Files
cvc5/examples/api/python/floating_point.py
Andres Noetzli bf2d64336c Move RoundingMode to cvc5_types.h (#8427)
This moves RoundingMode to cvc5_types.h and switches to using the
auto-generated enum bindings. It also fixes the Java-bindings generator
for enums (certain parts were previously hardcoded for Kind) and
extends the unit tests for Solver::mkRoundingMode() to actually check
the value being created.
2022-03-29 01:13:46 +00:00

91 lines
3.5 KiB
Python

#!/usr/bin/env python
###############################################################################
# Top contributors (to current version):
# Makai Mann, Andres Noetzli
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the solving capabilities of the cvc5
# floating point solver through the Python API contributed by Eva
# Darulova. This requires building cvc5 with symfpu.
##
import cvc5
from cvc5 import Kind, RoundingMode
if __name__ == "__main__":
slv = cvc5.Solver()
slv.setOption("produce-models", "true")
slv.setLogic("QF_FP")
# single 32-bit precision
fp32 = slv.mkFloatingPointSort(8, 24)
# the standard rounding mode
rm = slv.mkRoundingMode(RoundingMode.RoundNearestTiesToEven)
# create a few single-precision variables
x = slv.mkConst(fp32, 'x')
y = slv.mkConst(fp32, 'y')
z = slv.mkConst(fp32, 'z')
# check floating-point arithmetic is commutative, i.e. x + y == y + x
commutative = slv.mkTerm(Kind.FPEq, slv.mkTerm(Kind.FPAdd, rm, x, y), slv.mkTerm(Kind.FPAdd, rm, y, x))
slv.push()
slv.assertFormula(slv.mkTerm(Kind.Not, commutative))
print("Checking floating-point commutativity")
print("Expect SAT (property does not hold for NaN and Infinities).")
print("cvc5:", slv.checkSat())
print("Model for x:", slv.getValue(x))
print("Model for y:", slv.getValue(y))
# disallow NaNs and Infinities
slv.assertFormula(slv.mkTerm(Kind.Not, slv.mkTerm(Kind.FPIsNan, x)))
slv.assertFormula(slv.mkTerm(Kind.Not, slv.mkTerm(Kind.FPIsInf, x)))
slv.assertFormula(slv.mkTerm(Kind.Not, slv.mkTerm(Kind.FPIsNan, y)))
slv.assertFormula(slv.mkTerm(Kind.Not, slv.mkTerm(Kind.FPIsInf, y)))
print("Checking floating-point commutativity assuming x and y are not NaN or Infinity")
print("Expect UNSAT.")
print("cvc5:", slv.checkSat())
# check floating-point arithmetic is not associative
slv.pop()
# constrain x, y, z between -3.14 and 3.14 (also disallows NaN and infinity)
a = slv.mkFloatingPoint(
8,
24,
slv.mkBitVector(32, "11000000010010001111010111000011", 2)) # -3.14
b = slv.mkFloatingPoint(
8,
24,
slv.mkBitVector(32, "01000000010010001111010111000011", 2)) # 3.14
bounds_x = slv.mkTerm(Kind.And, slv.mkTerm(Kind.FPLeq, a, x), slv.mkTerm(Kind.FPLeq, x, b))
bounds_y = slv.mkTerm(Kind.And, slv.mkTerm(Kind.FPLeq, a, y), slv.mkTerm(Kind.FPLeq, y, b))
bounds_z = slv.mkTerm(Kind.And, slv.mkTerm(Kind.FPLeq, a, z), slv.mkTerm(Kind.FPLeq, z, b))
slv.assertFormula(slv.mkTerm(Kind.And, slv.mkTerm(Kind.And, bounds_x, bounds_y), bounds_z))
# (x + y) + z == x + (y + z)
lhs = slv.mkTerm(Kind.FPAdd, rm, slv.mkTerm(Kind.FPAdd, rm, x, y), z)
rhs = slv.mkTerm(Kind.FPAdd, rm, x, slv.mkTerm(Kind.FPAdd, rm, y, z))
associative = slv.mkTerm(Kind.Not, slv.mkTerm(Kind.FPEq, lhs, rhs))
slv.assertFormula(associative)
print("Checking floating-point associativity")
print("Expect SAT.")
print("cvc5:", slv.checkSat())
print("Model for x:", slv.getValue(x))
print("Model for y:", slv.getValue(y))
print("Model for z:", slv.getValue(z))