ASoC: Updates for v6.6

The rest of the updates for v6.6, some of the highlights include:

 - A big API cleanup from Morimoto-san, rationalising the places we put
   functions.
 - Lots of work on the SOF framework, AMD and Intel drivers, including a
   lot of cleanup and new device support.
 - Standardisation of the presentation of jacks from drivers.
 - Provision of some generic sound card DT properties.
 - Conversion oof more drivers to the maple tree register cache.
 - New drivers for AMD Van Gogh, AWInic AW88261, Cirrus Logic cs42l43,
   various Intel platforms, Mediatek MT7986, RealTek RT1017 and StarFive
   JH7110.
This commit is contained in:
Takashi Iwai
2023-08-28 16:13:03 +02:00
968 changed files with 24146 additions and 6594 deletions

View File

@@ -82,7 +82,12 @@ Description:
whether it resides in persistent capacity, volatile capacity,
or the LSA, is made permanently unavailable by whatever means
is appropriate for the media type. This functionality requires
the device to be not be actively decoding any HPA ranges.
the device to be disabled, that is, not actively decoding any
HPA ranges. This permits avoiding explicit global CPU cache
management, relying instead for it to be done when a region
transitions between software programmed and hardware committed
states. If this file is not present, then there is no hardware
support for the operation.
What /sys/bus/cxl/devices/memX/security/erase
@@ -92,7 +97,13 @@ Contact: linux-cxl@vger.kernel.org
Description:
(WO) Write a boolean 'true' string value to this attribute to
secure erase user data by changing the media encryption keys for
all user data areas of the device.
all user data areas of the device. This functionality requires
the device to be disabled, that is, not actively decoding any
HPA ranges. This permits avoiding explicit global CPU cache
management, relying instead for it to be done when a region
transitions between software programmed and hardware committed
states. If this file is not present, then there is no hardware
support for the operation.
What: /sys/bus/cxl/devices/memX/firmware/

View File

@@ -513,17 +513,18 @@ Description: information about CPUs heterogeneity.
cpu_capacity: capacity of cpuX.
What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/meltdown
/sys/devices/system/cpu/vulnerabilities/spectre_v1
/sys/devices/system/cpu/vulnerabilities/spectre_v2
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
/sys/devices/system/cpu/vulnerabilities/l1tf
/sys/devices/system/cpu/vulnerabilities/mds
/sys/devices/system/cpu/vulnerabilities/srbds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
/sys/devices/system/cpu/vulnerabilities/meltdown
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
/sys/devices/system/cpu/vulnerabilities/retbleed
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
/sys/devices/system/cpu/vulnerabilities/spectre_v1
/sys/devices/system/cpu/vulnerabilities/spectre_v2
/sys/devices/system/cpu/vulnerabilities/srbds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities

View File

@@ -2,7 +2,7 @@ What: /sys/devices/platform/hidma-*/chid
/sys/devices/platform/QCOM8061:*/chid
Date: Dec 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains the ID of the channel within the HIDMA instance.
It is used to associate a given HIDMA channel with the

View File

@@ -2,7 +2,7 @@ What: /sys/devices/platform/hidma-mgmt*/chanops/chan*/priority
/sys/devices/platform/QCOM8060:*/chanops/chan*/priority
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains either 0 or 1 and indicates if the DMA channel is a
low priority (0) or high priority (1) channel.
@@ -11,7 +11,7 @@ What: /sys/devices/platform/hidma-mgmt*/chanops/chan*/weight
/sys/devices/platform/QCOM8060:*/chanops/chan*/weight
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains 0..15 and indicates the weight of the channel among
equal priority channels during round robin scheduling.
@@ -20,7 +20,7 @@ What: /sys/devices/platform/hidma-mgmt*/chreset_timeout_cycles
/sys/devices/platform/QCOM8060:*/chreset_timeout_cycles
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains the platform specific cycle value to wait after a
reset command is issued. If the value is chosen too short,
@@ -32,7 +32,7 @@ What: /sys/devices/platform/hidma-mgmt*/dma_channels
/sys/devices/platform/QCOM8060:*/dma_channels
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains the number of dma channels supported by one instance
of HIDMA hardware. The value may change from chip to chip.
@@ -41,7 +41,7 @@ What: /sys/devices/platform/hidma-mgmt*/hw_version_major
/sys/devices/platform/QCOM8060:*/hw_version_major
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Version number major for the hardware.
@@ -49,7 +49,7 @@ What: /sys/devices/platform/hidma-mgmt*/hw_version_minor
/sys/devices/platform/QCOM8060:*/hw_version_minor
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Version number minor for the hardware.
@@ -57,7 +57,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_rd_xactions
/sys/devices/platform/QCOM8060:*/max_rd_xactions
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains a value between 0 and 31. Maximum number of
read transactions that can be issued back to back.
@@ -69,7 +69,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_read_request
/sys/devices/platform/QCOM8060:*/max_read_request
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Size of each read request. The value needs to be a power
of two and can be between 128 and 1024.
@@ -78,7 +78,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_wr_xactions
/sys/devices/platform/QCOM8060:*/max_wr_xactions
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Contains a value between 0 and 31. Maximum number of
write transactions that can be issued back to back.
@@ -91,7 +91,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_write_request
/sys/devices/platform/QCOM8060:*/max_write_request
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Contact: "Sinan Kaya <okaya@kernel.org>"
Description:
Size of each write request. The value needs to be a power
of two and can be between 128 and 1024.

View File

@@ -0,0 +1,109 @@
.. SPDX-License-Identifier: GPL-2.0
GDS - Gather Data Sampling
==========================
Gather Data Sampling is a hardware vulnerability which allows unprivileged
speculative access to data which was previously stored in vector registers.
Problem
-------
When a gather instruction performs loads from memory, different data elements
are merged into the destination vector register. However, when a gather
instruction that is transiently executed encounters a fault, stale data from
architectural or internal vector registers may get transiently forwarded to the
destination vector register instead. This will allow a malicious attacker to
infer stale data using typical side channel techniques like cache timing
attacks. GDS is a purely sampling-based attack.
The attacker uses gather instructions to infer the stale vector register data.
The victim does not need to do anything special other than use the vector
registers. The victim does not need to use gather instructions to be
vulnerable.
Because the buffers are shared between Hyper-Threads cross Hyper-Thread attacks
are possible.
Attack scenarios
----------------
Without mitigation, GDS can infer stale data across virtually all
permission boundaries:
Non-enclaves can infer SGX enclave data
Userspace can infer kernel data
Guests can infer data from hosts
Guest can infer guest from other guests
Users can infer data from other users
Because of this, it is important to ensure that the mitigation stays enabled in
lower-privilege contexts like guests and when running outside SGX enclaves.
The hardware enforces the mitigation for SGX. Likewise, VMMs should ensure
that guests are not allowed to disable the GDS mitigation. If a host erred and
allowed this, a guest could theoretically disable GDS mitigation, mount an
attack, and re-enable it.
Mitigation mechanism
--------------------
This issue is mitigated in microcode. The microcode defines the following new
bits:
================================ === ============================
IA32_ARCH_CAPABILITIES[GDS_CTRL] R/O Enumerates GDS vulnerability
and mitigation support.
IA32_ARCH_CAPABILITIES[GDS_NO] R/O Processor is not vulnerable.
IA32_MCU_OPT_CTRL[GDS_MITG_DIS] R/W Disables the mitigation
0 by default.
IA32_MCU_OPT_CTRL[GDS_MITG_LOCK] R/W Locks GDS_MITG_DIS=0. Writes
to GDS_MITG_DIS are ignored
Can't be cleared once set.
================================ === ============================
GDS can also be mitigated on systems that don't have updated microcode by
disabling AVX. This can be done by setting gather_data_sampling="force" or
"clearcpuid=avx" on the kernel command-line.
If used, these options will disable AVX use by turning off XSAVE YMM support.
However, the processor will still enumerate AVX support. Userspace that
does not follow proper AVX enumeration to check both AVX *and* XSAVE YMM
support will break.
Mitigation control on the kernel command line
---------------------------------------------
The mitigation can be disabled by setting "gather_data_sampling=off" or
"mitigations=off" on the kernel command line. Not specifying either will default
to the mitigation being enabled. Specifying "gather_data_sampling=force" will
use the microcode mitigation when available or disable AVX on affected systems
where the microcode hasn't been updated to include the mitigation.
GDS System Information
------------------------
The kernel provides vulnerability status information through sysfs. For
GDS this can be accessed by the following sysfs file:
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
The possible values contained in this file are:
============================== =============================================
Not affected Processor not vulnerable.
Vulnerable Processor vulnerable and mitigation disabled.
Vulnerable: No microcode Processor vulnerable and microcode is missing
mitigation.
Mitigation: AVX disabled,
no microcode Processor is vulnerable and microcode is missing
mitigation. AVX disabled as mitigation.
Mitigation: Microcode Processor is vulnerable and mitigation is in
effect.
Mitigation: Microcode (locked) Processor is vulnerable and mitigation is in
effect and cannot be disabled.
Unknown: Dependent on
hypervisor status Running on a virtual guest processor that is
affected but with no way to know if host
processor is mitigated or vulnerable.
============================== =============================================
GDS Default mitigation
----------------------
The updated microcode will enable the mitigation by default. The kernel's
default action is to leave the mitigation enabled.

View File

@@ -13,9 +13,11 @@ are configurable at compile, boot or run time.
l1tf
mds
tsx_async_abort
multihit.rst
special-register-buffer-data-sampling.rst
core-scheduling.rst
l1d_flush.rst
processor_mmio_stale_data.rst
cross-thread-rsb.rst
multihit
special-register-buffer-data-sampling
core-scheduling
l1d_flush
processor_mmio_stale_data
cross-thread-rsb
srso
gather_data_sampling

View File

@@ -0,0 +1,150 @@
.. SPDX-License-Identifier: GPL-2.0
Speculative Return Stack Overflow (SRSO)
========================================
This is a mitigation for the speculative return stack overflow (SRSO)
vulnerability found on AMD processors. The mechanism is by now the well
known scenario of poisoning CPU functional units - the Branch Target
Buffer (BTB) and Return Address Predictor (RAP) in this case - and then
tricking the elevated privilege domain (the kernel) into leaking
sensitive data.
AMD CPUs predict RET instructions using a Return Address Predictor (aka
Return Address Stack/Return Stack Buffer). In some cases, a non-architectural
CALL instruction (i.e., an instruction predicted to be a CALL but is
not actually a CALL) can create an entry in the RAP which may be used
to predict the target of a subsequent RET instruction.
The specific circumstances that lead to this varies by microarchitecture
but the concern is that an attacker can mis-train the CPU BTB to predict
non-architectural CALL instructions in kernel space and use this to
control the speculative target of a subsequent kernel RET, potentially
leading to information disclosure via a speculative side-channel.
The issue is tracked under CVE-2023-20569.
Affected processors
-------------------
AMD Zen, generations 1-4. That is, all families 0x17 and 0x19. Older
processors have not been investigated.
System information and options
------------------------------
First of all, it is required that the latest microcode be loaded for
mitigations to be effective.
The sysfs file showing SRSO mitigation status is:
/sys/devices/system/cpu/vulnerabilities/spec_rstack_overflow
The possible values in this file are:
* 'Not affected':
The processor is not vulnerable
* 'Vulnerable: no microcode':
The processor is vulnerable, no microcode extending IBPB
functionality to address the vulnerability has been applied.
* 'Mitigation: microcode':
Extended IBPB functionality microcode patch has been applied. It does
not address User->Kernel and Guest->Host transitions protection but it
does address User->User and VM->VM attack vectors.
Note that User->User mitigation is controlled by how the IBPB aspect in
the Spectre v2 mitigation is selected:
* conditional IBPB:
where each process can select whether it needs an IBPB issued
around it PR_SPEC_DISABLE/_ENABLE etc, see :doc:`spectre`
* strict:
i.e., always on - by supplying spectre_v2_user=on on the kernel
command line
(spec_rstack_overflow=microcode)
* 'Mitigation: safe RET':
Software-only mitigation. It complements the extended IBPB microcode
patch functionality by addressing User->Kernel and Guest->Host
transitions protection.
Selected by default or by spec_rstack_overflow=safe-ret
* 'Mitigation: IBPB':
Similar protection as "safe RET" above but employs an IBPB barrier on
privilege domain crossings (User->Kernel, Guest->Host).
(spec_rstack_overflow=ibpb)
* 'Mitigation: IBPB on VMEXIT':
Mitigation addressing the cloud provider scenario - the Guest->Host
transitions only.
(spec_rstack_overflow=ibpb-vmexit)
In order to exploit vulnerability, an attacker needs to:
- gain local access on the machine
- break kASLR
- find gadgets in the running kernel in order to use them in the exploit
- potentially create and pin an additional workload on the sibling
thread, depending on the microarchitecture (not necessary on fam 0x19)
- run the exploit
Considering the performance implications of each mitigation type, the
default one is 'Mitigation: safe RET' which should take care of most
attack vectors, including the local User->Kernel one.
As always, the user is advised to keep her/his system up-to-date by
applying software updates regularly.
The default setting will be reevaluated when needed and especially when
new attack vectors appear.
As one can surmise, 'Mitigation: safe RET' does come at the cost of some
performance depending on the workload. If one trusts her/his userspace
and does not want to suffer the performance impact, one can always
disable the mitigation with spec_rstack_overflow=off.
Similarly, 'Mitigation: IBPB' is another full mitigation type employing
an indrect branch prediction barrier after having applied the required
microcode patch for one's system. This mitigation comes also at
a performance cost.
Mitigation: safe RET
--------------------
The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence. To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.
To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference. In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.
In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().

View File

@@ -624,3 +624,9 @@ Used to get the correct ranges:
* VMALLOC_START ~ VMALLOC_END : vmalloc() / ioremap() space.
* VMEMMAP_START ~ VMEMMAP_END : vmemmap space, used for struct page array.
* KERNEL_LINK_ADDR : start address of Kernel link and BPF
va_kernel_pa_offset
-------------------
Indicates the offset between the kernel virtual and physical mappings.
Used to translate virtual to physical addresses.

View File

@@ -1623,6 +1623,26 @@
Format: off | on
default: on
gather_data_sampling=
[X86,INTEL] Control the Gather Data Sampling (GDS)
mitigation.
Gather Data Sampling is a hardware vulnerability which
allows unprivileged speculative access to data which was
previously stored in vector registers.
This issue is mitigated by default in updated microcode.
The mitigation may have a performance impact but can be
disabled. On systems without the microcode mitigation
disabling AVX serves as a mitigation.
force: Disable AVX to mitigate systems without
microcode mitigation. No effect if the microcode
mitigation is present. Known to cause crashes in
userspace with buggy AVX enumeration.
off: Disable GDS mitigation.
gcov_persist= [GCOV] When non-zero (default), profiling data for
kernel modules is saved and remains accessible via
debugfs, even when the module is unloaded/reloaded.
@@ -3273,24 +3293,25 @@
Disable all optional CPU mitigations. This
improves system performance, but it may also
expose users to several CPU vulnerabilities.
Equivalent to: nopti [X86,PPC]
if nokaslr then kpti=0 [ARM64]
nospectre_v1 [X86,PPC]
nobp=0 [S390]
nospectre_v2 [X86,PPC,S390,ARM64]
spectre_v2_user=off [X86]
spec_store_bypass_disable=off [X86,PPC]
ssbd=force-off [ARM64]
nospectre_bhb [ARM64]
Equivalent to: if nokaslr then kpti=0 [ARM64]
gather_data_sampling=off [X86]
kvm.nx_huge_pages=off [X86]
l1tf=off [X86]
mds=off [X86]
tsx_async_abort=off [X86]
kvm.nx_huge_pages=off [X86]
srbds=off [X86,INTEL]
mmio_stale_data=off [X86]
no_entry_flush [PPC]
no_uaccess_flush [PPC]
mmio_stale_data=off [X86]
nobp=0 [S390]
nopti [X86,PPC]
nospectre_bhb [ARM64]
nospectre_v1 [X86,PPC]
nospectre_v2 [X86,PPC,S390,ARM64]
retbleed=off [X86]
spec_store_bypass_disable=off [X86,PPC]
spectre_v2_user=off [X86]
srbds=off [X86,INTEL]
ssbd=force-off [ARM64]
tsx_async_abort=off [X86]
Exceptions:
This does not have any effect on
@@ -5875,6 +5896,17 @@
Not specifying this option is equivalent to
spectre_v2_user=auto.
spec_rstack_overflow=
[X86] Control RAS overflow mitigation on AMD Zen CPUs
off - Disable mitigation
microcode - Enable microcode mitigation only
safe-ret - Enable sw-only safe RET mitigation (default)
ibpb - Enable mitigation by issuing IBPB on
kernel entry
ibpb-vmexit - Issue IBPB only on VMEXIT
(cloud-specific mitigation)
spec_store_bypass_disable=
[HW] Control Speculative Store Bypass (SSB) Disable mitigation
(Speculative Store Bypass vulnerability)

View File

@@ -166,7 +166,6 @@ Integer log and power Functions
-------------------------------
.. kernel-doc:: include/linux/int_log.h
:export:
.. kernel-doc:: lib/math/int_pow.c
:export:

View File

@@ -216,7 +216,6 @@ properties:
description: Whether to enable burnout current for EXT1.
adi,ext1-burnout-current-nanoamp:
$ref: /schemas/types.yaml#/definitions/uint32
description:
Burnout current in nanoamps to be applied to EXT1.
enum: [0, 50, 500, 1000, 10000]
@@ -233,7 +232,6 @@ properties:
description: Whether to enable burnout current for EXT2.
adi,ext2-burnout-current-nanoamp:
$ref: /schemas/types.yaml#/definitions/uint32
description: Burnout current in nanoamps to be applied to EXT2.
enum: [0, 50, 500, 1000, 10000]
default: 0
@@ -249,7 +247,6 @@ properties:
description: Whether to enable burnout current for VIOUT.
adi,viout-burnout-current-nanoamp:
$ref: /schemas/types.yaml#/definitions/uint32
description: Burnout current in nanoamps to be applied to VIOUT.
enum: [0, 1000, 10000]
default: 0

View File

@@ -293,7 +293,7 @@ allOf:
patternProperties:
"^mac@[0-1]$":
type: object
additionalProperties: false
unevaluatedProperties: false
allOf:
- $ref: ethernet-controller.yaml#
description:
@@ -305,14 +305,9 @@ patternProperties:
reg:
maxItems: 1
phy-handle: true
phy-mode: true
required:
- reg
- compatible
- phy-handle
required:
- compatible

View File

@@ -91,12 +91,18 @@ properties:
$ref: /schemas/types.yaml#/definitions/phandle
tx_delay:
description: Delay value for TXD timing. Range value is 0~0x7F, 0x30 as default.
description: Delay value for TXD timing.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 0x7F
default: 0x30
rx_delay:
description: Delay value for RXD timing. Range value is 0~0x7F, 0x10 as default.
description: Delay value for RXD timing.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 0x7F
default: 0x10
phy-supply:
description: PHY regulator

View File

@@ -16,13 +16,15 @@ properties:
- enum:
- atmel,at91rm9200-usart
- atmel,at91sam9260-usart
- microchip,sam9x60-usart
- items:
- const: atmel,at91rm9200-dbgu
- const: atmel,at91rm9200-usart
- items:
- const: atmel,at91sam9260-dbgu
- const: atmel,at91sam9260-usart
- items:
- const: microchip,sam9x60-usart
- const: atmel,at91sam9260-usart
- items:
- const: microchip,sam9x60-dbgu
- const: microchip,sam9x60-usart

View File

@@ -9,6 +9,9 @@ title: Amlogic AXG sound card
maintainers:
- Jerome Brunet <jbrunet@baylibre.com>
allOf:
- $ref: sound-card-common.yaml#
properties:
compatible:
const: amlogic,axg-sound-card
@@ -17,23 +20,12 @@ properties:
$ref: /schemas/types.yaml#/definitions/phandle-array
description: list of auxiliary devices
audio-routing:
$ref: /schemas/types.yaml#/definitions/non-unique-string-array
description:
A list of the connections between audio components. Each entry is a
pair of strings, the first being the connection's sink, the second
being the connection's source.
audio-widgets:
$ref: /schemas/types.yaml#/definitions/non-unique-string-array
description:
A list off component DAPM widget. Each entry is a pair of strings,
the first being the widget type, the second being the widget name
model:
$ref: /schemas/types.yaml#/definitions/string
description: User specified audio sound card name
patternProperties:
"^dai-link-[0-9]+$":
type: object
@@ -108,7 +100,6 @@ patternProperties:
- sound-dai
required:
- model
- dai-link-0
unevaluatedProperties: false

View File

@@ -9,6 +9,9 @@ title: Amlogic GX sound card
maintainers:
- Jerome Brunet <jbrunet@baylibre.com>
allOf:
- $ref: sound-card-common.yaml#
properties:
compatible:
items:
@@ -18,14 +21,6 @@ properties:
$ref: /schemas/types.yaml#/definitions/phandle-array
description: list of auxiliary devices
audio-routing:
$ref: /schemas/types.yaml#/definitions/non-unique-string-array
minItems: 2
description: |-
A list of the connections between audio components. Each entry is a
pair of strings, the first being the connection's sink, the second
being the connection's source.
audio-widgets:
$ref: /schemas/types.yaml#/definitions/non-unique-string-array
minItems: 2
@@ -33,10 +28,6 @@ properties:
A list off component DAPM widget. Each entry is a pair of strings,
the first being the widget type, the second being the widget name
model:
$ref: /schemas/types.yaml#/definitions/string
description: User specified audio sound card name
patternProperties:
"^dai-link-[0-9]+$":
type: object
@@ -86,7 +77,7 @@ required:
- model
- dai-link-0
additionalProperties: false
unevaluatedProperties: false
examples:
- |

View File

@@ -19,7 +19,9 @@ allOf:
properties:
compatible:
const: awinic,aw88395
enum:
- awinic,aw88395
- awinic,aw88261
reg:
maxItems: 1

View File

@@ -0,0 +1,313 @@
# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
%YAML 1.2
---
$id: http://devicetree.org/schemas/sound/cirrus,cs42l43.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Cirrus Logic CS42L43 Audio CODEC
maintainers:
- patches@opensource.cirrus.com
description: |
The CS42L43 is an audio CODEC with integrated MIPI SoundWire interface
(Version 1.2.1 compliant), I2C, SPI, and I2S/TDM interfaces designed
for portable applications. It provides a high dynamic range, stereo
DAC for headphone output, two integrated Class D amplifiers for
loudspeakers, and two ADCs for wired headset microphone input or
stereo line input. PDM inputs are provided for digital microphones.
allOf:
- $ref: dai-common.yaml#
properties:
compatible:
enum:
- cirrus,cs42l43
reg:
maxItems: 1
vdd-p-supply:
description:
Power supply for the high voltage interface.
vdd-a-supply:
description:
Power supply for internal analog circuits.
vdd-d-supply:
description:
Power supply for internal digital circuits. Can be internally supplied.
vdd-io-supply:
description:
Power supply for external interface and internal digital logic.
vdd-cp-supply:
description:
Power supply for the amplifier 3 and 4 charge pump.
vdd-amp-supply:
description:
Power supply for amplifier 1 and 2.
reset-gpios:
maxItems: 1
interrupt-controller: true
"#interrupt-cells":
const: 2
interrupts:
maxItems: 1
"#sound-dai-cells":
const: 1
clocks:
items:
- description: Synchronous audio clock provided on mclk_in.
clock-names:
const: mclk
cirrus,bias-low:
type: boolean
description:
Select a 1.8V headset micbias rather than 2.8V.
cirrus,bias-sense-microamp:
description:
Current at which the headset micbias sense clamp will engage, 0 to
disable.
enum: [ 0, 14, 23, 41, 50, 60, 68, 86, 95 ]
default: 0
cirrus,bias-ramp-ms:
description:
Time in milliseconds the hardware allows for the headset micbias to
ramp up.
enum: [ 10, 40, 90, 170 ]
default: 170
cirrus,detect-us:
description:
Time in microseconds the type detection will run for. Long values will
cause more audible effects, but give more accurate detection.
enum: [ 20, 100, 1000, 10000, 50000, 75000, 100000, 200000 ]
default: 10000
cirrus,button-automute:
type: boolean
description:
Enable the hardware automuting of decimator 1 when a headset button is
pressed.
cirrus,buttons-ohms:
description:
Impedance in Ohms for each headset button, these should be listed in
ascending order.
minItems: 1
maxItems: 6
cirrus,tip-debounce-ms:
description:
Software debounce on tip sense triggering in milliseconds.
default: 0
cirrus,tip-invert:
type: boolean
description:
Indicates tip detect polarity, inverted implies open-circuit whilst the
jack is inserted.
cirrus,tip-disable-pullup:
type: boolean
description:
Indicates if the internal pullup on the tip detect should be disabled.
cirrus,tip-fall-db-ms:
description:
Time in milliseconds a falling edge on the tip detect should be hardware
debounced for. Note the falling edge is considered after the invert.
enum: [ 0, 125, 250, 500, 750, 1000, 1250, 1500 ]
default: 500
cirrus,tip-rise-db-ms:
description:
Time in milliseconds a rising edge on the tip detect should be hardware
debounced for. Note the rising edge is considered after the invert.
enum: [ 0, 125, 250, 500, 750, 1000, 1250, 1500 ]
default: 500
cirrus,use-ring-sense:
type: boolean
description:
Indicates if the ring sense should be used.
cirrus,ring-invert:
type: boolean
description:
Indicates ring detect polarity, inverted implies open-circuit whilst the
jack is inserted.
cirrus,ring-disable-pullup:
type: boolean
description:
Indicates if the internal pullup on the ring detect should be disabled.
cirrus,ring-fall-db-ms:
description:
Time in milliseconds a falling edge on the ring detect should be hardware
debounced for. Note the falling edge is considered after the invert.
enum: [ 0, 125, 250, 500, 750, 1000, 1250, 1500 ]
default: 500
cirrus,ring-rise-db-ms:
description:
Time in milliseconds a rising edge on the ring detect should be hardware
debounced for. Note the rising edge is considered after the invert.
enum: [ 0, 125, 250, 500, 750, 1000, 1250, 1500 ]
default: 500
pinctrl:
type: object
$ref: /schemas/pinctrl/pinctrl.yaml#
additionalProperties: false
properties:
gpio-controller: true
"#gpio-cells":
const: 2
gpio-ranges:
items:
- description: A phandle to the CODEC pinctrl node
minimum: 0
- const: 0
- const: 0
- const: 3
patternProperties:
"-state$":
oneOf:
- $ref: "#/$defs/cirrus-cs42l43-state"
- patternProperties:
"-pins$":
$ref: "#/$defs/cirrus-cs42l43-state"
additionalProperties: false
spi:
type: object
$ref: /schemas/spi/spi-controller.yaml#
unevaluatedProperties: false
$defs:
cirrus-cs42l43-state:
type: object
allOf:
- $ref: /schemas/pinctrl/pincfg-node.yaml#
- $ref: /schemas/pinctrl/pinmux-node.yaml#
oneOf:
- required: [ groups ]
- required: [ pins ]
additionalProperties: false
properties:
groups:
enum: [ gpio1, gpio2, gpio3, asp, pdmout2, pdmout1, i2c, spi ]
pins:
enum: [ gpio1, gpio2, gpio3,
asp_dout, asp_fsync, asp_bclk,
pdmout2_clk, pdmout2_data, pdmout1_clk, pdmout1_data,
i2c_sda, i2c_scl,
spi_miso, spi_sck, spi_ssb ]
function:
enum: [ gpio, spdif, irq, mic-shutter, spk-shutter ]
drive-strength:
description: Set drive strength in mA
enum: [ 1, 2, 4, 8, 9, 10, 12, 16 ]
input-debounce:
description: Set input debounce in uS
enum: [ 0, 85 ]
required:
- compatible
- reg
- vdd-p-supply
- vdd-a-supply
- vdd-io-supply
- vdd-cp-supply
additionalProperties: false
examples:
- |
#include <dt-bindings/interrupt-controller/irq.h>
i2c {
#address-cells = <1>;
#size-cells = <0>;
cs42l43: codec@1a {
compatible = "cirrus,cs42l43";
reg = <0x1a>;
vdd-p-supply = <&vdd5v0>;
vdd-a-supply = <&vdd1v8>;
vdd-io-supply = <&vdd1v8>;
vdd-cp-supply = <&vdd1v8>;
vdd-amp-supply = <&vdd5v0>;
reset-gpios = <&gpio 0>;
interrupt-controller;
#interrupt-cells = <2>;
interrupt-parent = <&gpio>;
interrupts = <56 IRQ_TYPE_LEVEL_LOW>;
#sound-dai-cells = <1>;
clocks = <&clks 0>;
clock-names = "mclk";
cs42l43_pins: pinctrl {
gpio-controller;
#gpio-cells = <2>;
gpio-ranges = <&cs42l43_pins 0 0 3>;
pinctrl-names = "default";
pinctrl-0 = <&pinsettings>;
pinsettings: default-state {
shutter-pins {
groups = "gpio3";
function = "mic-shutter";
};
};
};
spi {
#address-cells = <1>;
#size-cells = <0>;
cs-gpios = <&cs42l43_pins 1 0>;
sensor@0 {
compatible = "bosch,bme680";
reg = <0>;
spi-max-frequency = <1400000>;
};
};
};
};

View File

@@ -17,6 +17,9 @@ description: |
such as SAI, MICFIL, .etc through building rpmsg channels between
Cortex-A and Cortex-M.
allOf:
- $ref: sound-card-common.yaml#
properties:
compatible:
enum:
@@ -27,10 +30,6 @@ properties:
- fsl,imx8ulp-rpmsg-audio
- fsl,imx93-rpmsg-audio
model:
$ref: /schemas/types.yaml#/definitions/string
description: User specified audio sound card name
clocks:
items:
- description: Peripheral clock for register access
@@ -66,13 +65,6 @@ properties:
$ref: /schemas/types.yaml#/definitions/phandle
description: The phandle to a node of audio codec
audio-routing:
$ref: /schemas/types.yaml#/definitions/non-unique-string-array
description: |
A list of the connections between audio components. Each entry is a
pair of strings, the first being the connection's sink, the second
being the connection's source.
fsl,enable-lpa:
$ref: /schemas/types.yaml#/definitions/flag
description: enable low power audio path.
@@ -101,9 +93,8 @@ properties:
required:
- compatible
- model
additionalProperties: false
unevaluatedProperties: false
examples:
- |

View File

@@ -13,23 +13,15 @@ maintainers:
description:
This binding describes the SC7180 sound card which uses LPASS for audio.
allOf:
- $ref: sound-card-common.yaml#
properties:
compatible:
enum:
- google,sc7180-trogdor
- google,sc7180-coachz
audio-routing:
$ref: /schemas/types.yaml#/definitions/non-unique-string-array
description:
A list of the connections between audio components. Each entry is a
pair of strings, the first being the connection's sink, the second
being the connection's source.
model:
$ref: /schemas/types.yaml#/definitions/string
description: User specified audio sound card name
"#address-cells":
const: 1
@@ -86,11 +78,10 @@ patternProperties:
required:
- compatible
- model
- "#address-cells"
- "#size-cells"
additionalProperties: false
unevaluatedProperties: false
examples:

Some files were not shown because too many files have changed in this diff Show More