Merge branch 'akpm' (patches from Andrew)

Pull updates from Andrew Morton:
 "Most of -mm and quite a number of other subsystems: hotfixes, scripts,
  ocfs2, misc, lib, binfmt, init, reiserfs, exec, dma-mapping, kcov.

  MM is fairly quiet this time.  Holidays, I assume"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (118 commits)
  kcov: ignore fault-inject and stacktrace
  include/linux/io-mapping.h-mapping: use PHYS_PFN() macro in io_mapping_map_atomic_wc()
  execve: warn if process starts with executable stack
  reiserfs: prevent NULL pointer dereference in reiserfs_insert_item()
  init/main.c: fix misleading "This architecture does not have kernel memory protection" message
  init/main.c: fix quoted value handling in unknown_bootoption
  init/main.c: remove unnecessary repair_env_string in do_initcall_level
  init/main.c: log arguments and environment passed to init
  fs/binfmt_elf.c: coredump: allow process with empty address space to coredump
  fs/binfmt_elf.c: coredump: delete duplicated overflow check
  fs/binfmt_elf.c: coredump: allocate core ELF header on stack
  fs/binfmt_elf.c: make BAD_ADDR() unlikely
  fs/binfmt_elf.c: better codegen around current->mm
  fs/binfmt_elf.c: don't copy ELF header around
  fs/binfmt_elf.c: fix ->start_code calculation
  fs/binfmt_elf.c: smaller code generation around auxv vector fill
  lib/find_bit.c: uninline helper _find_next_bit()
  lib/find_bit.c: join _find_next_bit{_le}
  uapi: rename ext2_swab() to swab() and share globally in swab.h
  lib/scatterlist.c: adjust indentation in __sg_alloc_table
  ...
This commit is contained in:
Linus Torvalds
2020-01-31 12:16:36 -08:00
136 changed files with 2722 additions and 1291 deletions

View File

@@ -834,6 +834,18 @@
dump out devices still on the deferred probe list after
retrying.
dfltcc= [HW,S390]
Format: { on | off | def_only | inf_only | always }
on: s390 zlib hardware support for compression on
level 1 and decompression (default)
off: No s390 zlib hardware support
def_only: s390 zlib hardware support for deflate
only (compression on level 1)
inf_only: s390 zlib hardware support for inflate
only (decompression)
always: Same as 'on' but ignores the selected compression
level always using hardware support (used for debugging)
dhash_entries= [KNL]
Set number of hash buckets for dentry cache.

View File

@@ -31,6 +31,7 @@ Core utilities
generic-radix-tree
memory-allocation
mm-api
pin_user_pages
gfp_mask-from-fs-io
timekeeping
boot-time-mm

View File

@@ -0,0 +1,232 @@
.. SPDX-License-Identifier: GPL-2.0
====================================================
pin_user_pages() and related calls
====================================================
.. contents:: :local:
Overview
========
This document describes the following functions::
pin_user_pages()
pin_user_pages_fast()
pin_user_pages_remote()
Basic description of FOLL_PIN
=============================
FOLL_PIN and FOLL_LONGTERM are flags that can be passed to the get_user_pages*()
("gup") family of functions. FOLL_PIN has significant interactions and
interdependencies with FOLL_LONGTERM, so both are covered here.
FOLL_PIN is internal to gup, meaning that it should not appear at the gup call
sites. This allows the associated wrapper functions (pin_user_pages*() and
others) to set the correct combination of these flags, and to check for problems
as well.
FOLL_LONGTERM, on the other hand, *is* allowed to be set at the gup call sites.
This is in order to avoid creating a large number of wrapper functions to cover
all combinations of get*(), pin*(), FOLL_LONGTERM, and more. Also, the
pin_user_pages*() APIs are clearly distinct from the get_user_pages*() APIs, so
that's a natural dividing line, and a good point to make separate wrapper calls.
In other words, use pin_user_pages*() for DMA-pinned pages, and
get_user_pages*() for other cases. There are four cases described later on in
this document, to further clarify that concept.
FOLL_PIN and FOLL_GET are mutually exclusive for a given gup call. However,
multiple threads and call sites are free to pin the same struct pages, via both
FOLL_PIN and FOLL_GET. It's just the call site that needs to choose one or the
other, not the struct page(s).
The FOLL_PIN implementation is nearly the same as FOLL_GET, except that FOLL_PIN
uses a different reference counting technique.
FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying that is,
FOLL_LONGTERM is a specific case, more restrictive case of FOLL_PIN.
Which flags are set by each wrapper
===================================
For these pin_user_pages*() functions, FOLL_PIN is OR'd in with whatever gup
flags the caller provides. The caller is required to pass in a non-null struct
pages* array, and the function then pin pages by incrementing each by a special
value. For now, that value is +1, just like get_user_pages*().::
Function
--------
pin_user_pages FOLL_PIN is always set internally by this function.
pin_user_pages_fast FOLL_PIN is always set internally by this function.
pin_user_pages_remote FOLL_PIN is always set internally by this function.
For these get_user_pages*() functions, FOLL_GET might not even be specified.
Behavior is a little more complex than above. If FOLL_GET was *not* specified,
but the caller passed in a non-null struct pages* array, then the function
sets FOLL_GET for you, and proceeds to pin pages by incrementing the refcount
of each page by +1.::
Function
--------
get_user_pages FOLL_GET is sometimes set internally by this function.
get_user_pages_fast FOLL_GET is sometimes set internally by this function.
get_user_pages_remote FOLL_GET is sometimes set internally by this function.
Tracking dma-pinned pages
=========================
Some of the key design constraints, and solutions, for tracking dma-pinned
pages:
* An actual reference count, per struct page, is required. This is because
multiple processes may pin and unpin a page.
* False positives (reporting that a page is dma-pinned, when in fact it is not)
are acceptable, but false negatives are not.
* struct page may not be increased in size for this, and all fields are already
used.
* Given the above, we can overload the page->_refcount field by using, sort of,
the upper bits in that field for a dma-pinned count. "Sort of", means that,
rather than dividing page->_refcount into bit fields, we simple add a medium-
large value (GUP_PIN_COUNTING_BIAS, initially chosen to be 1024: 10 bits) to
page->_refcount. This provides fuzzy behavior: if a page has get_page() called
on it 1024 times, then it will appear to have a single dma-pinned count.
And again, that's acceptable.
This also leads to limitations: there are only 31-10==21 bits available for a
counter that increments 10 bits at a time.
TODO: for 1GB and larger huge pages, this is cutting it close. That's because
when pin_user_pages() follows such pages, it increments the head page by "1"
(where "1" used to mean "+1" for get_user_pages(), but now means "+1024" for
pin_user_pages()) for each tail page. So if you have a 1GB huge page:
* There are 256K (18 bits) worth of 4 KB tail pages.
* There are 21 bits available to count up via GUP_PIN_COUNTING_BIAS (that is,
10 bits at a time)
* There are 21 - 18 == 3 bits available to count. Except that there aren't,
because you need to allow for a few normal get_page() calls on the head page,
as well. Fortunately, the approach of using addition, rather than "hard"
bitfields, within page->_refcount, allows for sharing these bits gracefully.
But we're still looking at about 8 references.
This, however, is a missing feature more than anything else, because it's easily
solved by addressing an obvious inefficiency in the original get_user_pages()
approach of retrieving pages: stop treating all the pages as if they were
PAGE_SIZE. Retrieve huge pages as huge pages. The callers need to be aware of
this, so some work is required. Once that's in place, this limitation mostly
disappears from view, because there will be ample refcounting range available.
* Callers must specifically request "dma-pinned tracking of pages". In other
words, just calling get_user_pages() will not suffice; a new set of functions,
pin_user_page() and related, must be used.
FOLL_PIN, FOLL_GET, FOLL_LONGTERM: when to use which flags
==========================================================
Thanks to Jan Kara, Vlastimil Babka and several other -mm people, for describing
these categories:
CASE 1: Direct IO (DIO)
-----------------------
There are GUP references to pages that are serving
as DIO buffers. These buffers are needed for a relatively short time (so they
are not "long term"). No special synchronization with page_mkclean() or
munmap() is provided. Therefore, flags to set at the call site are: ::
FOLL_PIN
...but rather than setting FOLL_PIN directly, call sites should use one of
the pin_user_pages*() routines that set FOLL_PIN.
CASE 2: RDMA
------------
There are GUP references to pages that are serving as DMA
buffers. These buffers are needed for a long time ("long term"). No special
synchronization with page_mkclean() or munmap() is provided. Therefore, flags
to set at the call site are: ::
FOLL_PIN | FOLL_LONGTERM
NOTE: Some pages, such as DAX pages, cannot be pinned with longterm pins. That's
because DAX pages do not have a separate page cache, and so "pinning" implies
locking down file system blocks, which is not (yet) supported in that way.
CASE 3: Hardware with page faulting support
-------------------------------------------
Here, a well-written driver doesn't normally need to pin pages at all. However,
if the driver does choose to do so, it can register MMU notifiers for the range,
and will be called back upon invalidation. Either way (avoiding page pinning, or
using MMU notifiers to unpin upon request), there is proper synchronization with
both filesystem and mm (page_mkclean(), munmap(), etc).
Therefore, neither flag needs to be set.
In this case, ideally, neither get_user_pages() nor pin_user_pages() should be
called. Instead, the software should be written so that it does not pin pages.
This allows mm and filesystems to operate more efficiently and reliably.
CASE 4: Pinning for struct page manipulation only
-------------------------------------------------
Here, normal GUP calls are sufficient, so neither flag needs to be set.
page_dma_pinned(): the whole point of pinning
=============================================
The whole point of marking pages as "DMA-pinned" or "gup-pinned" is to be able
to query, "is this page DMA-pinned?" That allows code such as page_mkclean()
(and file system writeback code in general) to make informed decisions about
what to do when a page cannot be unmapped due to such pins.
What to do in those cases is the subject of a years-long series of discussions
and debates (see the References at the end of this document). It's a TODO item
here: fill in the details once that's worked out. Meanwhile, it's safe to say
that having this available: ::
static inline bool page_dma_pinned(struct page *page)
...is a prerequisite to solving the long-running gup+DMA problem.
Another way of thinking about FOLL_GET, FOLL_PIN, and FOLL_LONGTERM
===================================================================
Another way of thinking about these flags is as a progression of restrictions:
FOLL_GET is for struct page manipulation, without affecting the data that the
struct page refers to. FOLL_PIN is a *replacement* for FOLL_GET, and is for
short term pins on pages whose data *will* get accessed. As such, FOLL_PIN is
a "more severe" form of pinning. And finally, FOLL_LONGTERM is an even more
restrictive case that has FOLL_PIN as a prerequisite: this is for pages that
will be pinned longterm, and whose data will be accessed.
Unit testing
============
This file::
tools/testing/selftests/vm/gup_benchmark.c
has the following new calls to exercise the new pin*() wrapper functions:
* PIN_FAST_BENCHMARK (./gup_benchmark -a)
* PIN_BENCHMARK (./gup_benchmark -b)
You can monitor how many total dma-pinned pages have been acquired and released
since the system was booted, via two new /proc/vmstat entries: ::
/proc/vmstat/nr_foll_pin_requested
/proc/vmstat/nr_foll_pin_requested
Those are both going to show zero, unless CONFIG_DEBUG_VM is set. This is
because there is a noticeable performance drop in unpin_user_page(), when they
are activated.
References
==========
* `Some slow progress on get_user_pages() (Apr 2, 2019) <https://lwn.net/Articles/784574/>`_
* `DMA and get_user_pages() (LPC: Dec 12, 2018) <https://lwn.net/Articles/774411/>`_
* `The trouble with get_user_pages() (Apr 30, 2018) <https://lwn.net/Articles/753027/>`_
John Hubbard, October, 2019

View File

@@ -130,6 +130,19 @@ checking for the same-value filled pages during store operation. However, the
existing pages which are marked as same-value filled pages remain stored
unchanged in zswap until they are either loaded or invalidated.
To prevent zswap from shrinking pool when zswap is full and there's a high
pressure on swap (this will result in flipping pages in and out zswap pool
without any real benefit but with a performance drop for the system), a
special parameter has been introduced to implement a sort of hysteresis to
refuse taking pages into zswap pool until it has sufficient space if the limit
has been hit. To set the threshold at which zswap would start accepting pages
again after it became full, use the sysfs ``accept_threhsold_percent``
attribute, e. g.::
echo 80 > /sys/module/zswap/parameters/accept_threhsold_percent
Setting this parameter to 100 will disable the hysteresis.
A debugfs interface is provided for various statistic about pool size, number
of pages stored, same-value filled pages and various counters for the reasons
pages are rejected.

View File

@@ -103,7 +103,7 @@ static long mm_iommu_do_alloc(struct mm_struct *mm, unsigned long ua,
for (entry = 0; entry < entries; entry += chunk) {
unsigned long n = min(entries - entry, chunk);
ret = get_user_pages(ua + (entry << PAGE_SHIFT), n,
ret = pin_user_pages(ua + (entry << PAGE_SHIFT), n,
FOLL_WRITE | FOLL_LONGTERM,
mem->hpages + entry, NULL);
if (ret == n) {
@@ -167,9 +167,8 @@ good_exit:
return 0;
free_exit:
/* free the reference taken */
for (i = 0; i < pinned; i++)
put_page(mem->hpages[i]);
/* free the references taken */
unpin_user_pages(mem->hpages, pinned);
vfree(mem->hpas);
kfree(mem);
@@ -215,7 +214,8 @@ static void mm_iommu_unpin(struct mm_iommu_table_group_mem_t *mem)
if (mem->hpas[i] & MM_IOMMU_TABLE_GROUP_PAGE_DIRTY)
SetPageDirty(page);
put_page(page);
unpin_user_page(page);
mem->hpas[i] = 0;
}
}

View File

@@ -30,13 +30,13 @@ extern unsigned char _compressed_start[];
extern unsigned char _compressed_end[];
#ifdef CONFIG_HAVE_KERNEL_BZIP2
#define HEAP_SIZE 0x400000
#define BOOT_HEAP_SIZE 0x400000
#else
#define HEAP_SIZE 0x10000
#define BOOT_HEAP_SIZE 0x10000
#endif
static unsigned long free_mem_ptr = (unsigned long) _end;
static unsigned long free_mem_end_ptr = (unsigned long) _end + HEAP_SIZE;
static unsigned long free_mem_end_ptr = (unsigned long) _end + BOOT_HEAP_SIZE;
#ifdef CONFIG_KERNEL_GZIP
#include "../../../../lib/decompress_inflate.c"
@@ -62,7 +62,7 @@ static unsigned long free_mem_end_ptr = (unsigned long) _end + HEAP_SIZE;
#include "../../../../lib/decompress_unxz.c"
#endif
#define decompress_offset ALIGN((unsigned long)_end + HEAP_SIZE, PAGE_SIZE)
#define decompress_offset ALIGN((unsigned long)_end + BOOT_HEAP_SIZE, PAGE_SIZE)
unsigned long mem_safe_offset(void)
{

View File

@@ -14,6 +14,7 @@
char __bootdata(early_command_line)[COMMAND_LINE_SIZE];
struct ipl_parameter_block __bootdata_preserved(ipl_block);
int __bootdata_preserved(ipl_block_valid);
unsigned int __bootdata_preserved(zlib_dfltcc_support) = ZLIB_DFLTCC_FULL;
unsigned long __bootdata(vmalloc_size) = VMALLOC_DEFAULT_SIZE;
unsigned long __bootdata(memory_end);
@@ -229,6 +230,19 @@ void parse_boot_command_line(void)
if (!strcmp(param, "vmalloc") && val)
vmalloc_size = round_up(memparse(val, NULL), PAGE_SIZE);
if (!strcmp(param, "dfltcc")) {
if (!strcmp(val, "off"))
zlib_dfltcc_support = ZLIB_DFLTCC_DISABLED;
else if (!strcmp(val, "on"))
zlib_dfltcc_support = ZLIB_DFLTCC_FULL;
else if (!strcmp(val, "def_only"))
zlib_dfltcc_support = ZLIB_DFLTCC_DEFLATE_ONLY;
else if (!strcmp(val, "inf_only"))
zlib_dfltcc_support = ZLIB_DFLTCC_INFLATE_ONLY;
else if (!strcmp(val, "always"))
zlib_dfltcc_support = ZLIB_DFLTCC_FULL_DEBUG;
}
if (!strcmp(param, "noexec")) {
rc = kstrtobool(val, &enabled);
if (!rc && !enabled)

View File

@@ -79,6 +79,13 @@ struct parmarea {
char command_line[ARCH_COMMAND_LINE_SIZE]; /* 0x10480 */
};
extern unsigned int zlib_dfltcc_support;
#define ZLIB_DFLTCC_DISABLED 0
#define ZLIB_DFLTCC_FULL 1
#define ZLIB_DFLTCC_DEFLATE_ONLY 2
#define ZLIB_DFLTCC_INFLATE_ONLY 3
#define ZLIB_DFLTCC_FULL_DEBUG 4
extern int noexec_disabled;
extern int memory_end_set;
extern unsigned long memory_end;

View File

@@ -111,6 +111,8 @@ unsigned long __bootdata_preserved(__etext_dma);
unsigned long __bootdata_preserved(__sdma);
unsigned long __bootdata_preserved(__edma);
unsigned long __bootdata_preserved(__kaslr_offset);
unsigned int __bootdata_preserved(zlib_dfltcc_support);
EXPORT_SYMBOL(zlib_dfltcc_support);
unsigned long VMALLOC_START;
EXPORT_SYMBOL(VMALLOC_START);
@@ -759,14 +761,6 @@ static void __init free_mem_detect_info(void)
memblock_free(start, size);
}
static void __init memblock_physmem_add(phys_addr_t start, phys_addr_t size)
{
memblock_dbg("memblock_physmem_add: [%#016llx-%#016llx]\n",
start, start + size - 1);
memblock_add_range(&memblock.memory, start, size, 0, 0);
memblock_add_range(&memblock.physmem, start, size, 0, 0);
}
static const char * __init get_mem_info_source(void)
{
switch (mem_detect.info_source) {
@@ -791,8 +785,10 @@ static void __init memblock_add_mem_detect_info(void)
get_mem_info_source(), mem_detect.info_source);
/* keep memblock lists close to the kernel */
memblock_set_bottom_up(true);
for_each_mem_detect_block(i, &start, &end)
for_each_mem_detect_block(i, &start, &end) {
memblock_add(start, end - start);
memblock_physmem_add(start, end - start);
}
memblock_set_bottom_up(false);
memblock_dump_all();
}

View File

@@ -27,6 +27,7 @@
#include <linux/acpi.h>
#include <linux/workqueue.h>
#include <linux/uaccess.h>
#include <linux/units.h>
#define PREFIX "ACPI: "
@@ -172,7 +173,7 @@ struct acpi_thermal {
struct acpi_handle_list devices;
struct thermal_zone_device *thermal_zone;
int tz_enabled;
int kelvin_offset;
int kelvin_offset; /* in millidegrees */
struct work_struct thermal_check_work;
};
@@ -297,7 +298,8 @@ static int acpi_thermal_trips_update(struct acpi_thermal *tz, int flag)
if (crt == -1) {
tz->trips.critical.flags.valid = 0;
} else if (crt > 0) {
unsigned long crt_k = CELSIUS_TO_DECI_KELVIN(crt);
unsigned long crt_k = celsius_to_deci_kelvin(crt);
/*
* Allow override critical threshold
*/
@@ -333,7 +335,7 @@ static int acpi_thermal_trips_update(struct acpi_thermal *tz, int flag)
if (psv == -1) {
status = AE_SUPPORT;
} else if (psv > 0) {
tmp = CELSIUS_TO_DECI_KELVIN(psv);
tmp = celsius_to_deci_kelvin(psv);
status = AE_OK;
} else {
status = acpi_evaluate_integer(tz->device->handle,
@@ -413,7 +415,7 @@ static int acpi_thermal_trips_update(struct acpi_thermal *tz, int flag)
break;
if (i == 1)
tz->trips.active[0].temperature =
CELSIUS_TO_DECI_KELVIN(act);
celsius_to_deci_kelvin(act);
else
/*
* Don't allow override higher than
@@ -421,9 +423,9 @@ static int acpi_thermal_trips_update(struct acpi_thermal *tz, int flag)
*/
tz->trips.active[i - 1].temperature =
(tz->trips.active[i - 2].temperature <
CELSIUS_TO_DECI_KELVIN(act) ?
celsius_to_deci_kelvin(act) ?
tz->trips.active[i - 2].temperature :
CELSIUS_TO_DECI_KELVIN(act));
celsius_to_deci_kelvin(act));
break;
} else {
tz->trips.active[i].temperature = tmp;
@@ -519,7 +521,7 @@ static int thermal_get_temp(struct thermal_zone_device *thermal, int *temp)
if (result)
return result;
*temp = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(tz->temperature,
*temp = deci_kelvin_to_millicelsius_with_offset(tz->temperature,
tz->kelvin_offset);
return 0;
}
@@ -624,7 +626,7 @@ static int thermal_get_trip_temp(struct thermal_zone_device *thermal,
if (tz->trips.critical.flags.valid) {
if (!trip) {
*temp = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(
*temp = deci_kelvin_to_millicelsius_with_offset(
tz->trips.critical.temperature,
tz->kelvin_offset);
return 0;
@@ -634,7 +636,7 @@ static int thermal_get_trip_temp(struct thermal_zone_device *thermal,
if (tz->trips.hot.flags.valid) {
if (!trip) {
*temp = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(
*temp = deci_kelvin_to_millicelsius_with_offset(
tz->trips.hot.temperature,
tz->kelvin_offset);
return 0;
@@ -644,7 +646,7 @@ static int thermal_get_trip_temp(struct thermal_zone_device *thermal,
if (tz->trips.passive.flags.valid) {
if (!trip) {
*temp = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(
*temp = deci_kelvin_to_millicelsius_with_offset(
tz->trips.passive.temperature,
tz->kelvin_offset);
return 0;
@@ -655,7 +657,7 @@ static int thermal_get_trip_temp(struct thermal_zone_device *thermal,
for (i = 0; i < ACPI_THERMAL_MAX_ACTIVE &&
tz->trips.active[i].flags.valid; i++) {
if (!trip) {
*temp = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(
*temp = deci_kelvin_to_millicelsius_with_offset(
tz->trips.active[i].temperature,
tz->kelvin_offset);
return 0;
@@ -672,7 +674,7 @@ static int thermal_get_crit_temp(struct thermal_zone_device *thermal,
struct acpi_thermal *tz = thermal->devdata;
if (tz->trips.critical.flags.valid) {
*temperature = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(
*temperature = deci_kelvin_to_millicelsius_with_offset(
tz->trips.critical.temperature,
tz->kelvin_offset);
return 0;
@@ -692,7 +694,7 @@ static int thermal_get_trend(struct thermal_zone_device *thermal,
if (type == THERMAL_TRIP_ACTIVE) {
int trip_temp;
int temp = DECI_KELVIN_TO_MILLICELSIUS_WITH_OFFSET(
int temp = deci_kelvin_to_millicelsius_with_offset(
tz->temperature, tz->kelvin_offset);
if (thermal_get_trip_temp(thermal, trip, &trip_temp))
return -EINVAL;
@@ -1043,9 +1045,9 @@ static void acpi_thermal_guess_offset(struct acpi_thermal *tz)
{
if (tz->trips.critical.flags.valid &&
(tz->trips.critical.temperature % 5) == 1)
tz->kelvin_offset = 2731;
tz->kelvin_offset = 273100;
else
tz->kelvin_offset = 2732;
tz->kelvin_offset = 273200;
}
static void acpi_thermal_check_fn(struct work_struct *work)
@@ -1087,7 +1089,7 @@ static int acpi_thermal_add(struct acpi_device *device)
INIT_WORK(&tz->thermal_check_work, acpi_thermal_check_fn);
pr_info(PREFIX "%s [%s] (%ld C)\n", acpi_device_name(device),
acpi_device_bid(device), DECI_KELVIN_TO_CELSIUS(tz->temperature));
acpi_device_bid(device), deci_kelvin_to_celsius(tz->temperature));
goto end;
free_memory:

View File

@@ -70,20 +70,6 @@ void unregister_memory_notifier(struct notifier_block *nb)
}
EXPORT_SYMBOL(unregister_memory_notifier);
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
int register_memory_isolate_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);
void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);
static void memory_block_release(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
@@ -175,11 +161,6 @@ int memory_notify(unsigned long val, void *v)
return blocking_notifier_call_chain(&memory_chain, val, v);
}
int memory_isolate_notify(unsigned long val, void *v)
{
return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}
/*
* The probe routines leave the pages uninitialized, just as the bootmem code
* does. Make sure we do not access them, but instead use only information from
@@ -225,7 +206,7 @@ static bool pages_correctly_probed(unsigned long start_pfn)
*/
static int
memory_block_action(unsigned long start_section_nr, unsigned long action,
int online_type)
int online_type, int nid)
{
unsigned long start_pfn;
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
@@ -238,7 +219,7 @@ memory_block_action(unsigned long start_section_nr, unsigned long action,
if (!pages_correctly_probed(start_pfn))
return -EBUSY;
ret = online_pages(start_pfn, nr_pages, online_type);
ret = online_pages(start_pfn, nr_pages, online_type, nid);
break;
case MEM_OFFLINE:
ret = offline_pages(start_pfn, nr_pages);
@@ -264,7 +245,7 @@ static int memory_block_change_state(struct memory_block *mem,
mem->state = MEM_GOING_OFFLINE;
ret = memory_block_action(mem->start_section_nr, to_state,
mem->online_type);
mem->online_type, mem->nid);
mem->state = ret ? from_state_req : to_state;

View File

@@ -207,14 +207,17 @@ static inline void zram_fill_page(void *ptr, unsigned long len,
static bool page_same_filled(void *ptr, unsigned long *element)
{
unsigned int pos;
unsigned long *page;
unsigned long val;
unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
page = (unsigned long *)ptr;
val = page[0];
for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
if (val != page[last_pos])
return false;
for (pos = 1; pos < last_pos; pos++) {
if (val != page[pos])
return false;
}
@@ -626,7 +629,7 @@ static ssize_t writeback_store(struct device *dev,
struct bio bio;
struct bio_vec bio_vec;
struct page *page;
ssize_t ret;
ssize_t ret = len;
int mode;
unsigned long blk_idx = 0;
@@ -762,7 +765,6 @@ next:
if (blk_idx)
free_block_bdev(zram, blk_idx);
ret = len;
__free_page(page);
release_init_lock:
up_read(&zram->init_lock);

View File

@@ -188,8 +188,8 @@ via_free_sg_info(struct pci_dev *pdev, drm_via_sg_info_t *vsg)
kfree(vsg->desc_pages);
/* fall through */
case dr_via_pages_locked:
put_user_pages_dirty_lock(vsg->pages, vsg->num_pages,
(vsg->direction == DMA_FROM_DEVICE));
unpin_user_pages_dirty_lock(vsg->pages, vsg->num_pages,
(vsg->direction == DMA_FROM_DEVICE));
/* fall through */
case dr_via_pages_alloc:
vfree(vsg->pages);
@@ -239,7 +239,7 @@ via_lock_all_dma_pages(drm_via_sg_info_t *vsg, drm_via_dmablit_t *xfer)
vsg->pages = vzalloc(array_size(sizeof(struct page *), vsg->num_pages));
if (NULL == vsg->pages)
return -ENOMEM;
ret = get_user_pages_fast((unsigned long)xfer->mem_addr,
ret = pin_user_pages_fast((unsigned long)xfer->mem_addr,
vsg->num_pages,
vsg->direction == DMA_FROM_DEVICE ? FOLL_WRITE : 0,
vsg->pages);

View File

@@ -6,6 +6,7 @@
#include <linux/log2.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/units.h>
#include "qcom-vadc-common.h"
@@ -236,8 +237,7 @@ static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph,
voltage = 0;
}
voltage -= KELVINMIL_CELSIUSMIL;
*result_mdec = voltage;
*result_mdec = milli_kelvin_to_millicelsius(voltage);
return 0;
}
@@ -325,7 +325,7 @@ static int qcom_vadc_scale_hw_calib_die_temp(
{
*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code,
prescale, data, 2);
*result_mdec -= KELVINMIL_CELSIUSMIL;
*result_mdec = milli_kelvin_to_millicelsius(*result_mdec);
return 0;
}

View File

@@ -38,7 +38,6 @@
#define VADC_AVG_SAMPLES_MAX 512
#define ADC5_AVG_SAMPLES_MAX 16
#define KELVINMIL_CELSIUSMIL 273150
#define PMIC5_CHG_TEMP_SCALE_FACTOR 377500
#define PMIC5_SMB_TEMP_CONSTANT 419400
#define PMIC5_SMB_TEMP_SCALE_FACTOR 356

View File

@@ -54,7 +54,7 @@ static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int d
for_each_sg_page(umem->sg_head.sgl, &sg_iter, umem->sg_nents, 0) {
page = sg_page_iter_page(&sg_iter);
put_user_pages_dirty_lock(&page, 1, umem->writable && dirty);
unpin_user_pages_dirty_lock(&page, 1, umem->writable && dirty);
}
sg_free_table(&umem->sg_head);
@@ -257,16 +257,13 @@ struct ib_umem *ib_umem_get(struct ib_device *device, unsigned long addr,
sg = umem->sg_head.sgl;
while (npages) {
down_read(&mm->mmap_sem);
ret = get_user_pages(cur_base,
min_t(unsigned long, npages,
PAGE_SIZE / sizeof (struct page *)),
gup_flags | FOLL_LONGTERM,
page_list, NULL);
if (ret < 0) {
up_read(&mm->mmap_sem);
ret = pin_user_pages_fast(cur_base,
min_t(unsigned long, npages,
PAGE_SIZE /
sizeof(struct page *)),
gup_flags | FOLL_LONGTERM, page_list);
if (ret < 0)
goto umem_release;
}
cur_base += ret * PAGE_SIZE;
npages -= ret;
@@ -274,8 +271,6 @@ struct ib_umem *ib_umem_get(struct ib_device *device, unsigned long addr,
sg = ib_umem_add_sg_table(sg, page_list, ret,
dma_get_max_seg_size(device->dma_device),
&umem->sg_nents);
up_read(&mm->mmap_sem);
}
sg_mark_end(sg);

View File

@@ -293,9 +293,8 @@ EXPORT_SYMBOL(ib_umem_odp_release);
* The function returns -EFAULT if the DMA mapping operation fails. It returns
* -EAGAIN if a concurrent invalidation prevents us from updating the page.
*
* The page is released via put_user_page even if the operation failed. For
* on-demand pinning, the page is released whenever it isn't stored in the
* umem.
* The page is released via put_page even if the operation failed. For on-demand
* pinning, the page is released whenever it isn't stored in the umem.
*/
static int ib_umem_odp_map_dma_single_page(
struct ib_umem_odp *umem_odp,
@@ -348,7 +347,7 @@ static int ib_umem_odp_map_dma_single_page(
}
out:
put_user_page(page);
put_page(page);
return ret;
}
@@ -458,7 +457,7 @@ int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
ret = -EFAULT;
break;
}
put_user_page(local_page_list[j]);
put_page(local_page_list[j]);
continue;
}
@@ -485,8 +484,8 @@ int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
* ib_umem_odp_map_dma_single_page().
*/
if (npages - (j + 1) > 0)
put_user_pages(&local_page_list[j+1],
npages - (j + 1));
release_pages(&local_page_list[j+1],
npages - (j + 1));
break;
}
}

View File

@@ -106,7 +106,7 @@ int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, size_t np
int ret;
unsigned int gup_flags = FOLL_LONGTERM | (writable ? FOLL_WRITE : 0);
ret = get_user_pages_fast(vaddr, npages, gup_flags, pages);
ret = pin_user_pages_fast(vaddr, npages, gup_flags, pages);
if (ret < 0)
return ret;
@@ -118,7 +118,7 @@ int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, size_t np
void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
size_t npages, bool dirty)
{
put_user_pages_dirty_lock(p, npages, dirty);
unpin_user_pages_dirty_lock(p, npages, dirty);
if (mm) { /* during close after signal, mm can be NULL */
atomic64_sub(npages, &mm->pinned_vm);

View File

@@ -472,7 +472,7 @@ int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
goto out;
}
ret = get_user_pages_fast(uaddr & PAGE_MASK, 1,
ret = pin_user_pages_fast(uaddr & PAGE_MASK, 1,
FOLL_WRITE | FOLL_LONGTERM, pages);
if (ret < 0)
goto out;
@@ -482,7 +482,7 @@ int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
ret = pci_map_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
if (ret < 0) {
put_user_page(pages[0]);
unpin_user_page(pages[0]);
goto out;
}
@@ -490,7 +490,7 @@ int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
mthca_uarc_virt(dev, uar, i));
if (ret) {
pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
put_user_page(sg_page(&db_tab->page[i].mem));
unpin_user_page(sg_page(&db_tab->page[i].mem));
goto out;
}
@@ -556,7 +556,7 @@ void mthca_cleanup_user_db_tab(struct mthca_dev *dev, struct mthca_uar *uar,
if (db_tab->page[i].uvirt) {
mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, uar, i), 1);
pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
put_user_page(sg_page(&db_tab->page[i].mem));
unpin_user_page(sg_page(&db_tab->page[i].mem));
}
}

View File

@@ -40,7 +40,7 @@
static void __qib_release_user_pages(struct page **p, size_t num_pages,
int dirty)
{
put_user_pages_dirty_lock(p, num_pages, dirty);
unpin_user_pages_dirty_lock(p, num_pages, dirty);
}
/**
@@ -108,7 +108,7 @@ int qib_get_user_pages(unsigned long start_page, size_t num_pages,
down_read(&current->mm->mmap_sem);
for (got = 0; got < num_pages; got += ret) {
ret = get_user_pages(start_page + got * PAGE_SIZE,
ret = pin_user_pages(start_page + got * PAGE_SIZE,
num_pages - got,
FOLL_LONGTERM | FOLL_WRITE | FOLL_FORCE,
p + got, NULL);

Some files were not shown because too many files have changed in this diff Show More