - Enable the per-vcpu dirty-ring tracking mechanism, together with an
     option to keep the good old dirty log around for pages that are
     dirtied by something other than a vcpu.

   - Switch to the relaxed parallel fault handling, using RCU to delay
     page table reclaim and giving better performance under load.

   - Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
     option, which multi-process VMMs such as crosvm rely on (see merge
     commit 382b5b87a9: "Fix a number of issues with MTE, such as
     races on the tags being initialised vs the PG_mte_tagged flag as
     well as the lack of support for VM_SHARED when KVM is involved.
     Patches from Catalin Marinas and Peter Collingbourne").

   - Merge the pKVM shadow vcpu state tracking that allows the
     hypervisor to have its own view of a vcpu, keeping that state
     private.

   - Add support for the PMUv3p5 architecture revision, bringing support
     for 64bit counters on systems that support it, and fix the
     no-quite-compliant CHAIN-ed counter support for the machines that
     actually exist out there.

   - Fix a handful of minor issues around 52bit VA/PA support (64kB
     pages only) as a prefix of the oncoming support for 4kB and 16kB
     pages.

   - Pick a small set of documentation and spelling fixes, because no
     good merge window would be complete without those.

  s390:

   - Second batch of the lazy destroy patches

   - First batch of KVM changes for kernel virtual != physical address
     support

   - Removal of a unused function

  x86:

   - Allow compiling out SMM support

   - Cleanup and documentation of SMM state save area format

   - Preserve interrupt shadow in SMM state save area

   - Respond to generic signals during slow page faults

   - Fixes and optimizations for the non-executable huge page errata
     fix.

   - Reprogram all performance counters on PMU filter change

   - Cleanups to Hyper-V emulation and tests

   - Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
     guest running on top of a L1 Hyper-V hypervisor)

   - Advertise several new Intel features

   - x86 Xen-for-KVM:

      - Allow the Xen runstate information to cross a page boundary

      - Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured

      - Add support for 32-bit guests in SCHEDOP_poll

   - Notable x86 fixes and cleanups:

      - One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).

      - Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
        a few years back when eliminating unnecessary barriers when
        switching between vmcs01 and vmcs02.

      - Clean up vmread_error_trampoline() to make it more obvious that
        params must be passed on the stack, even for x86-64.

      - Let userspace set all supported bits in MSR_IA32_FEAT_CTL
        irrespective of the current guest CPUID.

      - Fudge around a race with TSC refinement that results in KVM
        incorrectly thinking a guest needs TSC scaling when running on a
        CPU with a constant TSC, but no hardware-enumerated TSC
        frequency.

      - Advertise (on AMD) that the SMM_CTL MSR is not supported

      - Remove unnecessary exports

  Generic:

   - Support for responding to signals during page faults; introduces
     new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks

  Selftests:

   - Fix an inverted check in the access tracking perf test, and restore
     support for asserting that there aren't too many idle pages when
     running on bare metal.

   - Fix build errors that occur in certain setups (unsure exactly what
     is unique about the problematic setup) due to glibc overriding
     static_assert() to a variant that requires a custom message.

   - Introduce actual atomics for clear/set_bit() in selftests

   - Add support for pinning vCPUs in dirty_log_perf_test.

   - Rename the so called "perf_util" framework to "memstress".

   - Add a lightweight psuedo RNG for guest use, and use it to randomize
     the access pattern and write vs. read percentage in the memstress
     tests.

   - Add a common ucall implementation; code dedup and pre-work for
     running SEV (and beyond) guests in selftests.

   - Provide a common constructor and arch hook, which will eventually
     be used by x86 to automatically select the right hypercall (AMD vs.
     Intel).

   - A bunch of added/enabled/fixed selftests for ARM64, covering
     memslots, breakpoints, stage-2 faults and access tracking.

   - x86-specific selftest changes:

      - Clean up x86's page table management.

      - Clean up and enhance the "smaller maxphyaddr" test, and add a
        related test to cover generic emulation failure.

      - Clean up the nEPT support checks.

      - Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.

      - Fix an ordering issue in the AMX test introduced by recent
        conversions to use kvm_cpu_has(), and harden the code to guard
        against similar bugs in the future. Anything that tiggers
        caching of KVM's supported CPUID, kvm_cpu_has() in this case,
        effectively hides opt-in XSAVE features if the caching occurs
        before the test opts in via prctl().

  Documentation:

   - Remove deleted ioctls from documentation

   - Clean up the docs for the x86 MSR filter.

   - Various fixes"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
  KVM: x86: Add proper ReST tables for userspace MSR exits/flags
  KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
  KVM: arm64: selftests: Align VA space allocator with TTBR0
  KVM: arm64: Fix benign bug with incorrect use of VA_BITS
  KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
  KVM: x86: Advertise that the SMM_CTL MSR is not supported
  KVM: x86: remove unnecessary exports
  KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
  tools: KVM: selftests: Convert clear/set_bit() to actual atomics
  tools: Drop "atomic_" prefix from atomic test_and_set_bit()
  tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
  KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
  perf tools: Use dedicated non-atomic clear/set bit helpers
  tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
  KVM: arm64: selftests: Enable single-step without a "full" ucall()
  KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
  KVM: Remove stale comment about KVM_REQ_UNHALT
  KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
  KVM: Reference to kvm_userspace_memory_region in doc and comments
  KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
  ...
This commit is contained in:
Linus Torvalds
2022-12-15 11:12:21 -08:00
257 changed files with 12109 additions and 5029 deletions

View File

@@ -272,18 +272,6 @@ the VCPU file descriptor can be mmap-ed, including:
KVM_CAP_DIRTY_LOG_RING, see section 8.3.
4.6 KVM_SET_MEMORY_REGION
-------------------------
:Capability: basic
:Architectures: all
:Type: vm ioctl
:Parameters: struct kvm_memory_region (in)
:Returns: 0 on success, -1 on error
This ioctl is obsolete and has been removed.
4.7 KVM_CREATE_VCPU
-------------------
@@ -368,17 +356,6 @@ see the description of the capability.
Note that the Xen shared info page, if configured, shall always be assumed
to be dirty. KVM will not explicitly mark it such.
4.9 KVM_SET_MEMORY_ALIAS
------------------------
:Capability: basic
:Architectures: x86
:Type: vm ioctl
:Parameters: struct kvm_memory_alias (in)
:Returns: 0 (success), -1 (error)
This ioctl is obsolete and has been removed.
4.10 KVM_RUN
------------
@@ -1332,7 +1309,7 @@ yet and must be cleared on entry.
__u64 userspace_addr; /* start of the userspace allocated memory */
};
/* for kvm_memory_region::flags */
/* for kvm_userspace_memory_region::flags */
#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
#define KVM_MEM_READONLY (1UL << 1)
@@ -1377,10 +1354,6 @@ the memory region are automatically reflected into the guest. For example, an
mmap() that affects the region will be made visible immediately. Another
example is madvise(MADV_DROP).
It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
allocation and is deprecated.
4.36 KVM_SET_TSS_ADDR
---------------------
@@ -3293,6 +3266,7 @@ valid entries found.
----------------------
:Capability: KVM_CAP_DEVICE_CTRL
:Architectures: all
:Type: vm ioctl
:Parameters: struct kvm_create_device (in/out)
:Returns: 0 on success, -1 on error
@@ -3333,6 +3307,7 @@ number.
:Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
KVM_CAP_VCPU_ATTRIBUTES for vcpu device
KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device (no set)
:Architectures: x86, arm64, s390
:Type: device ioctl, vm ioctl, vcpu ioctl
:Parameters: struct kvm_device_attr
:Returns: 0 on success, -1 on error
@@ -4104,80 +4079,71 @@ flags values for ``struct kvm_msr_filter_range``:
``KVM_MSR_FILTER_READ``
Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap
indicates that a read should immediately fail, while a 1 indicates that
a read for a particular MSR should be handled regardless of the default
indicates that read accesses should be denied, while a 1 indicates that
a read for a particular MSR should be allowed regardless of the default
filter action.
``KVM_MSR_FILTER_WRITE``
Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap
indicates that a write should immediately fail, while a 1 indicates that
a write for a particular MSR should be handled regardless of the default
indicates that write accesses should be denied, while a 1 indicates that
a write for a particular MSR should be allowed regardless of the default
filter action.
``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE``
Filter both read and write accesses to MSRs using the given bitmap. A 0
in the bitmap indicates that both reads and writes should immediately fail,
while a 1 indicates that reads and writes for a particular MSR are not
filtered by this range.
flags values for ``struct kvm_msr_filter``:
``KVM_MSR_FILTER_DEFAULT_ALLOW``
If no filter range matches an MSR index that is getting accessed, KVM will
fall back to allowing access to the MSR.
allow accesses to all MSRs by default.
``KVM_MSR_FILTER_DEFAULT_DENY``
If no filter range matches an MSR index that is getting accessed, KVM will
fall back to rejecting access to the MSR. In this mode, all MSRs that should
be processed by KVM need to explicitly be marked as allowed in the bitmaps.
deny accesses to all MSRs by default.
This ioctl allows user space to define up to 16 bitmaps of MSR ranges to
specify whether a certain MSR access should be explicitly filtered for or not.
This ioctl allows userspace to define up to 16 bitmaps of MSR ranges to deny
guest MSR accesses that would normally be allowed by KVM. If an MSR is not
covered by a specific range, the "default" filtering behavior applies. Each
bitmap range covers MSRs from [base .. base+nmsrs).
If this ioctl has never been invoked, MSR accesses are not guarded and the
default KVM in-kernel emulation behavior is fully preserved.
If an MSR access is denied by userspace, the resulting KVM behavior depends on
whether or not KVM_CAP_X86_USER_SPACE_MSR's KVM_MSR_EXIT_REASON_FILTER is
enabled. If KVM_MSR_EXIT_REASON_FILTER is enabled, KVM will exit to userspace
on denied accesses, i.e. userspace effectively intercepts the MSR access. If
KVM_MSR_EXIT_REASON_FILTER is not enabled, KVM will inject a #GP into the guest
on denied accesses.
If an MSR access is allowed by userspace, KVM will emulate and/or virtualize
the access in accordance with the vCPU model. Note, KVM may still ultimately
inject a #GP if an access is allowed by userspace, e.g. if KVM doesn't support
the MSR, or to follow architectural behavior for the MSR.
By default, KVM operates in KVM_MSR_FILTER_DEFAULT_ALLOW mode with no MSR range
filters.
Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR
filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes
an error.
As soon as the filtering is in place, every MSR access is processed through
the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff);
x2APIC MSRs are always allowed, independent of the ``default_allow`` setting,
and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base
register.
.. warning::
MSR accesses coming from nested vmentry/vmexit are not filtered.
MSR accesses as part of nested VM-Enter/VM-Exit are not filtered.
This includes both writes to individual VMCS fields and reads/writes
through the MSR lists pointed to by the VMCS.
If a bit is within one of the defined ranges, read and write accesses are
guarded by the bitmap's value for the MSR index if the kind of access
is included in the ``struct kvm_msr_filter_range`` flags. If no range
cover this particular access, the behavior is determined by the flags
field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW``
and ``KVM_MSR_FILTER_DEFAULT_DENY``.
Each bitmap range specifies a range of MSRs to potentially allow access on.
The range goes from MSR index [base .. base+nmsrs]. The flags field
indicates whether reads, writes or both reads and writes are filtered
by setting a 1 bit in the bitmap for the corresponding MSR index.
If an MSR access is not permitted through the filtering, it generates a
#GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that
allows user space to deflect and potentially handle various MSR accesses
into user space.
x2APIC MSR accesses cannot be filtered (KVM silently ignores filters that
cover any x2APIC MSRs).
Note, invoking this ioctl while a vCPU is running is inherently racy. However,
KVM does guarantee that vCPUs will see either the previous filter or the new
filter, e.g. MSRs with identical settings in both the old and new filter will
have deterministic behavior.
Similarly, if userspace wishes to intercept on denied accesses,
KVM_MSR_EXIT_REASON_FILTER must be enabled before activating any filters, and
left enabled until after all filters are deactivated. Failure to do so may
result in KVM injecting a #GP instead of exiting to userspace.
4.98 KVM_CREATE_SPAPR_TCE_64
----------------------------
@@ -5163,10 +5129,13 @@ KVM_PV_ENABLE
===== =============================
KVM_PV_DISABLE
Deregister the VM from the Ultravisor and reclaim the memory that
had been donated to the Ultravisor, making it usable by the kernel
again. All registered VCPUs are converted back to non-protected
ones.
Deregister the VM from the Ultravisor and reclaim the memory that had
been donated to the Ultravisor, making it usable by the kernel again.
All registered VCPUs are converted back to non-protected ones. If a
previous protected VM had been prepared for asynchonous teardown with
KVM_PV_ASYNC_CLEANUP_PREPARE and not subsequently torn down with
KVM_PV_ASYNC_CLEANUP_PERFORM, it will be torn down in this call
together with the current protected VM.
KVM_PV_VM_SET_SEC_PARMS
Pass the image header from VM memory to the Ultravisor in
@@ -5289,6 +5258,36 @@ KVM_PV_DUMP
authentication tag all of which are needed to decrypt the dump at a
later time.
KVM_PV_ASYNC_CLEANUP_PREPARE
:Capability: KVM_CAP_S390_PROTECTED_ASYNC_DISABLE
Prepare the current protected VM for asynchronous teardown. Most
resources used by the current protected VM will be set aside for a
subsequent asynchronous teardown. The current protected VM will then
resume execution immediately as non-protected. There can be at most
one protected VM prepared for asynchronous teardown at any time. If
a protected VM had already been prepared for teardown without
subsequently calling KVM_PV_ASYNC_CLEANUP_PERFORM, this call will
fail. In that case, the userspace process should issue a normal
KVM_PV_DISABLE. The resources set aside with this call will need to
be cleaned up with a subsequent call to KVM_PV_ASYNC_CLEANUP_PERFORM
or KVM_PV_DISABLE, otherwise they will be cleaned up when KVM
terminates. KVM_PV_ASYNC_CLEANUP_PREPARE can be called again as soon
as cleanup starts, i.e. before KVM_PV_ASYNC_CLEANUP_PERFORM finishes.
KVM_PV_ASYNC_CLEANUP_PERFORM
:Capability: KVM_CAP_S390_PROTECTED_ASYNC_DISABLE
Tear down the protected VM previously prepared for teardown with
KVM_PV_ASYNC_CLEANUP_PREPARE. The resources that had been set aside
will be freed during the execution of this command. This PV command
should ideally be issued by userspace from a separate thread. If a
fatal signal is received (or the process terminates naturally), the
command will terminate immediately without completing, and the normal
KVM shutdown procedure will take care of cleaning up all remaining
protected VMs, including the ones whose teardown was interrupted by
process termination.
4.126 KVM_XEN_HVM_SET_ATTR
--------------------------
@@ -5306,6 +5305,7 @@ KVM_PV_DUMP
union {
__u8 long_mode;
__u8 vector;
__u8 runstate_update_flag;
struct {
__u64 gfn;
} shared_info;
@@ -5383,6 +5383,14 @@ KVM_XEN_ATTR_TYPE_XEN_VERSION
event channel delivery, so responding within the kernel without
exiting to userspace is beneficial.
KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG
This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates
support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG. It enables the
XEN_RUNSTATE_UPDATE flag which allows guest vCPUs to safely read
other vCPUs' vcpu_runstate_info. Xen guests enable this feature via
the VM_ASST_TYPE_runstate_update_flag of the HYPERVISOR_vm_assist
hypercall.
4.127 KVM_XEN_HVM_GET_ATTR
--------------------------
@@ -6440,31 +6448,35 @@ if it decides to decode and emulate the instruction.
Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is
enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code
will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR
may instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR
exit for writes.
The "reason" field specifies why the MSR trap occurred. User space will only
receive MSR exit traps when a particular reason was requested during through
The "reason" field specifies why the MSR interception occurred. Userspace will
only receive MSR exits when a particular reason was requested during through
ENABLE_CAP. Currently valid exit reasons are:
KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM
KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits
KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER
============================ ========================================
KVM_MSR_EXIT_REASON_UNKNOWN access to MSR that is unknown to KVM
KVM_MSR_EXIT_REASON_INVAL access to invalid MSRs or reserved bits
KVM_MSR_EXIT_REASON_FILTER access blocked by KVM_X86_SET_MSR_FILTER
============================ ========================================
For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest
wants to read. To respond to this request with a successful read, user space
For KVM_EXIT_X86_RDMSR, the "index" field tells userspace which MSR the guest
wants to read. To respond to this request with a successful read, userspace
writes the respective data into the "data" field and must continue guest
execution to ensure the read data is transferred into guest register state.
If the RDMSR request was unsuccessful, user space indicates that with a "1" in
If the RDMSR request was unsuccessful, userspace indicates that with a "1" in
the "error" field. This will inject a #GP into the guest when the VCPU is
executed again.
For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest
wants to write. Once finished processing the event, user space must continue
vCPU execution. If the MSR write was unsuccessful, user space also sets the
For KVM_EXIT_X86_WRMSR, the "index" field tells userspace which MSR the guest
wants to write. Once finished processing the event, userspace must continue
vCPU execution. If the MSR write was unsuccessful, userspace also sets the
"error" field to "1".
See KVM_X86_SET_MSR_FILTER for details on the interaction with MSR filtering.
::
@@ -7229,19 +7241,29 @@ polling.
:Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report
:Returns: 0 on success; -1 on error
This capability enables trapping of #GP invoking RDMSR and WRMSR instructions
into user space.
This capability allows userspace to intercept RDMSR and WRMSR instructions if
access to an MSR is denied. By default, KVM injects #GP on denied accesses.
When a guest requests to read or write an MSR, KVM may not implement all MSRs
that are relevant to a respective system. It also does not differentiate by
CPU type.
To allow more fine grained control over MSR handling, user space may enable
To allow more fine grained control over MSR handling, userspace may enable
this capability. With it enabled, MSR accesses that match the mask specified in
args[0] and trigger a #GP event inside the guest by KVM will instead trigger
KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space
can then handle to implement model specific MSR handling and/or user notifications
to inform a user that an MSR was not handled.
args[0] and would trigger a #GP inside the guest will instead trigger
KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications. Userspace
can then implement model specific MSR handling and/or user notifications
to inform a user that an MSR was not emulated/virtualized by KVM.
The valid mask flags are:
============================ ===============================================
KVM_MSR_EXIT_REASON_UNKNOWN intercept accesses to unknown (to KVM) MSRs
KVM_MSR_EXIT_REASON_INVAL intercept accesses that are architecturally
invalid according to the vCPU model and/or mode
KVM_MSR_EXIT_REASON_FILTER intercept accesses that are denied by userspace
via KVM_X86_SET_MSR_FILTER
============================ ===============================================
7.22 KVM_CAP_X86_BUS_LOCK_EXIT
-------------------------------
@@ -7384,8 +7406,9 @@ hibernation of the host; however the VMM needs to manually save/restore the
tags as appropriate if the VM is migrated.
When this capability is enabled all memory in memslots must be mapped as
not-shareable (no MAP_SHARED), attempts to create a memslot with a
MAP_SHARED mmap will result in an -EINVAL return.
``MAP_ANONYMOUS`` or with a RAM-based file mapping (``tmpfs``, ``memfd``),
attempts to create a memslot with an invalid mmap will result in an
-EINVAL return.
When enabled the VMM may make use of the ``KVM_ARM_MTE_COPY_TAGS`` ioctl to
perform a bulk copy of tags to/from the guest.
@@ -7901,7 +7924,7 @@ KVM_EXIT_X86_WRMSR exit notifications.
This capability indicates that KVM supports that accesses to user defined MSRs
may be rejected. With this capability exposed, KVM exports new VM ioctl
KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR
ranges that KVM should reject access to.
ranges that KVM should deny access to.
In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to
trap and emulate MSRs that are outside of the scope of KVM as well as
@@ -7920,7 +7943,7 @@ regardless of what has actually been exposed through the CPUID leaf.
8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG_RING_ACQ_REL
----------------------------------------------------------
:Architectures: x86
:Architectures: x86, arm64
:Parameters: args[0] - size of the dirty log ring
KVM is capable of tracking dirty memory using ring buffers that are
@@ -8002,13 +8025,6 @@ flushing is done by the KVM_GET_DIRTY_LOG ioctl). To achieve that, one
needs to kick the vcpu out of KVM_RUN using a signal. The resulting
vmexit ensures that all dirty GFNs are flushed to the dirty rings.
NOTE: the capability KVM_CAP_DIRTY_LOG_RING and the corresponding
ioctl KVM_RESET_DIRTY_RINGS are mutual exclusive to the existing ioctls
KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG. After enabling
KVM_CAP_DIRTY_LOG_RING with an acceptable dirty ring size, the virtual
machine will switch to ring-buffer dirty page tracking and further
KVM_GET_DIRTY_LOG or KVM_CLEAR_DIRTY_LOG ioctls will fail.
NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the only capability that
should be exposed by weakly ordered architecture, in order to indicate
the additional memory ordering requirements imposed on userspace when
@@ -8017,6 +8033,33 @@ Architecture with TSO-like ordering (such as x86) are allowed to
expose both KVM_CAP_DIRTY_LOG_RING and KVM_CAP_DIRTY_LOG_RING_ACQ_REL
to userspace.
After enabling the dirty rings, the userspace needs to detect the
capability of KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP to see whether the
ring structures can be backed by per-slot bitmaps. With this capability
advertised, it means the architecture can dirty guest pages without
vcpu/ring context, so that some of the dirty information will still be
maintained in the bitmap structure. KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP
can't be enabled if the capability of KVM_CAP_DIRTY_LOG_RING_ACQ_REL
hasn't been enabled, or any memslot has been existing.
Note that the bitmap here is only a backup of the ring structure. The
use of the ring and bitmap combination is only beneficial if there is
only a very small amount of memory that is dirtied out of vcpu/ring
context. Otherwise, the stand-alone per-slot bitmap mechanism needs to
be considered.
To collect dirty bits in the backup bitmap, userspace can use the same
KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG isn't needed as long as all
the generation of the dirty bits is done in a single pass. Collecting
the dirty bitmap should be the very last thing that the VMM does before
considering the state as complete. VMM needs to ensure that the dirty
state is final and avoid missing dirty pages from another ioctl ordered
after the bitmap collection.
NOTE: One example of using the backup bitmap is saving arm64 vgic/its
tables through KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_SAVE_TABLES} command on
KVM device "kvm-arm-vgic-its" when dirty ring is enabled.
8.30 KVM_CAP_XEN_HVM
--------------------
@@ -8025,12 +8068,13 @@ to userspace.
This capability indicates the features that Xen supports for hosting Xen
PVHVM guests. Valid flags are::
#define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR (1 << 0)
#define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1)
#define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2)
#define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 3)
#define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 4)
#define KVM_XEN_HVM_CONFIG_EVTCHN_SEND (1 << 5)
#define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR (1 << 0)
#define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1)
#define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2)
#define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 3)
#define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 4)
#define KVM_XEN_HVM_CONFIG_EVTCHN_SEND (1 << 5)
#define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG (1 << 6)
The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag indicates that the KVM_XEN_HVM_CONFIG
ioctl is available, for the guest to set its hypercall page.
@@ -8062,6 +8106,18 @@ KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_VECTOR vCPU attributes.
related to event channel delivery, timers, and the XENVER_version
interception.
The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG flag indicates that KVM supports
the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG attribute in the KVM_XEN_SET_ATTR
and KVM_XEN_GET_ATTR ioctls. This controls whether KVM will set the
XEN_RUNSTATE_UPDATE flag in guest memory mapped vcpu_runstate_info during
updates of the runstate information. Note that versions of KVM which support
the RUNSTATE feature above, but not thie RUNSTATE_UPDATE_FLAG feature, will
always set the XEN_RUNSTATE_UPDATE flag when updating the guest structure,
which is perhaps counterintuitive. When this flag is advertised, KVM will
behave more correctly, not using the XEN_RUNSTATE_UPDATE flag until/unless
specifically enabled (by the guest making the hypercall, causing the VMM
to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG attribute).
8.31 KVM_CAP_PPC_MULTITCE
-------------------------

View File

@@ -23,21 +23,23 @@ the PV_TIME_FEATURES hypercall should be probed using the SMCCC 1.1
ARCH_FEATURES mechanism before calling it.
PV_TIME_FEATURES
============= ======== ==========
============= ======== =================================================
Function ID: (uint32) 0xC5000020
PV_call_id: (uint32) The function to query for support.
Currently only PV_TIME_ST is supported.
Return value: (int64) NOT_SUPPORTED (-1) or SUCCESS (0) if the relevant
PV-time feature is supported by the hypervisor.
============= ======== ==========
============= ======== =================================================
PV_TIME_ST
============= ======== ==========
============= ======== ==============================================
Function ID: (uint32) 0xC5000021
Return value: (int64) IPA of the stolen time data structure for this
VCPU. On failure:
NOT_SUPPORTED (-1)
============= ======== ==========
============= ======== ==============================================
The IPA returned by PV_TIME_ST should be mapped by the guest as normal memory
with inner and outer write back caching attributes, in the inner shareable
@@ -76,5 +78,5 @@ It is advisable that one or more 64k pages are set aside for the purpose of
these structures and not used for other purposes, this enables the guest to map
the region using 64k pages and avoids conflicting attributes with other memory.
For the user space interface see Documentation/virt/kvm/devices/vcpu.rst
section "3. GROUP: KVM_ARM_VCPU_PVTIME_CTRL".
For the user space interface see
:ref:`Documentation/virt/kvm/devices/vcpu.rst <kvm_arm_vcpu_pvtime_ctrl>`.

View File

@@ -52,7 +52,10 @@ KVM_DEV_ARM_VGIC_GRP_CTRL
KVM_DEV_ARM_ITS_SAVE_TABLES
save the ITS table data into guest RAM, at the location provisioned
by the guest in corresponding registers/table entries.
by the guest in corresponding registers/table entries. Should userspace
require a form of dirty tracking to identify which pages are modified
by the saving process, it should use a bitmap even if using another
mechanism to track the memory dirtied by the vCPUs.
The layout of the tables in guest memory defines an ABI. The entries
are laid out in little endian format as described in the last paragraph.

View File

@@ -171,6 +171,8 @@ configured values on other VCPUs. Userspace should configure the interrupt
numbers on at least one VCPU after creating all VCPUs and before running any
VCPUs.
.. _kvm_arm_vcpu_pvtime_ctrl:
3. GROUP: KVM_ARM_VCPU_PVTIME_CTRL
==================================

View File

@@ -11438,6 +11438,16 @@ F: arch/x86/kvm/svm/hyperv.*
F: arch/x86/kvm/svm/svm_onhyperv.*
F: arch/x86/kvm/vmx/evmcs.*
KVM X86 Xen (KVM/Xen)
M: David Woodhouse <dwmw2@infradead.org>
M: Paul Durrant <paul@xen.org>
M: Sean Christopherson <seanjc@google.com>
M: Paolo Bonzini <pbonzini@redhat.com>
L: kvm@vger.kernel.org
S: Supported
T: git git://git.kernel.org/pub/scm/virt/kvm/kvm.git
F: arch/x86/kvm/xen.*
KERNFS
M: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
M: Tejun Heo <tj@kernel.org>

View File

@@ -1988,6 +1988,7 @@ config ARM64_MTE
depends on ARM64_PAN
select ARCH_HAS_SUBPAGE_FAULTS
select ARCH_USES_HIGH_VMA_FLAGS
select ARCH_USES_PG_ARCH_X
help
Memory Tagging (part of the ARMv8.5 Extensions) provides
architectural support for run-time, always-on detection of

View File

@@ -135,7 +135,7 @@
* 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
* not known to exist and will break with this configuration.
*
* The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
* The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
*
* Note that when using 4K pages, we concatenate two first level page tables
* together. With 16K pages, we concatenate 16 first level page tables.
@@ -340,9 +340,13 @@
* We have
* PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12]
* HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12]
*
* Always assume 52 bit PA since at this point, we don't know how many PA bits
* the page table has been set up for. This should be safe since unused address
* bits in PAR are res0.
*/
#define PAR_TO_HPFAR(par) \
(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
(((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
#define ECN(x) { ESR_ELx_EC_##x, #x }

View File

@@ -76,6 +76,9 @@ enum __kvm_host_smccc_func {
__KVM_HOST_SMCCC_FUNC___vgic_v3_save_aprs,
__KVM_HOST_SMCCC_FUNC___vgic_v3_restore_aprs,
__KVM_HOST_SMCCC_FUNC___pkvm_vcpu_init_traps,
__KVM_HOST_SMCCC_FUNC___pkvm_init_vm,
__KVM_HOST_SMCCC_FUNC___pkvm_init_vcpu,
__KVM_HOST_SMCCC_FUNC___pkvm_teardown_vm,
};
#define DECLARE_KVM_VHE_SYM(sym) extern char sym[]
@@ -106,7 +109,7 @@ enum __kvm_host_smccc_func {
#define per_cpu_ptr_nvhe_sym(sym, cpu) \
({ \
unsigned long base, off; \
base = kvm_arm_hyp_percpu_base[cpu]; \
base = kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; \
off = (unsigned long)&CHOOSE_NVHE_SYM(sym) - \
(unsigned long)&CHOOSE_NVHE_SYM(__per_cpu_start); \
base ? (typeof(CHOOSE_NVHE_SYM(sym))*)(base + off) : NULL; \
@@ -211,7 +214,7 @@ DECLARE_KVM_HYP_SYM(__kvm_hyp_vector);
#define __kvm_hyp_init CHOOSE_NVHE_SYM(__kvm_hyp_init)
#define __kvm_hyp_vector CHOOSE_HYP_SYM(__kvm_hyp_vector)
extern unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
extern unsigned long kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[];
DECLARE_KVM_NVHE_SYM(__per_cpu_start);
DECLARE_KVM_NVHE_SYM(__per_cpu_end);

View File

@@ -73,6 +73,63 @@ u32 __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
struct kvm_hyp_memcache {
phys_addr_t head;
unsigned long nr_pages;
};
static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
phys_addr_t *p,
phys_addr_t (*to_pa)(void *virt))
{
*p = mc->head;
mc->head = to_pa(p);
mc->nr_pages++;
}
static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
void *(*to_va)(phys_addr_t phys))
{
phys_addr_t *p = to_va(mc->head);
if (!mc->nr_pages)
return NULL;
mc->head = *p;
mc->nr_pages--;
return p;
}
static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
unsigned long min_pages,
void *(*alloc_fn)(void *arg),
phys_addr_t (*to_pa)(void *virt),
void *arg)
{
while (mc->nr_pages < min_pages) {
phys_addr_t *p = alloc_fn(arg);
if (!p)
return -ENOMEM;
push_hyp_memcache(mc, p, to_pa);
}
return 0;
}
static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
void (*free_fn)(void *virt, void *arg),
void *(*to_va)(phys_addr_t phys),
void *arg)
{
while (mc->nr_pages)
free_fn(pop_hyp_memcache(mc, to_va), arg);
}
void free_hyp_memcache(struct kvm_hyp_memcache *mc);
int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
struct kvm_vmid {
atomic64_t id;
};
@@ -115,6 +172,13 @@ struct kvm_smccc_features {
unsigned long vendor_hyp_bmap;
};
typedef unsigned int pkvm_handle_t;
struct kvm_protected_vm {
pkvm_handle_t handle;
struct kvm_hyp_memcache teardown_mc;
};
struct kvm_arch {
struct kvm_s2_mmu mmu;
@@ -163,9 +227,19 @@ struct kvm_arch {
u8 pfr0_csv2;
u8 pfr0_csv3;
struct {
u8 imp:4;
u8 unimp:4;
} dfr0_pmuver;
/* Hypercall features firmware registers' descriptor */
struct kvm_smccc_features smccc_feat;
/*
* For an untrusted host VM, 'pkvm.handle' is used to lookup
* the associated pKVM instance in the hypervisor.
*/
struct kvm_protected_vm pkvm;
};
struct kvm_vcpu_fault_info {
@@ -925,8 +999,6 @@ int kvm_set_ipa_limit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
static inline bool kvm_vm_is_protected(struct kvm *kvm)
{
return false;

View File

@@ -123,4 +123,7 @@ extern u64 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val);
extern u64 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val);
extern u64 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val);
extern unsigned long kvm_nvhe_sym(__icache_flags);
extern unsigned int kvm_nvhe_sym(kvm_arm_vmid_bits);
#endif /* __ARM64_KVM_HYP_H__ */

View File

@@ -166,7 +166,7 @@ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
void free_hyp_pgds(void);
void stage2_unmap_vm(struct kvm *kvm);
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
phys_addr_t pa, unsigned long size, bool writable);

View File

@@ -42,6 +42,8 @@ typedef u64 kvm_pte_t;
#define KVM_PTE_ADDR_MASK GENMASK(47, PAGE_SHIFT)
#define KVM_PTE_ADDR_51_48 GENMASK(15, 12)
#define KVM_PHYS_INVALID (-1ULL)
static inline bool kvm_pte_valid(kvm_pte_t pte)
{
return pte & KVM_PTE_VALID;
@@ -57,6 +59,18 @@ static inline u64 kvm_pte_to_phys(kvm_pte_t pte)
return pa;
}
static inline kvm_pte_t kvm_phys_to_pte(u64 pa)
{
kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
if (PAGE_SHIFT == 16) {
pa &= GENMASK(51, 48);
pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
}
return pte;
}
static inline u64 kvm_granule_shift(u32 level)
{
/* Assumes KVM_PGTABLE_MAX_LEVELS is 4 */
@@ -85,6 +99,8 @@ static inline bool kvm_level_supports_block_mapping(u32 level)
* allocation is physically contiguous.
* @free_pages_exact: Free an exact number of memory pages previously
* allocated by zalloc_pages_exact.
* @free_removed_table: Free a removed paging structure by unlinking and
* dropping references.
* @get_page: Increment the refcount on a page.
* @put_page: Decrement the refcount on a page. When the
* refcount reaches 0 the page is automatically
@@ -103,6 +119,7 @@ struct kvm_pgtable_mm_ops {
void* (*zalloc_page)(void *arg);
void* (*zalloc_pages_exact)(size_t size);
void (*free_pages_exact)(void *addr, size_t size);
void (*free_removed_table)(void *addr, u32 level);
void (*get_page)(void *addr);
void (*put_page)(void *addr);
int (*page_count)(void *addr);
@@ -161,6 +178,121 @@ enum kvm_pgtable_prot {
typedef bool (*kvm_pgtable_force_pte_cb_t)(u64 addr, u64 end,
enum kvm_pgtable_prot prot);
/**
* enum kvm_pgtable_walk_flags - Flags to control a depth-first page-table walk.
* @KVM_PGTABLE_WALK_LEAF: Visit leaf entries, including invalid
* entries.
* @KVM_PGTABLE_WALK_TABLE_PRE: Visit table entries before their
* children.
* @KVM_PGTABLE_WALK_TABLE_POST: Visit table entries after their
* children.
* @KVM_PGTABLE_WALK_SHARED: Indicates the page-tables may be shared
* with other software walkers.
*/
enum kvm_pgtable_walk_flags {
KVM_PGTABLE_WALK_LEAF = BIT(0),
KVM_PGTABLE_WALK_TABLE_PRE = BIT(1),
KVM_PGTABLE_WALK_TABLE_POST = BIT(2),
KVM_PGTABLE_WALK_SHARED = BIT(3),
};
struct kvm_pgtable_visit_ctx {
kvm_pte_t *ptep;
kvm_pte_t old;
void *arg;
struct kvm_pgtable_mm_ops *mm_ops;
u64 addr;
u64 end;
u32 level;
enum kvm_pgtable_walk_flags flags;
};
typedef int (*kvm_pgtable_visitor_fn_t)(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit);
static inline bool kvm_pgtable_walk_shared(const struct kvm_pgtable_visit_ctx *ctx)
{
return ctx->flags & KVM_PGTABLE_WALK_SHARED;
}
/**
* struct kvm_pgtable_walker - Hook into a page-table walk.
* @cb: Callback function to invoke during the walk.
* @arg: Argument passed to the callback function.
* @flags: Bitwise-OR of flags to identify the entry types on which to
* invoke the callback function.
*/
struct kvm_pgtable_walker {
const kvm_pgtable_visitor_fn_t cb;
void * const arg;
const enum kvm_pgtable_walk_flags flags;
};
/*
* RCU cannot be used in a non-kernel context such as the hyp. As such, page
* table walkers used in hyp do not call into RCU and instead use other
* synchronization mechanisms (such as a spinlock).
*/
#if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
typedef kvm_pte_t *kvm_pteref_t;
static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walker,
kvm_pteref_t pteref)
{
return pteref;
}
static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
{
/*
* Due to the lack of RCU (or a similar protection scheme), only
* non-shared table walkers are allowed in the hypervisor.
*/
if (walker->flags & KVM_PGTABLE_WALK_SHARED)
return -EPERM;
return 0;
}
static inline void kvm_pgtable_walk_end(struct kvm_pgtable_walker *walker) {}
static inline bool kvm_pgtable_walk_lock_held(void)
{
return true;
}
#else
typedef kvm_pte_t __rcu *kvm_pteref_t;
static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walker,
kvm_pteref_t pteref)
{
return rcu_dereference_check(pteref, !(walker->flags & KVM_PGTABLE_WALK_SHARED));
}
static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
{
if (walker->flags & KVM_PGTABLE_WALK_SHARED)
rcu_read_lock();
return 0;
}
static inline void kvm_pgtable_walk_end(struct kvm_pgtable_walker *walker)
{
if (walker->flags & KVM_PGTABLE_WALK_SHARED)
rcu_read_unlock();
}
static inline bool kvm_pgtable_walk_lock_held(void)
{
return rcu_read_lock_held();
}
#endif
/**
* struct kvm_pgtable - KVM page-table.
* @ia_bits: Maximum input address size, in bits.
@@ -175,7 +307,7 @@ typedef bool (*kvm_pgtable_force_pte_cb_t)(u64 addr, u64 end,
struct kvm_pgtable {
u32 ia_bits;
u32 start_level;
kvm_pte_t *pgd;
kvm_pteref_t pgd;
struct kvm_pgtable_mm_ops *mm_ops;
/* Stage-2 only */
@@ -184,39 +316,6 @@ struct kvm_pgtable {
kvm_pgtable_force_pte_cb_t force_pte_cb;
};
/**
* enum kvm_pgtable_walk_flags - Flags to control a depth-first page-table walk.
* @KVM_PGTABLE_WALK_LEAF: Visit leaf entries, including invalid
* entries.
* @KVM_PGTABLE_WALK_TABLE_PRE: Visit table entries before their
* children.
* @KVM_PGTABLE_WALK_TABLE_POST: Visit table entries after their
* children.
*/
enum kvm_pgtable_walk_flags {
KVM_PGTABLE_WALK_LEAF = BIT(0),
KVM_PGTABLE_WALK_TABLE_PRE = BIT(1),
KVM_PGTABLE_WALK_TABLE_POST = BIT(2),
};
typedef int (*kvm_pgtable_visitor_fn_t)(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg);
/**
* struct kvm_pgtable_walker - Hook into a page-table walk.
* @cb: Callback function to invoke during the walk.
* @arg: Argument passed to the callback function.
* @flags: Bitwise-OR of flags to identify the entry types on which to
* invoke the callback function.
*/
struct kvm_pgtable_walker {
const kvm_pgtable_visitor_fn_t cb;
void * const arg;
const enum kvm_pgtable_walk_flags flags;
};
/**
* kvm_pgtable_hyp_init() - Initialise a hypervisor stage-1 page-table.
* @pgt: Uninitialised page-table structure to initialise.
@@ -296,6 +395,14 @@ u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size);
*/
u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift);
/**
* kvm_pgtable_stage2_pgd_size() - Helper to compute size of a stage-2 PGD
* @vtcr: Content of the VTCR register.
*
* Return: the size (in bytes) of the stage-2 PGD
*/
size_t kvm_pgtable_stage2_pgd_size(u64 vtcr);
/**
* __kvm_pgtable_stage2_init() - Initialise a guest stage-2 page-table.
* @pgt: Uninitialised page-table structure to initialise.
@@ -324,6 +431,17 @@ int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
*/
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
/**
* kvm_pgtable_stage2_free_removed() - Free a removed stage-2 paging structure.
* @mm_ops: Memory management callbacks.
* @pgtable: Unlinked stage-2 paging structure to be freed.
* @level: Level of the stage-2 paging structure to be freed.
*
* The page-table is assumed to be unreachable by any hardware walkers prior to
* freeing and therefore no TLB invalidation is performed.
*/
void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level);
/**
* kvm_pgtable_stage2_map() - Install a mapping in a guest stage-2 page-table.
* @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
@@ -333,6 +451,7 @@ void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
* @prot: Permissions and attributes for the mapping.
* @mc: Cache of pre-allocated and zeroed memory from which to allocate
* page-table pages.
* @flags: Flags to control the page-table walk (ex. a shared walk)
*
* The offset of @addr within a page is ignored, @size is rounded-up to
* the next page boundary and @phys is rounded-down to the previous page
@@ -354,7 +473,7 @@ void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
*/
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
u64 phys, enum kvm_pgtable_prot prot,
void *mc);
void *mc, enum kvm_pgtable_walk_flags flags);
/**
* kvm_pgtable_stage2_set_owner() - Unmap and annotate pages in the IPA space to

View File

@@ -9,11 +9,49 @@
#include <linux/memblock.h>
#include <asm/kvm_pgtable.h>
/* Maximum number of VMs that can co-exist under pKVM. */
#define KVM_MAX_PVMS 255
#define HYP_MEMBLOCK_REGIONS 128
int pkvm_init_host_vm(struct kvm *kvm);
int pkvm_create_hyp_vm(struct kvm *kvm);
void pkvm_destroy_hyp_vm(struct kvm *kvm);
extern struct memblock_region kvm_nvhe_sym(hyp_memory)[];
extern unsigned int kvm_nvhe_sym(hyp_memblock_nr);
static inline unsigned long
hyp_vmemmap_memblock_size(struct memblock_region *reg, size_t vmemmap_entry_size)
{
unsigned long nr_pages = reg->size >> PAGE_SHIFT;
unsigned long start, end;
start = (reg->base >> PAGE_SHIFT) * vmemmap_entry_size;
end = start + nr_pages * vmemmap_entry_size;
start = ALIGN_DOWN(start, PAGE_SIZE);
end = ALIGN(end, PAGE_SIZE);
return end - start;
}
static inline unsigned long hyp_vmemmap_pages(size_t vmemmap_entry_size)
{
unsigned long res = 0, i;
for (i = 0; i < kvm_nvhe_sym(hyp_memblock_nr); i++) {
res += hyp_vmemmap_memblock_size(&kvm_nvhe_sym(hyp_memory)[i],
vmemmap_entry_size);
}
return res >> PAGE_SHIFT;
}
static inline unsigned long hyp_vm_table_pages(void)
{
return PAGE_ALIGN(KVM_MAX_PVMS * sizeof(void *)) >> PAGE_SHIFT;
}
static inline unsigned long __hyp_pgtable_max_pages(unsigned long nr_pages)
{
unsigned long total = 0, i;

View File

@@ -25,7 +25,7 @@ unsigned long mte_copy_tags_to_user(void __user *to, void *from,
unsigned long n);
int mte_save_tags(struct page *page);
void mte_save_page_tags(const void *page_addr, void *tag_storage);
bool mte_restore_tags(swp_entry_t entry, struct page *page);
void mte_restore_tags(swp_entry_t entry, struct page *page);
void mte_restore_page_tags(void *page_addr, const void *tag_storage);
void mte_invalidate_tags(int type, pgoff_t offset);
void mte_invalidate_tags_area(int type);
@@ -36,6 +36,58 @@ void mte_free_tag_storage(char *storage);
/* track which pages have valid allocation tags */
#define PG_mte_tagged PG_arch_2
/* simple lock to avoid multiple threads tagging the same page */
#define PG_mte_lock PG_arch_3
static inline void set_page_mte_tagged(struct page *page)
{
/*
* Ensure that the tags written prior to this function are visible
* before the page flags update.
*/
smp_wmb();
set_bit(PG_mte_tagged, &page->flags);
}
static inline bool page_mte_tagged(struct page *page)
{
bool ret = test_bit(PG_mte_tagged, &page->flags);
/*
* If the page is tagged, ensure ordering with a likely subsequent
* read of the tags.
*/
if (ret)
smp_rmb();
return ret;
}
/*
* Lock the page for tagging and return 'true' if the page can be tagged,
* 'false' if already tagged. PG_mte_tagged is never cleared and therefore the
* locking only happens once for page initialisation.
*
* The page MTE lock state:
*
* Locked: PG_mte_lock && !PG_mte_tagged
* Unlocked: !PG_mte_lock || PG_mte_tagged
*
* Acquire semantics only if the page is tagged (returning 'false').
*/
static inline bool try_page_mte_tagging(struct page *page)
{
if (!test_and_set_bit(PG_mte_lock, &page->flags))
return true;
/*
* The tags are either being initialised or may have been initialised
* already. Check if the PG_mte_tagged flag has been set or wait
* otherwise.
*/
smp_cond_load_acquire(&page->flags, VAL & (1UL << PG_mte_tagged));
return false;
}
void mte_zero_clear_page_tags(void *addr);
void mte_sync_tags(pte_t old_pte, pte_t pte);
@@ -56,6 +108,17 @@ size_t mte_probe_user_range(const char __user *uaddr, size_t size);
/* unused if !CONFIG_ARM64_MTE, silence the compiler */
#define PG_mte_tagged 0
static inline void set_page_mte_tagged(struct page *page)
{
}
static inline bool page_mte_tagged(struct page *page)
{
return false;
}
static inline bool try_page_mte_tagging(struct page *page)
{
return false;
}
static inline void mte_zero_clear_page_tags(void *addr)
{
}

View File

@@ -1046,8 +1046,8 @@ static inline void arch_swap_invalidate_area(int type)
#define __HAVE_ARCH_SWAP_RESTORE
static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
{
if (system_supports_mte() && mte_restore_tags(entry, &folio->page))
set_bit(PG_mte_tagged, &folio->flags);
if (system_supports_mte())
mte_restore_tags(entry, &folio->page);
}
#endif /* CONFIG_ARM64_MTE */

View File

@@ -43,6 +43,7 @@
#define __KVM_HAVE_VCPU_EVENTS
#define KVM_COALESCED_MMIO_PAGE_OFFSET 1
#define KVM_DIRTY_LOG_PAGE_OFFSET 64
#define KVM_REG_SIZE(id) \
(1U << (((id) & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT))

View File

@@ -2076,8 +2076,10 @@ static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
* Clear the tags in the zero page. This needs to be done via the
* linear map which has the Tagged attribute.
*/
if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
if (try_page_mte_tagging(ZERO_PAGE(0))) {
mte_clear_page_tags(lm_alias(empty_zero_page));
set_page_mte_tagged(ZERO_PAGE(0));
}
kasan_init_hw_tags_cpu();
}

View File

@@ -47,7 +47,7 @@ static int mte_dump_tag_range(struct coredump_params *cprm,
* Pages mapped in user space as !pte_access_permitted() (e.g.
* PROT_EXEC only) may not have the PG_mte_tagged flag set.
*/
if (!test_bit(PG_mte_tagged, &page->flags)) {
if (!page_mte_tagged(page)) {
put_page(page);
dump_skip(cprm, MTE_PAGE_TAG_STORAGE);
continue;

View File

@@ -271,7 +271,7 @@ static int swsusp_mte_save_tags(void)
if (!page)
continue;
if (!test_bit(PG_mte_tagged, &page->flags))
if (!page_mte_tagged(page))
continue;
ret = save_tags(page, pfn);

View File

@@ -63,12 +63,6 @@ KVM_NVHE_ALIAS(nvhe_hyp_panic_handler);
/* Vectors installed by hyp-init on reset HVC. */
KVM_NVHE_ALIAS(__hyp_stub_vectors);
/* Kernel symbol used by icache_is_vpipt(). */
KVM_NVHE_ALIAS(__icache_flags);
/* VMID bits set by the KVM VMID allocator */
KVM_NVHE_ALIAS(kvm_arm_vmid_bits);
/* Static keys which are set if a vGIC trap should be handled in hyp. */
KVM_NVHE_ALIAS(vgic_v2_cpuif_trap);
KVM_NVHE_ALIAS(vgic_v3_cpuif_trap);
@@ -84,9 +78,6 @@ KVM_NVHE_ALIAS(gic_nonsecure_priorities);
KVM_NVHE_ALIAS(__start___kvm_ex_table);
KVM_NVHE_ALIAS(__stop___kvm_ex_table);
/* Array containing bases of nVHE per-CPU memory regions. */
KVM_NVHE_ALIAS(kvm_arm_hyp_percpu_base);
/* PMU available static key */
#ifdef CONFIG_HW_PERF_EVENTS
KVM_NVHE_ALIAS(kvm_arm_pmu_available);
@@ -103,12 +94,6 @@ KVM_NVHE_ALIAS_HYP(__memcpy, __pi_memcpy);
KVM_NVHE_ALIAS_HYP(__memset, __pi_memset);
#endif
/* Kernel memory sections */
KVM_NVHE_ALIAS(__start_rodata);
KVM_NVHE_ALIAS(__end_rodata);
KVM_NVHE_ALIAS(__bss_start);
KVM_NVHE_ALIAS(__bss_stop);
/* Hyp memory sections */
KVM_NVHE_ALIAS(__hyp_idmap_text_start);
KVM_NVHE_ALIAS(__hyp_idmap_text_end);

Some files were not shown because too many files have changed in this diff Show More