Merge tag 'v5.5-rc3' into sched/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Ingo Molnar
2019-12-25 10:41:37 +01:00
2365 changed files with 73848 additions and 24153 deletions

2
.gitattributes vendored
View File

@@ -1,2 +1,4 @@
*.c diff=cpp
*.h diff=cpp
*.dtsi diff=dts
*.dts diff=dts

View File

@@ -105,6 +105,9 @@ James E Wilson <wilson@specifix.com>
James Hogan <jhogan@kernel.org> <james.hogan@imgtec.com>
James Hogan <jhogan@kernel.org> <james@albanarts.com>
James Ketrenos <jketreno@io.(none)>
Jan Glauber <jan.glauber@gmail.com> <jang@de.ibm.com>
Jan Glauber <jan.glauber@gmail.com> <jang@linux.vnet.ibm.com>
Jan Glauber <jan.glauber@gmail.com> <jglauber@cavium.com>
Jason Gunthorpe <jgg@ziepe.ca> <jgg@mellanox.com>
Jason Gunthorpe <jgg@ziepe.ca> <jgunthorpe@obsidianresearch.com>
Javi Merino <javi.merino@kernel.org> <javi.merino@arm.com>
@@ -149,6 +152,7 @@ Linus Lüssing <linus.luessing@c0d3.blue> <linus.luessing@web.de>
Linus Lüssing <linus.luessing@c0d3.blue> <linus.luessing@ascom.ch>
Li Yang <leoyang.li@nxp.com> <leo@zh-kernel.org>
Li Yang <leoyang.li@nxp.com> <leoli@freescale.com>
Lukasz Luba <lukasz.luba@arm.com> <l.luba@partner.samsung.com>
Maciej W. Rozycki <macro@mips.com> <macro@imgtec.com>
Marc Zyngier <maz@kernel.org> <marc.zyngier@arm.com>
Marcin Nowakowski <marcin.nowakowski@mips.com> <marcin.nowakowski@imgtec.com>
@@ -262,6 +266,7 @@ Vinod Koul <vkoul@kernel.org> <vkoul@infradead.org>
Viresh Kumar <vireshk@kernel.org> <viresh.kumar@st.com>
Viresh Kumar <vireshk@kernel.org> <viresh.linux@gmail.com>
Viresh Kumar <vireshk@kernel.org> <viresh.kumar2@arm.com>
Vivien Didelot <vivien.didelot@gmail.com> <vivien.didelot@savoirfairelinux.com>
Vlad Dogaru <ddvlad@gmail.com> <vlad.dogaru@intel.com>
Vladimir Davydov <vdavydov.dev@gmail.com> <vdavydov@virtuozzo.com>
Vladimir Davydov <vdavydov.dev@gmail.com> <vdavydov@parallels.com>
@@ -273,3 +278,5 @@ Gustavo Padovan <gustavo@las.ic.unicamp.br>
Gustavo Padovan <padovan@profusion.mobi>
Changbin Du <changbin.du@intel.com> <changbin.du@intel.com>
Changbin Du <changbin.du@intel.com> <changbin.du@gmail.com>
Steve Wise <larrystevenwise@gmail.com> <swise@chelsio.com>
Steve Wise <larrystevenwise@gmail.com> <swise@opengridcomputing.com>

View File

@@ -1,4 +1,4 @@
What: /sys/bus/platform/devices/MLNXBF04:00/driver/lifecycle_state
What: /sys/bus/platform/devices/MLNXBF04:00/lifecycle_state
Date: Oct 2019
KernelVersion: 5.5
Contact: "Liming Sun <lsun@mellanox.com>"
@@ -10,7 +10,7 @@ Description:
GA Non-Secured - Non-Secure chip and not able to change state
RMA - Return Merchandise Authorization
What: /sys/bus/platform/devices/MLNXBF04:00/driver/post_reset_wdog
What: /sys/bus/platform/devices/MLNXBF04:00/post_reset_wdog
Date: Oct 2019
KernelVersion: 5.5
Contact: "Liming Sun <lsun@mellanox.com>"
@@ -19,7 +19,7 @@ Description:
to reboot the chip and recover it to the old state if the new
boot partition fails.
What: /sys/bus/platform/devices/MLNXBF04:00/driver/reset_action
What: /sys/bus/platform/devices/MLNXBF04:00/reset_action
Date: Oct 2019
KernelVersion: 5.5
Contact: "Liming Sun <lsun@mellanox.com>"
@@ -30,7 +30,7 @@ Description:
emmc - boot from the onchip eMMC
emmc_legacy - boot from the onchip eMMC in legacy (slow) mode
What: /sys/bus/platform/devices/MLNXBF04:00/driver/second_reset_action
What: /sys/bus/platform/devices/MLNXBF04:00/second_reset_action
Date: Oct 2019
KernelVersion: 5.5
Contact: "Liming Sun <lsun@mellanox.com>"
@@ -44,7 +44,7 @@ Description:
swap_emmc - swap the primary / secondary boot partition
none - cancel the action
What: /sys/bus/platform/devices/MLNXBF04:00/driver/secure_boot_fuse_state
What: /sys/bus/platform/devices/MLNXBF04:00/secure_boot_fuse_state
Date: Oct 2019
KernelVersion: 5.5
Contact: "Liming Sun <lsun@mellanox.com>"

View File

@@ -144,7 +144,7 @@ journal_crypt:algorithm(:key) (the key is optional)
Encrypt the journal using given algorithm to make sure that the
attacker can't read the journal. You can use a block cipher here
(such as "cbc(aes)") or a stream cipher (for example "chacha20",
"salsa20", "ctr(aes)" or "ecb(arc4)").
"salsa20" or "ctr(aes)").
The journal contains history of last writes to the block device,
an attacker reading the journal could see the last sector nubmers

View File

@@ -8,6 +8,7 @@ Device Mapper
cache-policies
cache
delay
dm-clone
dm-crypt
dm-dust
dm-flakey

View File

@@ -181,14 +181,17 @@ When mounting an ext4 filesystem, the following option are accepted:
system after its metadata has been committed to the journal.
commit=nrsec (*)
Ext4 can be told to sync all its data and metadata every 'nrsec'
seconds. The default value is 5 seconds. This means that if you lose
your power, you will lose as much as the latest 5 seconds of work (your
filesystem will not be damaged though, thanks to the journaling). This
default value (or any low value) will hurt performance, but it's good
for data-safety. Setting it to 0 will have the same effect as leaving
it at the default (5 seconds). Setting it to very large values will
improve performance.
This setting limits the maximum age of the running transaction to
'nrsec' seconds. The default value is 5 seconds. This means that if
you lose your power, you will lose as much as the latest 5 seconds of
metadata changes (your filesystem will not be damaged though, thanks
to the journaling). This default value (or any low value) will hurt
performance, but it's good for data-safety. Setting it to 0 will have
the same effect as leaving it at the default (5 seconds). Setting it
to very large values will improve performance. Note that due to
delayed allocation even older data can be lost on power failure since
writeback of those data begins only after time set in
/proc/sys/vm/dirty_expire_centisecs.
barrier=<0|1(*)>, barrier(*), nobarrier
This enables/disables the use of write barriers in the jbd code.

View File

@@ -113,7 +113,7 @@
the GPE dispatcher.
This facility can be used to prevent such uncontrolled
GPE floodings.
Format: <int>
Format: <byte>
acpi_no_auto_serialize [HW,ACPI]
Disable auto-serialization of AML methods

View File

@@ -253,7 +253,7 @@ The following sysctls are available for the XFS filesystem:
pool.
fs.xfs.speculative_prealloc_lifetime
(Units: seconds Min: 1 Default: 300 Max: 86400)
(Units: seconds Min: 1 Default: 300 Max: 86400)
The interval at which the background scanning for inodes
with unused speculative preallocation runs. The scan
removes unused preallocation from clean inodes and releases

View File

@@ -103,7 +103,7 @@ the Microchip website: http://www.microchip.com.
* Datasheet
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
* ARM Cortex-A5 + NEON based SoCs
- sama5d4 family
@@ -167,7 +167,7 @@ the Microchip website: http://www.microchip.com.
* Datasheet
http://ww1.microchip.com/downloads/en/DeviceDoc/60001527A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
Linux kernel information

View File

@@ -129,7 +129,7 @@ writing of special-purpose memory allocators in the future.
:functions: gen_pool_for_each_chunk
.. kernel-doc:: lib/genalloc.c
:functions: addr_in_gen_pool
:functions: gen_pool_has_addr
.. kernel-doc:: lib/genalloc.c
:functions: gen_pool_avail

View File

@@ -57,7 +57,13 @@ The Linux kernel provides more basic utility functions.
Bit Operations
--------------
.. kernel-doc:: include/asm-generic/bitops-instrumented.h
.. kernel-doc:: include/asm-generic/bitops/instrumented-atomic.h
:internal:
.. kernel-doc:: include/asm-generic/bitops/instrumented-non-atomic.h
:internal:
.. kernel-doc:: include/asm-generic/bitops/instrumented-lock.h
:internal:
Bitmap Operations

View File

@@ -34,6 +34,7 @@ Profiling data will only become accessible once debugfs has been mounted::
Coverage collection
-------------------
The following program demonstrates coverage collection from within a test
program using kcov:
@@ -128,6 +129,7 @@ only need to enable coverage (disable happens automatically on thread end).
Comparison operands collection
------------------------------
Comparison operands collection is similar to coverage collection:
.. code-block:: c
@@ -202,3 +204,130 @@ Comparison operands collection is similar to coverage collection:
Note that the kcov modes (coverage collection or comparison operands) are
mutually exclusive.
Remote coverage collection
--------------------------
With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to collect
coverage for arbitrary parts of the kernel code, provided that those parts
are annotated with kcov_remote_start()/kcov_remote_stop().
This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a limited
number of instances (e.g. one USB hub_event() worker thread is spawned per
USB HCD); and the local ones, that are spawned when a user interacts with
some kernel interface (e.g. vhost workers).
To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of such
handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field of the
kcov_remote_arg struct. This will attach the used kcov device to the code
sections, that are referenced by those handles.
Since there might be many local background threads spawned from different
userspace processes, we can't use a single global handle per annotation.
Instead, the userspace process passes a non-zero handle through the
common_handle field of the kcov_remote_arg struct. This common handle gets
saved to the kcov_handle field in the current task_struct and needs to be
passed to the newly spawned threads via custom annotations. Those threads
should in turn be annotated with kcov_remote_start()/kcov_remote_stop().
Internally kcov stores handles as u64 integers. The top byte of a handle
is used to denote the id of a subsystem that this handle belongs to, and
the lower 4 bytes are used to denote the id of a thread instance within
that subsystem. A reserved value 0 is used as a subsystem id for common
handles as they don't belong to a particular subsystem. The bytes 4-7 are
currently reserved and must be zero. In the future the number of bytes
used for the subsystem or handle ids might be increased.
When a particular userspace proccess collects coverage by via a common
handle, kcov will collect coverage for each code section that is annotated
to use the common handle obtained as kcov_handle from the current
task_struct. However non common handles allow to collect coverage
selectively from different subsystems.
.. code-block:: c
struct kcov_remote_arg {
unsigned trace_mode;
unsigned area_size;
unsigned num_handles;
uint64_t common_handle;
uint64_t handles[0];
};
#define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
#define KCOV_DISABLE _IO('c', 101)
#define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg)
#define COVER_SIZE (64 << 10)
#define KCOV_TRACE_PC 0
#define KCOV_SUBSYSTEM_COMMON (0x00ull << 56)
#define KCOV_SUBSYSTEM_USB (0x01ull << 56)
#define KCOV_SUBSYSTEM_MASK (0xffull << 56)
#define KCOV_INSTANCE_MASK (0xffffffffull)
static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst)
{
if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK)
return 0;
return subsys | inst;
}
#define KCOV_COMMON_ID 0x42
#define KCOV_USB_BUS_NUM 1
int main(int argc, char **argv)
{
int fd;
unsigned long *cover, n, i;
struct kcov_remote_arg *arg;
fd = open("/sys/kernel/debug/kcov", O_RDWR);
if (fd == -1)
perror("open"), exit(1);
if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE))
perror("ioctl"), exit(1);
cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ((void*)cover == MAP_FAILED)
perror("mmap"), exit(1);
/* Enable coverage collection via common handle and from USB bus #1. */
arg = calloc(1, sizeof(*arg) + sizeof(uint64_t));
if (!arg)
perror("calloc"), exit(1);
arg->trace_mode = KCOV_TRACE_PC;
arg->area_size = COVER_SIZE;
arg->num_handles = 1;
arg->common_handle = kcov_remote_handle(KCOV_SUBSYSTEM_COMMON,
KCOV_COMMON_ID);
arg->handles[0] = kcov_remote_handle(KCOV_SUBSYSTEM_USB,
KCOV_USB_BUS_NUM);
if (ioctl(fd, KCOV_REMOTE_ENABLE, arg))
perror("ioctl"), free(arg), exit(1);
free(arg);
/*
* Here the user needs to trigger execution of a kernel code section
* that is either annotated with the common handle, or to trigger some
* activity on USB bus #1.
*/
sleep(2);
n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED);
for (i = 0; i < n; i++)
printf("0x%lx\n", cover[i + 1]);
if (ioctl(fd, KCOV_DISABLE, 0))
perror("ioctl"), exit(1);
if (munmap(cover, COVER_SIZE * sizeof(unsigned long)))
perror("munmap"), exit(1);
if (close(fd))
perror("close"), exit(1);
return 0;
}

View File

@@ -203,12 +203,12 @@ Test Module
Kselftest tests the kernel from userspace. Sometimes things need
testing from within the kernel, one method of doing this is to create a
test module. We can tie the module into the kselftest framework by
using a shell script test runner. ``kselftest_module.sh`` is designed
using a shell script test runner. ``kselftest/module.sh`` is designed
to facilitate this process. There is also a header file provided to
assist writing kernel modules that are for use with kselftest:
- ``tools/testing/kselftest/kselftest_module.h``
- ``tools/testing/kselftest/kselftest_module.sh``
- ``tools/testing/kselftest/kselftest/module.sh``
How to use
----------
@@ -247,7 +247,7 @@ A bare bones test module might look like this:
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "../tools/testing/selftests/kselftest_module.h"
#include "../tools/testing/selftests/kselftest/module.h"
KSTM_MODULE_GLOBALS();
@@ -276,7 +276,7 @@ Example test script
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0+
$(dirname $0)/../kselftest_module.sh "foo" test_foo
$(dirname $0)/../kselftest/module.sh "foo" test_foo
Test Harness

View File

@@ -9,6 +9,7 @@ KUnit - Unit Testing for the Linux Kernel
start
usage
kunit-tool
api/index
faq

View File

@@ -0,0 +1,57 @@
.. SPDX-License-Identifier: GPL-2.0
=================
kunit_tool How-To
=================
What is kunit_tool?
===================
kunit_tool is a script (``tools/testing/kunit/kunit.py``) that aids in building
the Linux kernel as UML (`User Mode Linux
<http://user-mode-linux.sourceforge.net/>`_), running KUnit tests, parsing
the test results and displaying them in a user friendly manner.
What is a kunitconfig?
======================
It's just a defconfig that kunit_tool looks for in the base directory.
kunit_tool uses it to generate a .config as you might expect. In addition, it
verifies that the generated .config contains the CONFIG options in the
kunitconfig; the reason it does this is so that it is easy to be sure that a
CONFIG that enables a test actually ends up in the .config.
How do I use kunit_tool?
========================
If a kunitconfig is present at the root directory, all you have to do is:
.. code-block:: bash
./tools/testing/kunit/kunit.py run
However, you most likely want to use it with the following options:
.. code-block:: bash
./tools/testing/kunit/kunit.py run --timeout=30 --jobs=`nproc --all`
- ``--timeout`` sets a maximum amount of time to allow tests to run.
- ``--jobs`` sets the number of threads to use to build the kernel.
If you just want to use the defconfig that ships with the kernel, you can
append the ``--defconfig`` flag as well:
.. code-block:: bash
./tools/testing/kunit/kunit.py run --timeout=30 --jobs=`nproc --all` --defconfig
.. note::
This command is particularly helpful for getting started because it
just works. No kunitconfig needs to be present.
For a list of all the flags supported by kunit_tool, you can run:
.. code-block:: bash
./tools/testing/kunit/kunit.py run --help

View File

@@ -19,11 +19,14 @@ The wrapper can be run with:
.. code-block:: bash
./tools/testing/kunit/kunit.py run
./tools/testing/kunit/kunit.py run --defconfig
For more information on this wrapper (also called kunit_tool) checkout the
:doc:`kunit-tool` page.
Creating a kunitconfig
======================
The Python script is a thin wrapper around Kbuild as such, it needs to be
The Python script is a thin wrapper around Kbuild. As such, it needs to be
configured with a ``kunitconfig`` file. This file essentially contains the
regular Kernel config, with the specific test targets as well.
@@ -59,8 +62,8 @@ If everything worked correctly, you should see the following:
followed by a list of tests that are run. All of them should be passing.
.. note::
Because it is building a lot of sources for the first time, the ``Building
kunit kernel`` step may take a while.
Because it is building a lot of sources for the first time, the
``Building KUnit kernel`` step may take a while.
Writing your first test
=======================
@@ -159,7 +162,7 @@ Now you can run the test:
.. code-block:: bash
./tools/testing/kunit/kunit.py
./tools/testing/kunit/kunit.py run
You should see the following failure:

View File

@@ -16,7 +16,7 @@ Organization of this document
=============================
This document is organized into two main sections: Testing and Isolating
Behavior. The first covers what a unit test is and how to use KUnit to write
Behavior. The first covers what unit tests are and how to use KUnit to write
them. The second covers how to use KUnit to isolate code and make it possible
to unit test code that was otherwise un-unit-testable.
@@ -174,13 +174,13 @@ Test Suites
~~~~~~~~~~~
Now obviously one unit test isn't very helpful; the power comes from having
many test cases covering all of your behaviors. Consequently it is common to
have many *similar* tests; in order to reduce duplication in these closely
related tests most unit testing frameworks provide the concept of a *test
suite*, in KUnit we call it a *test suite*; all it is is just a collection of
test cases for a unit of code with a set up function that gets invoked before
every test cases and then a tear down function that gets invoked after every
test case completes.
many test cases covering all of a unit's behaviors. Consequently it is common
to have many *similar* tests; in order to reduce duplication in these closely
related tests most unit testing frameworks - including KUnit - provide the
concept of a *test suite*. A *test suite* is just a collection of test cases
for a unit of code with a set up function that gets invoked before every test
case and then a tear down function that gets invoked after every test case
completes.
Example:
@@ -211,7 +211,7 @@ KUnit test framework.
.. note::
A test case will only be run if it is associated with a test suite.
For a more information on these types of things see the :doc:`api/test`.
For more information on these types of things see the :doc:`api/test`.
Isolating Behavior
==================
@@ -338,7 +338,7 @@ We can easily test this code by *faking out* the underlying EEPROM:
return count;
}
ssize_t fake_eeprom_write(struct eeprom *this, size_t offset, const char *buffer, size_t count)
ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
{
struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
@@ -454,7 +454,7 @@ KUnit on non-UML architectures
By default KUnit uses UML as a way to provide dependencies for code under test.
Under most circumstances KUnit's usage of UML should be treated as an
implementation detail of how KUnit works under the hood. Nevertheless, there
are instances where being able to run architecture specific code, or test
are instances where being able to run architecture specific code or test
against real hardware is desirable. For these reasons KUnit supports running on
other architectures.
@@ -557,7 +557,7 @@ run your tests on your hardware setup just by compiling for your architecture.
.. important::
Always prefer tests that run on UML to tests that only run under a particular
architecture, and always prefer tests that run under QEMU or another easy
(and monitarily free) to obtain software environment to a specific piece of
(and monetarily free) to obtain software environment to a specific piece of
hardware.
Nevertheless, there are still valid reasons to write an architecture or hardware

View File

@@ -94,7 +94,7 @@ properties:
- amlogic,p212
- hwacom,amazetv
- khadas,vim
- libretech,cc
- libretech,aml-s905x-cc
- nexbox,a95x
- const: amlogic,s905x
- const: amlogic,meson-gxl
@@ -147,6 +147,7 @@ properties:
- enum:
- hardkernel,odroid-n2
- khadas,vim3
- ugoos,am6
- const: amlogic,s922x
- const: amlogic,g12b
@@ -156,4 +157,10 @@ properties:
- seirobotics,sei610
- khadas,vim3l
- const: amlogic,sm1
- description: Boards with the Amlogic Meson A1 A113L SoC
items:
- enum:
- amlogic,ad401
- const: amlogic,a1
...

View File

@@ -45,6 +45,13 @@ properties:
- const: atmel,at91sam9x5
- const: atmel,at91sam9
- description: Overkiz kizbox3 board
items:
- const: overkiz,kizbox3-hs
- const: atmel,sama5d27
- const: atmel,sama5d2
- const: atmel,sama5
- items:
- const: atmel,sama5d27
- const: atmel,sama5d2
@@ -73,6 +80,13 @@ properties:
- const: atmel,sama5d3
- const: atmel,sama5
- description: Overkiz kizbox2 board with two heads
items:
- const: overkiz,kizbox2-2
- const: atmel,sama5d31
- const: atmel,sama5d3
- const: atmel,sama5
- items:
- enum:
- atmel,sama5d31

View File

@@ -0,0 +1,54 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/bcm/bcm2835.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Broadcom BCM2711/BCM2835 Platforms Device Tree Bindings
maintainers:
- Eric Anholt <eric@anholt.net>
- Stefan Wahren <wahrenst@gmx.net>
properties:
$nodename:
const: '/'
compatible:
oneOf:
- description: BCM2711 based Boards
items:
- enum:
- raspberrypi,4-model-b
- const: brcm,bcm2711
- description: BCM2835 based Boards
items:
- enum:
- raspberrypi,model-a
- raspberrypi,model-a-plus
- raspberrypi,model-b
- raspberrypi,model-b-i2c0 # Raspberry Pi Model B (no P5)
- raspberrypi,model-b-rev2
- raspberrypi,model-b-plus
- raspberrypi,compute-module
- raspberrypi,model-zero
- raspberrypi,model-zero-w
- const: brcm,bcm2835
- description: BCM2836 based Boards
items:
- enum:
- raspberrypi,2-model-b
- const: brcm,bcm2836
- description: BCM2837 based Boards
items:
- enum:
- raspberrypi,3-model-a-plus
- raspberrypi,3-model-b
- raspberrypi,3-model-b-plus
- raspberrypi,3-compute-module
- raspberrypi,3-compute-module-lite
- const: brcm,bcm2837
...

Some files were not shown because too many files have changed in this diff Show More