Merge branch 'linux-2.6' into for-2.6.22

This commit is contained in:
Paul Mackerras
2007-04-30 12:38:01 +10:00
1949 changed files with 101563 additions and 76742 deletions

View File

@@ -67,6 +67,8 @@ Koushik <raghavendra.koushik@neterion.com>
Leonid I Ananiev <leonid.i.ananiev@intel.com>
Linas Vepstas <linas@austin.ibm.com>
Matthieu CASTET <castet.matthieu@free.fr>
Michael Buesch <mb@bu3sch.de>
Michael Buesch <mbuesch@freenet.de>
Michel Dänzer <michel@tungstengraphics.com>
Mitesh shah <mshah@teja.com>
Morten Welinder <terra@gnome.org>

22
CREDITS
View File

@@ -317,6 +317,12 @@ S: 2322 37th Ave SW
S: Seattle, Washington 98126-2010
S: USA
N: Johannes Berg
E: johannes@sipsolutions.net
W: http://johannes.sipsolutions.net/
P: 1024D/9AB78CA5 AD02 0176 4E29 C137 1DF6 08D2 FC44 CF86 9AB7 8CA5
D: powerpc & 802.11 hacker
N: Stephen R. van den Berg (AKA BuGless)
E: berg@pool.informatik.rwth-aachen.de
D: General kernel, gcc, and libc hacker
@@ -2286,14 +2292,14 @@ S: D-90453 Nuernberg
S: Germany
N: Arnaldo Carvalho de Melo
E: acme@mandriva.com
E: acme@ghostprotocols.net
E: arnaldo.melo@gmail.com
E: acme@redhat.com
W: http://oops.ghostprotocols.net:81/blog/
P: 1024D/9224DF01 D5DF E3BB E3C8 BCBB F8AD 841A B6AB 4681 9224 DF01
D: IPX, LLC, DCCP, cyc2x, wl3501_cs, net/ hacks
S: Mandriva
S: R. Tocantins, 89 - Cristo Rei
S: 80050-430 - Curitiba - Paraná
S: R. Brasílio Itiberê, 4270/1010 - Água Verde
S: 80240-060 - Curitiba - Paraná
S: Brazil
N: Karsten Merker
@@ -3295,6 +3301,14 @@ S: 12725 SW Millikan Way, Suite 400
S: Beaverton, Oregon 97005
S: USA
N: Li Yang
E: leoli@freescale.com
D: Freescale Highspeed USB device driver
D: Freescale QE SoC support and Ethernet driver
S: B-1206 Jingmao Guojigongyu
S: 16 Baliqiao Nanjie, Beijing 101100
S: People's Repulic of China
N: Marcelo Tosatti
E: marcelo@kvack.org
D: v2.4 kernel maintainer

View File

@@ -0,0 +1,41 @@
What: /sys/bus/usb/devices/.../power/autosuspend
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/autosuspend. This file holds the time (in seconds)
the device must be idle before it will be autosuspended.
0 means the device will be autosuspended as soon as
possible. Negative values will prevent the device from
being autosuspended at all, and writing a negative value
will resume the device if it is already suspended.
The autosuspend delay for newly-created devices is set to
the value of the usbcore.autosuspend module parameter.
What: /sys/bus/usb/devices/.../power/level
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/level. This file holds a power-level setting for
the device, one of "on", "auto", or "suspend".
"on" means that the device is not allowed to autosuspend,
although normal suspends for system sleep will still
be honored. "auto" means the device will autosuspend
and autoresume in the usual manner, according to the
capabilities of its driver. "suspend" means the device
is forced into a suspended state and it will not autoresume
in response to I/O requests. However remote-wakeup requests
from the device may still be enabled (the remote-wakeup
setting is controlled separately by the power/wakeup
attribute).
During normal use, devices should be left in the "auto"
level. The other levels are meant for administrative uses.
If you want to suspend a device immediately but leave it
free to wake up in response to I/O requests, you should
write "0" to power/autosuspend.

View File

@@ -6,6 +6,18 @@ be removed from this file.
---------------------------
What: V4L2 VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP
When: October 2007
Why: Broken attempt to set MPEG compression parameters. These ioctls are
not able to implement the wide variety of parameters that can be set
by hardware MPEG encoders. A new MPEG control mechanism was created
in kernel 2.6.18 that replaces these ioctls. See the V4L2 specification
(section 1.9: Extended controls) for more information on this topic.
Who: Hans Verkuil <hverkuil@xs4all.nl> and
Mauro Carvalho Chehab <mchehab@infradead.org>
---------------------------
What: /sys/devices/.../power/state
dev->power.power_state
dpm_runtime_{suspend,resume)()
@@ -134,15 +146,6 @@ Who: Arjan van de Ven <arjan@linux.intel.com>
---------------------------
What: mount/umount uevents
When: February 2007
Why: These events are not correct, and do not properly let userspace know
when a file system has been mounted or unmounted. Userspace should
poll the /proc/mounts file instead to detect this properly.
Who: Greg Kroah-Hartman <gregkh@suse.de>
---------------------------
What: USB driver API moves to EXPORT_SYMBOL_GPL
When: February 2008
Files: include/linux/usb.h, drivers/usb/core/driver.c
@@ -211,15 +214,6 @@ Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: IPv4 only connection tracking/NAT/helpers
When: 2.6.22
Why: The new layer 3 independant connection tracking replaces the old
IPv4 only version. After some stabilization of the new code the
old one will be removed.
Who: Patrick McHardy <kaber@trash.net>
---------------------------
What: ACPI hooks (X86_SPEEDSTEP_CENTRINO_ACPI) in speedstep-centrino driver
When: December 2006
Why: Speedstep-centrino driver with ACPI hooks and acpi-cpufreq driver are
@@ -294,18 +288,6 @@ Who: Richard Purdie <rpurdie@rpsys.net>
---------------------------
What: Wireless extensions over netlink (CONFIG_NET_WIRELESS_RTNETLINK)
When: with the merge of wireless-dev, 2.6.22 or later
Why: The option/code is
* not enabled on most kernels
* not required by any userspace tools (except an experimental one,
and even there only for some parts, others use ioctl)
* pointless since wext is no longer evolving and the ioctl
interface needs to be kept
Who: Johannes Berg <johannes@sipsolutions.net>
---------------------------
What: i8xx_tco watchdog driver
When: in 2.6.22
Why: the i8xx_tco watchdog driver has been replaced by the iTCO_wdt
@@ -313,3 +295,22 @@ Why: the i8xx_tco watchdog driver has been replaced by the iTCO_wdt
Who: Wim Van Sebroeck <wim@iguana.be>
---------------------------
What: Multipath cached routing support in ipv4
When: in 2.6.23
Why: Code was merged, then submitter immediately disappeared leaving
us with no maintainer and lots of bugs. The code should not have
been merged in the first place, and many aspects of it's
implementation are blocking more critical core networking
development. It's marked EXPERIMENTAL and no distribution
enables it because it cause obscure crashes due to unfixable bugs
(interfaces don't return errors so memory allocation can't be
handled, calling contexts of these interfaces make handling
errors impossible too because they get called after we've
totally commited to creating a route object, for example).
This problem has existed for years and no forward progress
has ever been made, and nobody steps up to try and salvage
this code, so we're going to finally just get rid of it.
Who: David S. Miller <davem@davemloft.net>
---------------------------

View File

@@ -1,31 +1,82 @@
====================
kAFS: AFS FILESYSTEM
====================
ABOUT
Contents:
- Overview.
- Usage.
- Mountpoints.
- Proc filesystem.
- The cell database.
- Security.
- Examples.
========
OVERVIEW
========
This filesystem provides a fairly simple secure AFS filesystem driver. It is
under development and does not yet provide the full feature set. The features
it does support include:
(*) Security (currently only AFS kaserver and KerberosIV tickets).
(*) File reading.
(*) Automounting.
It does not yet support the following AFS features:
(*) Write support.
(*) Local caching.
(*) pioctl() system call.
===========
COMPILATION
===========
The filesystem should be enabled by turning on the kernel configuration
options:
CONFIG_AF_RXRPC - The RxRPC protocol transport
CONFIG_RXKAD - The RxRPC Kerberos security handler
CONFIG_AFS - The AFS filesystem
Additionally, the following can be turned on to aid debugging:
CONFIG_AF_RXRPC_DEBUG - Permit AF_RXRPC debugging to be enabled
CONFIG_AFS_DEBUG - Permit AFS debugging to be enabled
They permit the debugging messages to be turned on dynamically by manipulating
the masks in the following files:
/sys/module/af_rxrpc/parameters/debug
/sys/module/afs/parameters/debug
=====
This filesystem provides a fairly simple AFS filesystem driver. It is under
development and only provides very basic facilities. It does not yet support
the following AFS features:
(*) Write support.
(*) Communications security.
(*) Local caching.
(*) pioctl() system call.
(*) Automatic mounting of embedded mountpoints.
USAGE
=====
When inserting the driver modules the root cell must be specified along with a
list of volume location server IP addresses:
insmod rxrpc.o
insmod af_rxrpc.o
insmod rxkad.o
insmod kafs.o rootcell=cambridge.redhat.com:172.16.18.73:172.16.18.91
The first module is a driver for the RxRPC remote operation protocol, and the
second is the actual filesystem driver for the AFS filesystem.
The first module is the AF_RXRPC network protocol driver. This provides the
RxRPC remote operation protocol and may also be accessed from userspace. See:
Documentation/networking/rxrpc.txt
The second module is the kerberos RxRPC security driver, and the third module
is the actual filesystem driver for the AFS filesystem.
Once the module has been loaded, more modules can be added by the following
procedure:
@@ -33,7 +84,7 @@ procedure:
echo add grand.central.org 18.7.14.88:128.2.191.224 >/proc/fs/afs/cells
Where the parameters to the "add" command are the name of a cell and a list of
volume location servers within that cell.
volume location servers within that cell, with the latter separated by colons.
Filesystems can be mounted anywhere by commands similar to the following:
@@ -42,11 +93,6 @@ Filesystems can be mounted anywhere by commands similar to the following:
mount -t afs "#root.afs." /afs
mount -t afs "#root.cell." /afs/cambridge
NB: When using this on Linux 2.4, the mount command has to be different,
since the filesystem doesn't have access to the device name argument:
mount -t afs none /afs -ovol="#root.afs."
Where the initial character is either a hash or a percent symbol depending on
whether you definitely want a R/W volume (hash) or whether you'd prefer a R/O
volume, but are willing to use a R/W volume instead (percent).
@@ -60,55 +106,66 @@ named volume will be looked up in the cell specified during insmod.
Additional cells can be added through /proc (see later section).
===========
MOUNTPOINTS
===========
AFS has a concept of mountpoints. These are specially formatted symbolic links
(of the same form as the "device name" passed to mount). kAFS presents these
to the user as directories that have special properties:
AFS has a concept of mountpoints. In AFS terms, these are specially formatted
symbolic links (of the same form as the "device name" passed to mount). kAFS
presents these to the user as directories that have a follow-link capability
(ie: symbolic link semantics). If anyone attempts to access them, they will
automatically cause the target volume to be mounted (if possible) on that site.
(*) They cannot be listed. Running a program like "ls" on them will incur an
EREMOTE error (Object is remote).
Automatically mounted filesystems will be automatically unmounted approximately
twenty minutes after they were last used. Alternatively they can be unmounted
directly with the umount() system call.
(*) Other objects can't be looked up inside of them. This also incurs an
EREMOTE error.
Manually unmounting an AFS volume will cause any idle submounts upon it to be
culled first. If all are culled, then the requested volume will also be
unmounted, otherwise error EBUSY will be returned.
(*) They can be queried with the readlink() system call, which will return
the name of the mountpoint to which they point. The "readlink" program
will also work.
This can be used by the administrator to attempt to unmount the whole AFS tree
mounted on /afs in one go by doing:
(*) They can be mounted on (which symbolic links can't).
umount /afs
===============
PROC FILESYSTEM
===============
The rxrpc module creates a number of files in various places in the /proc
filesystem:
(*) Firstly, some information files are made available in a directory called
"/proc/net/rxrpc/". These list the extant transport endpoint, peer,
connection and call records.
(*) Secondly, some control files are made available in a directory called
"/proc/sys/rxrpc/". Currently, all these files can be used for is to
turn on various levels of tracing.
The AFS modules creates a "/proc/fs/afs/" directory and populates it:
(*) A "cells" file that lists cells currently known to the afs module.
(*) A "cells" file that lists cells currently known to the afs module and
their usage counts:
[root@andromeda ~]# cat /proc/fs/afs/cells
USE NAME
3 cambridge.redhat.com
(*) A directory per cell that contains files that list volume location
servers, volumes, and active servers known within that cell.
[root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/servers
USE ADDR STATE
4 172.16.18.91 0
[root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/vlservers
ADDRESS
172.16.18.91
[root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/volumes
USE STT VLID[0] VLID[1] VLID[2] NAME
1 Val 20000000 20000001 20000002 root.afs
=================
THE CELL DATABASE
=================
The filesystem maintains an internal database of all the cells it knows and
the IP addresses of the volume location servers for those cells. The cell to
which the computer belongs is added to the database when insmod is performed
by the "rootcell=" argument.
The filesystem maintains an internal database of all the cells it knows and the
IP addresses of the volume location servers for those cells. The cell to which
the system belongs is added to the database when insmod is performed by the
"rootcell=" argument or, if compiled in, using a "kafs.rootcell=" argument on
the kernel command line.
Further cells can be added by commands similar to the following:
@@ -118,20 +175,65 @@ Further cells can be added by commands similar to the following:
No other cell database operations are available at this time.
========
SECURITY
========
Secure operations are initiated by acquiring a key using the klog program. A
very primitive klog program is available at:
http://people.redhat.com/~dhowells/rxrpc/klog.c
This should be compiled by:
make klog LDLIBS="-lcrypto -lcrypt -lkrb4 -lkeyutils"
And then run as:
./klog
Assuming it's successful, this adds a key of type RxRPC, named for the service
and cell, eg: "afs@<cellname>". This can be viewed with the keyctl program or
by cat'ing /proc/keys:
[root@andromeda ~]# keyctl show
Session Keyring
-3 --alswrv 0 0 keyring: _ses.3268
2 --alswrv 0 0 \_ keyring: _uid.0
111416553 --als--v 0 0 \_ rxrpc: afs@CAMBRIDGE.REDHAT.COM
Currently the username, realm, password and proposed ticket lifetime are
compiled in to the program.
It is not required to acquire a key before using AFS facilities, but if one is
not acquired then all operations will be governed by the anonymous user parts
of the ACLs.
If a key is acquired, then all AFS operations, including mounts and automounts,
made by a possessor of that key will be secured with that key.
If a file is opened with a particular key and then the file descriptor is
passed to a process that doesn't have that key (perhaps over an AF_UNIX
socket), then the operations on the file will be made with key that was used to
open the file.
========
EXAMPLES
========
Here's what I use to test this. Some of the names and IP addresses are local
to my internal DNS. My "root.afs" partition has a mount point within it for
Here's what I use to test this. Some of the names and IP addresses are local
to my internal DNS. My "root.afs" partition has a mount point within it for
some public volumes volumes.
insmod -S /tmp/rxrpc.o
insmod -S /tmp/kafs.o rootcell=cambridge.redhat.com:172.16.18.73:172.16.18.91
insmod /tmp/rxrpc.o
insmod /tmp/rxkad.o
insmod /tmp/kafs.o rootcell=cambridge.redhat.com:172.16.18.91
mount -t afs \%root.afs. /afs
mount -t afs \%cambridge.redhat.com:root.cell. /afs/cambridge.redhat.com/
echo add grand.central.org 18.7.14.88:128.2.191.224 > /proc/fs/afs/cells
echo add grand.central.org 18.7.14.88:128.2.191.224 > /proc/fs/afs/cells
mount -t afs "#grand.central.org:root.cell." /afs/grand.central.org/
mount -t afs "#grand.central.org:root.archive." /afs/grand.central.org/archive
mount -t afs "#grand.central.org:root.contrib." /afs/grand.central.org/contrib
@@ -141,15 +243,7 @@ mount -t afs "#grand.central.org:root.service." /afs/grand.central.org/service
mount -t afs "#grand.central.org:root.software." /afs/grand.central.org/software
mount -t afs "#grand.central.org:root.user." /afs/grand.central.org/user
umount /afs/grand.central.org/user
umount /afs/grand.central.org/software
umount /afs/grand.central.org/service
umount /afs/grand.central.org/project
umount /afs/grand.central.org/doc
umount /afs/grand.central.org/contrib
umount /afs/grand.central.org/archive
umount /afs/grand.central.org
umount /afs/cambridge.redhat.com
umount /afs
rmmod kafs
rmmod rxkad
rmmod rxrpc

View File

@@ -1421,6 +1421,15 @@ fewer messages that will be written. Message_burst controls when messages will
be dropped. The default settings limit warning messages to one every five
seconds.
warnings
--------
This controls console messages from the networking stack that can occur because
of problems on the network like duplicate address or bad checksums. Normally,
this should be enabled, but if the problem persists the messages can be
disabled.
netdev_max_backlog
------------------

View File

@@ -27,7 +27,7 @@ The exact capabilities of GPIOs vary between systems. Common options:
- Output values are writable (high=1, low=0). Some chips also have
options about how that value is driven, so that for example only one
value might be driven ... supporting "wire-OR" and similar schemes
for the other value.
for the other value (notably, "open drain" signaling).
- Input values are likewise readable (1, 0). Some chips support readback
of pins configured as "output", which is very useful in such "wire-OR"
@@ -247,6 +247,35 @@ with gpio_get_value(), for example to initialize or update driver state
when the IRQ is edge-triggered.
Emulating Open Drain Signals
----------------------------
Sometimes shared signals need to use "open drain" signaling, where only the
low signal level is actually driven. (That term applies to CMOS transistors;
"open collector" is used for TTL.) A pullup resistor causes the high signal
level. This is sometimes called a "wire-AND"; or more practically, from the
negative logic (low=true) perspective this is a "wire-OR".
One common example of an open drain signal is a shared active-low IRQ line.
Also, bidirectional data bus signals sometimes use open drain signals.
Some GPIO controllers directly support open drain outputs; many don't. When
you need open drain signaling but your hardware doesn't directly support it,
there's a common idiom you can use to emulate it with any GPIO pin that can
be used as either an input or an output:
LOW: gpio_direction_output(gpio, 0) ... this drives the signal
and overrides the pullup.
HIGH: gpio_direction_input(gpio) ... this turns off the output,
so the pullup (or some other device) controls the signal.
If you are "driving" the signal high but gpio_get_value(gpio) reports a low
value (after the appropriate rise time passes), you know some other component
is driving the shared signal low. That's not necessarily an error. As one
common example, that's how I2C clocks are stretched: a slave that needs a
slower clock delays the rising edge of SCK, and the I2C master adjusts its
signaling rate accordingly.
What do these conventions omit?
===============================

View File

@@ -91,6 +91,14 @@ Sending MADs
if (ret != sizeof *mad + mad_length)
perror("write");
Transaction IDs
Users of the umad devices can use the lower 32 bits of the
transaction ID field (that is, the least significant half of the
field in network byte order) in MADs being sent to match
request/response pairs. The upper 32 bits are reserved for use by
the kernel and will be overwritten before a MAD is sent.
Setting IsSM Capability Bit
To set the IsSM capability bit for a port, simply open the

View File

@@ -1792,7 +1792,7 @@ and is between 256 and 4096 characters. It is defined in the file
for newly-detected USB devices (default 2). This
is the time required before an idle device will be
autosuspended. Devices for which the delay is set
to 0 won't be autosuspended at all.
to a negative value won't be autosuspended at all.
usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.

View File

@@ -859,6 +859,18 @@ payload contents" for more information.
void unregister_key_type(struct key_type *type);
Under some circumstances, it may be desirable to desirable to deal with a
bundle of keys. The facility provides access to the keyring type for managing
such a bundle:
struct key_type key_type_keyring;
This can be used with a function such as request_key() to find a specific
keyring in a process's keyrings. A keyring thus found can then be searched
with keyring_search(). Note that it is not possible to use request_key() to
search a specific keyring, so using keyrings in this way is of limited utility.
===================================
NOTES ON ACCESSING PAYLOAD CONTENTS
===================================

View File

@@ -920,40 +920,9 @@ options, you may wish to use the "max_bonds" module parameter,
documented above.
To create multiple bonding devices with differing options, it
is necessary to load the bonding driver multiple times. Note that
current versions of the sysconfig network initialization scripts
handle this automatically; if your distro uses these scripts, no
special action is needed. See the section Configuring Bonding
Devices, above, if you're not sure about your network initialization
scripts.
is necessary to use bonding parameters exported by sysfs, documented
in the section below.
To load multiple instances of the module, it is necessary to
specify a different name for each instance (the module loading system
requires that every loaded module, even multiple instances of the same
module, have a unique name). This is accomplished by supplying
multiple sets of bonding options in /etc/modprobe.conf, for example:
alias bond0 bonding
options bond0 -o bond0 mode=balance-rr miimon=100
alias bond1 bonding
options bond1 -o bond1 mode=balance-alb miimon=50
will load the bonding module two times. The first instance is
named "bond0" and creates the bond0 device in balance-rr mode with an
miimon of 100. The second instance is named "bond1" and creates the
bond1 device in balance-alb mode with an miimon of 50.
In some circumstances (typically with older distributions),
the above does not work, and the second bonding instance never sees
its options. In that case, the second options line can be substituted
as follows:
install bond1 /sbin/modprobe --ignore-install bonding -o bond1 \
mode=balance-alb miimon=50
This may be repeated any number of times, specifying a new and
unique name in place of bond1 for each subsequent instance.
3.4 Configuring Bonding Manually via Sysfs
------------------------------------------

View File

@@ -57,6 +57,16 @@ DCCP_SOCKOPT_SEND_CSCOV is for the receiver and has a different meaning: it
coverage value are also acceptable. The higher the number, the more
restrictive this setting (see [RFC 4340, sec. 9.2.1]).
The following two options apply to CCID 3 exclusively and are getsockopt()-only.
In either case, a TFRC info struct (defined in <linux/tfrc.h>) is returned.
DCCP_SOCKOPT_CCID_RX_INFO
Returns a `struct tfrc_rx_info' in optval; the buffer for optval and
optlen must be set to at least sizeof(struct tfrc_rx_info).
DCCP_SOCKOPT_CCID_TX_INFO
Returns a `struct tfrc_tx_info' in optval; the buffer for optval and
optlen must be set to at least sizeof(struct tfrc_tx_info).
Sysctl variables
================
Several DCCP default parameters can be managed by the following sysctls

View File

@@ -179,11 +179,31 @@ tcp_fin_timeout - INTEGER
because they eat maximum 1.5K of memory, but they tend
to live longer. Cf. tcp_max_orphans.
tcp_frto - BOOLEAN
tcp_frto - INTEGER
Enables F-RTO, an enhanced recovery algorithm for TCP retransmission
timeouts. It is particularly beneficial in wireless environments
where packet loss is typically due to random radio interference
rather than intermediate router congestion.
rather than intermediate router congestion. If set to 1, basic
version is enabled. 2 enables SACK enhanced F-RTO, which is
EXPERIMENTAL. The basic version can be used also when SACK is
enabled for a flow through tcp_sack sysctl.
tcp_frto_response - INTEGER
When F-RTO has detected that a TCP retransmission timeout was
spurious (i.e, the timeout would have been avoided had TCP set a
longer retransmission timeout), TCP has several options what to do
next. Possible values are:
0 Rate halving based; a smooth and conservative response,
results in halved cwnd and ssthresh after one RTT
1 Very conservative response; not recommended because even
though being valid, it interacts poorly with the rest of
Linux TCP, halves cwnd and ssthresh immediately
2 Aggressive response; undoes congestion control measures
that are now known to be unnecessary (ignoring the
possibility of a lost retransmission that would require
TCP to be more cautious), cwnd and ssthresh are restored
to the values prior timeout
Default: 0 (rate halving based)
tcp_keepalive_time - INTEGER
How often TCP sends out keepalive messages when keepalive is enabled.
@@ -851,6 +871,15 @@ accept_redirects - BOOLEAN
Functional default: enabled if local forwarding is disabled.
disabled if local forwarding is enabled.
accept_source_route - INTEGER
Accept source routing (routing extension header).
> 0: Accept routing header.
= 0: Accept only routing header type 2.
< 0: Do not accept routing header.
Default: 0
autoconf - BOOLEAN
Autoconfigure addresses using Prefix Information in Router
Advertisements.
@@ -986,7 +1015,12 @@ bridge-nf-call-ip6tables - BOOLEAN
Default: 1
bridge-nf-filter-vlan-tagged - BOOLEAN
1 : pass bridged vlan-tagged ARP/IP traffic to arptables/iptables.
1 : pass bridged vlan-tagged ARP/IP/IPv6 traffic to {arp,ip,ip6}tables.
0 : disable this.
Default: 1
bridge-nf-filter-pppoe-tagged - BOOLEAN
1 : pass bridged pppoe-tagged IP/IPv6 traffic to {ip,ip6}tables.
0 : disable this.
Default: 1

File diff suppressed because it is too large Load Diff

View File

@@ -250,7 +250,6 @@ PRODUCT COMPONENTS AND RELATED FILES
sdladrv.h SDLA support module API definitions
sdlasfm.h SDLA firmware module definitions
if_wanpipe.h WANPIPE Socket definitions
if_wanpipe_common.h WANPIPE Socket/Driver common definitions.
sdlapci.h WANPIPE PCI definitions

View File

@@ -1,83 +0,0 @@
crypto-API support for z990 Message Security Assist (MSA) instructions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AUTHOR: Thomas Spatzier (tspat@de.ibm.com)
1. Introduction crypto-API
~~~~~~~~~~~~~~~~~~~~~~~~~~
See Documentation/crypto/api-intro.txt for an introduction/description of the
kernel crypto API.
According to api-intro.txt support for z990 crypto instructions has been added
in the algorithm api layer of the crypto API. Several files containing z990
optimized implementations of crypto algorithms are placed in the
arch/s390/crypto directory.
2. Probing for availability of MSA
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It should be possible to use Kernels with the z990 crypto implementations both
on machines with MSA available and on those without MSA (pre z990 or z990
without MSA). Therefore a simple probing mechanism has been implemented:
In the init function of each crypto module the availability of MSA and of the
respective crypto algorithm in particular will be tested. If the algorithm is
available the module will load and register its algorithm with the crypto API.
If the respective crypto algorithm is not available, the init function will
return -ENOSYS. In that case a fallback to the standard software implementation
of the crypto algorithm must be taken ( -> the standard crypto modules are
also built when compiling the kernel).
3. Ensuring z990 crypto module preference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If z990 crypto instructions are available the optimized modules should be
preferred instead of standard modules.
3.1. compiled-in modules
~~~~~~~~~~~~~~~~~~~~~~~~
For compiled-in modules it has to be ensured that the z990 modules are linked
before the standard crypto modules. Then, on system startup the init functions
of z990 crypto modules will be called first and query for availability of z990
crypto instructions. If instruction is available, the z990 module will register
its crypto algorithm implementation -> the load of the standard module will fail
since the algorithm is already registered.
If z990 crypto instruction is not available the load of the z990 module will
fail -> the standard module will load and register its algorithm.
3.2. dynamic modules
~~~~~~~~~~~~~~~~~~~~
A system administrator has to take care of giving preference to z990 crypto
modules. If MSA is available appropriate lines have to be added to
/etc/modprobe.conf.
Example: z990 crypto instruction for SHA1 algorithm is available
add the following line to /etc/modprobe.conf (assuming the
z990 crypto modules for SHA1 is called sha1_z990):
alias sha1 sha1_z990
-> when the sha1 algorithm is requested through the crypto API
(which has a module autoloader) the z990 module will be loaded.
TBD: a userspace module probing mechanism
something like 'probe sha1 sha1_z990 sha1' in modprobe.conf
-> try module sha1_z990, if it fails to load standard module sha1
the 'probe' statement is currently not supported in modprobe.conf
4. Currently implemented z990 crypto algorithms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following crypto algorithms with z990 MSA support are currently implemented.
The name of each algorithm under which it is registered in crypto API and the
name of the respective module is given in square brackets.
- SHA1 Digest Algorithm [sha1 -> sha1_z990]
- DES Encrypt/Decrypt Algorithm (64bit key) [des -> des_z990]
- Triple DES Encrypt/Decrypt Algorithm (128bit key) [des3_ede128 -> des_z990]
- Triple DES Encrypt/Decrypt Algorithm (192bit key) [des3_ede -> des_z990]
In order to load, for example, the sha1_z990 module when the sha1 algorithm is
requested (see 3.2.) add 'alias sha1 sha1_z990' to /etc/modprobe.conf.

View File

@@ -0,0 +1,87 @@
s390 SCSI dump tool (zfcpdump)
System z machines (z900 or higher) provide hardware support for creating system
dumps on SCSI disks. The dump process is initiated by booting a dump tool, which
has to create a dump of the current (probably crashed) Linux image. In order to
not overwrite memory of the crashed Linux with data of the dump tool, the
hardware saves some memory plus the register sets of the boot cpu before the
dump tool is loaded. There exists an SCLP hardware interface to obtain the saved
memory afterwards. Currently 32 MB are saved.
This zfcpdump implementation consists of a Linux dump kernel together with
a userspace dump tool, which are loaded together into the saved memory region
below 32 MB. zfcpdump is installed on a SCSI disk using zipl (as contained in
the s390-tools package) to make the device bootable. The operator of a Linux
system can then trigger a SCSI dump by booting the SCSI disk, where zfcpdump
resides on.
The kernel part of zfcpdump is implemented as a debugfs file under "zcore/mem",
which exports memory and registers of the crashed Linux in an s390
standalone dump format. It can be used in the same way as e.g. /dev/mem. The
dump format defines a 4K header followed by plain uncompressed memory. The
register sets are stored in the prefix pages of the respective cpus. To build a
dump enabled kernel with the zcore driver, the kernel config option
CONFIG_ZFCPDUMP has to be set. When reading from "zcore/mem", the part of
memory, which has been saved by hardware is read by the driver via the SCLP
hardware interface. The second part is just copied from the non overwritten real
memory.
The userspace application of zfcpdump can reside e.g. in an intitramfs or an
initrd. It reads from zcore/mem and writes the system dump to a file on a
SCSI disk.
To build a zfcpdump kernel use the following settings in your kernel
configuration:
* CONFIG_ZFCPDUMP=y
* Enable ZFCP driver
* Enable SCSI driver
* Enable ext2 and ext3 filesystems
* Disable as many features as possible to keep the kernel small.
E.g. network support is not needed at all.
To use the zfcpdump userspace application in an initramfs you have to do the
following:
* Copy the zfcpdump executable somewhere into your Linux tree.
E.g. to "arch/s390/boot/zfcpdump. If you do not want to include
shared libraries, compile the tool with the "-static" gcc option.
* If you want to include e2fsck, add it to your source tree, too. The zfcpdump
application attempts to start /sbin/e2fsck from the ramdisk.
* Use an initramfs config file like the following:
dir /dev 755 0 0
nod /dev/console 644 0 0 c 5 1
nod /dev/null 644 0 0 c 1 3
nod /dev/sda1 644 0 0 b 8 1
nod /dev/sda2 644 0 0 b 8 2
nod /dev/sda3 644 0 0 b 8 3
nod /dev/sda4 644 0 0 b 8 4
nod /dev/sda5 644 0 0 b 8 5
nod /dev/sda6 644 0 0 b 8 6
nod /dev/sda7 644 0 0 b 8 7
nod /dev/sda8 644 0 0 b 8 8
nod /dev/sda9 644 0 0 b 8 9
nod /dev/sda10 644 0 0 b 8 10
nod /dev/sda11 644 0 0 b 8 11
nod /dev/sda12 644 0 0 b 8 12
nod /dev/sda13 644 0 0 b 8 13
nod /dev/sda14 644 0 0 b 8 14
nod /dev/sda15 644 0 0 b 8 15
file /init arch/s390/boot/zfcpdump 755 0 0
file /sbin/e2fsck arch/s390/boot/e2fsck 755 0 0
dir /proc 755 0 0
dir /sys 755 0 0
dir /mnt 755 0 0
dir /sbin 755 0 0
* Issue "make image" to build the zfcpdump image with initramfs.
In a Linux distribution the zfcpdump enabled kernel image must be copied to
/usr/share/zfcpdump/zfcpdump.image, where the s390 zipl tool is looking for the
dump kernel when preparing a SCSI dump disk.
If you use a ramdisk copy it to "/usr/share/zfcpdump/zfcpdump.rd".
For more information on how to use zfcpdump refer to the s390 'Using the Dump
Tools book', which is available from
http://www.ibm.com/developerworks/linux/linux390.

View File

@@ -16,7 +16,7 @@ situation as with tcpdump.
Unlike the packet socket, usbmon has an interface which provides traces
in a text format. This is used for two purposes. First, it serves as a
common trace exchange format for tools while most sophisticated formats
common trace exchange format for tools while more sophisticated formats
are finalized. Second, humans can read it in case tools are not available.
To collect a raw text trace, execute following steps.
@@ -34,7 +34,7 @@ if usbmon is built into the kernel.
Verify that bus sockets are present.
# ls /sys/kernel/debug/usbmon
1s 1t 2s 2t 3s 3t 4s 4t
1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u
#
2. Find which bus connects to the desired device
@@ -54,7 +54,7 @@ Bus=03 means it's bus 3.
3. Start 'cat'
# cat /sys/kernel/debug/usbmon/3t > /tmp/1.mon.out
# cat /sys/kernel/debug/usbmon/3u > /tmp/1.mon.out
This process will be reading until killed. Naturally, the output can be
redirected to a desirable location. This is preferred, because it is going
@@ -75,46 +75,80 @@ that the file size is not excessive for your favourite editor.
* Raw text data format
The '1t' type data consists of a stream of events, such as URB submission,
Two formats are supported currently: the original, or '1t' format, and
the '1u' format. The '1t' format is deprecated in kernel 2.6.21. The '1u'
format adds a few fields, such as ISO frame descriptors, interval, etc.
It produces slightly longer lines, but otherwise is a perfect superset
of '1t' format.
If it is desired to recognize one from the other in a program, look at the
"address" word (see below), where '1u' format adds a bus number. If 2 colons
are present, it's the '1t' format, otherwise '1u'.
Any text format data consists of a stream of events, such as URB submission,
URB callback, submission error. Every event is a text line, which consists
of whitespace separated words. The number or position of words may depend
on the event type, but there is a set of words, common for all types.
Here is the list of words, from left to right:
- URB Tag. This is used to identify URBs is normally a kernel mode address
of the URB structure in hexadecimal.
- Timestamp in microseconds, a decimal number. The timestamp's resolution
depends on available clock, and so it can be much worse than a microsecond
(if the implementation uses jiffies, for example).
- Event Type. This type refers to the format of the event, not URB type.
Available types are: S - submission, C - callback, E - submission error.
- "Pipe". The pipe concept is deprecated. This is a composite word, used to
be derived from information in pipes. It consists of three fields, separated
by colons: URB type and direction, Device address, Endpoint number.
- "Address" word (formerly a "pipe"). It consists of four fields, separated by
colons: URB type and direction, Bus number, Device address, Endpoint number.
Type and direction are encoded with two bytes in the following manner:
Ci Co Control input and output
Zi Zo Isochronous input and output
Ii Io Interrupt input and output
Bi Bo Bulk input and output
Device address and Endpoint number are 3-digit and 2-digit (respectively)
decimal numbers, with leading zeroes.
- URB Status. In most cases, this field contains a number, sometimes negative,
which represents a "status" field of the URB. This field makes no sense for
submissions, but is present anyway to help scripts with parsing. When an
error occurs, the field contains the error code. In case of a submission of
a Control packet, this field contains a Setup Tag instead of an error code.
It is easy to tell whether the Setup Tag is present because it is never a
number. Thus if scripts find a number in this field, they proceed to read
Data Length. If they find something else, like a letter, they read the setup
packet before reading the Data Length.
Bus number, Device address, and Endpoint are decimal numbers, but they may
have leading zeros, for the sake of human readers.
- URB Status word. This is either a letter, or several numbers separated
by colons: URB status, interval, start frame, and error count. Unlike the
"address" word, all fields save the status are optional. Interval is printed
only for interrupt and isochronous URBs. Start frame is printed only for
isochronous URBs. Error count is printed only for isochronous callback
events.
The status field is a decimal number, sometimes negative, which represents
a "status" field of the URB. This field makes no sense for submissions, but
is present anyway to help scripts with parsing. When an error occurs, the
field contains the error code.
In case of a submission of a Control packet, this field contains a Setup Tag
instead of an group of numbers. It is easy to tell whether the Setup Tag is
present because it is never a number. Thus if scripts find a set of numbers
in this word, they proceed to read Data Length (except for isochronous URBs).
If they find something else, like a letter, they read the setup packet before
reading the Data Length or isochronous descriptors.
- Setup packet, if present, consists of 5 words: one of each for bmRequestType,
bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0.
These words are safe to decode if Setup Tag was 's'. Otherwise, the setup
packet was present, but not captured, and the fields contain filler.
- Number of isochronous frame descriptors and descriptors themselves.
If an Isochronous transfer event has a set of descriptors, a total number
of them in an URB is printed first, then a word per descriptor, up to a
total of 5. The word consists of 3 colon-separated decimal numbers for
status, offset, and length respectively. For submissions, initial length
is reported. For callbacks, actual length is reported.
- Data Length. For submissions, this is the requested length. For callbacks,
this is the actual length.
- Data tag. The usbmon may not always capture data, even if length is nonzero.
The data words are present only if this tag is '='.
- Data words follow, in big endian hexadecimal format. Notice that they are
not machine words, but really just a byte stream split into words to make
it easier to read. Thus, the last word may contain from one to four bytes.
@@ -153,20 +187,18 @@ class ParsedLine {
}
}
This format may be changed in the future.
Examples:
An input control transfer to get a port status.
d5ea89a0 3575914555 S Ci:001:00 s a3 00 0000 0003 0004 4 <
d5ea89a0 3575914560 C Ci:001:00 0 4 = 01050000
d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 <
d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000
An output bulk transfer to send a SCSI command 0x5E in a 31-byte Bulk wrapper
to a storage device at address 5:
dd65f0e8 4128379752 S Bo:005:02 -115 31 = 55534243 5e000000 00000000 00000600 00000000 00000000 00000000 000000
dd65f0e8 4128379808 C Bo:005:02 0 31 >
dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 5e000000 00000000 00000600 00000000 00000000 00000000 000000
dd65f0e8 4128379808 C Bo:1:005:2 0 31 >
* Raw binary format and API

View File

@@ -143,3 +143,5 @@
142 -> Sabrent TV-FM (bttv version)
143 -> Hauppauge ImpactVCB (bt878) [0070:13eb]
144 -> MagicTV
145 -> SSAI Security Video Interface [4149:5353]
146 -> SSAI Ultrasound Video Interface [414a:5353]

View File

@@ -37,7 +37,7 @@
36 -> AVerTV 303 (M126) [1461:000a]
37 -> Hauppauge Nova-S-Plus DVB-S [0070:9201,0070:9202]
38 -> Hauppauge Nova-SE2 DVB-S [0070:9200]
39 -> KWorld DVB-S 100 [17de:08b2]
39 -> KWorld DVB-S 100 [17de:08b2,1421:0341]
40 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid [0070:9400,0070:9402]
41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802]
42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025,1822:0019]

Some files were not shown because too many files have changed in this diff Show More