Files
vkd3d/tests/shader_runner_metal.m
2025-07-14 18:13:43 +02:00

1141 lines
41 KiB
Objective-C

/*
* Copyright 2024 Feifan He for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#import <Metal/Metal.h>
#define COBJMACROS
#define VKD3D_TEST_NO_DEFS
/* Avoid conflicts with the Objective C BOOL definition. */
#define BOOL VKD3D_BOOLEAN
#include "shader_runner.h"
#include "vkd3d_d3dcommon.h"
#undef interface
#undef BOOL
@interface MTLRenderPipelineDescriptor ()
@property (nonatomic, readwrite) NSUInteger sampleMask;
@end
static const MTLResourceOptions DEFAULT_BUFFER_RESOURCE_OPTIONS = MTLResourceCPUCacheModeDefaultCache
| MTLResourceHazardTrackingModeDefault;
struct metal_resource
{
struct resource r;
id<MTLBuffer> buffer;
id<MTLTexture> texture;
};
struct metal_resource_readback
{
struct resource_readback rb;
id<MTLBuffer> buffer;
};
struct metal_runner
{
struct shader_runner r;
struct shader_runner_caps caps;
id<MTLDevice> device;
id<MTLCommandQueue> queue;
ID3D10Blob *d3d_blobs[SHADER_TYPE_COUNT];
struct vkd3d_shader_scan_signature_info signatures[SHADER_TYPE_COUNT];
};
static MTLPixelFormat get_metal_pixel_format(DXGI_FORMAT format)
{
switch (format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
return MTLPixelFormatRGBA32Float;
case DXGI_FORMAT_R32G32B32A32_UINT:
return MTLPixelFormatRGBA32Uint;
case DXGI_FORMAT_R32G32B32A32_SINT:
return MTLPixelFormatRGBA32Sint;
case DXGI_FORMAT_R32G32_UINT:
return MTLPixelFormatRG32Uint;
case DXGI_FORMAT_R32_FLOAT:
return MTLPixelFormatR32Float;
case DXGI_FORMAT_R32_SINT:
return MTLPixelFormatR32Sint;
case DXGI_FORMAT_UNKNOWN:
case DXGI_FORMAT_R32_TYPELESS:
case DXGI_FORMAT_R32_UINT:
return MTLPixelFormatR32Uint;
case DXGI_FORMAT_D32_FLOAT:
return MTLPixelFormatDepth32Float;
default:
return MTLPixelFormatInvalid;
}
}
static MTLVertexFormat get_metal_attribute_format(DXGI_FORMAT format)
{
switch (format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
return MTLVertexFormatFloat4;
case DXGI_FORMAT_R32G32B32A32_UINT:
return MTLVertexFormatUInt4;
case DXGI_FORMAT_R32G32_FLOAT:
return MTLVertexFormatFloat2;
case DXGI_FORMAT_R32G32_SINT:
return MTLVertexFormatInt2;
case DXGI_FORMAT_R32_FLOAT:
return MTLVertexFormatFloat;
case DXGI_FORMAT_R32_UINT:
return MTLVertexFormatUInt;
default:
return MTLVertexFormatInvalid;
}
}
static MTLPrimitiveType get_metal_primitive_type(D3D_PRIMITIVE_TOPOLOGY topology)
{
switch (topology)
{
case D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST:
return MTLPrimitiveTypeTriangle;
case D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP:
return MTLPrimitiveTypeTriangleStrip;
default:
fatal_error("Unhandled topology %#x.\n", topology);
}
}
static MTLSamplerAddressMode get_metal_address_mode(D3D12_TEXTURE_ADDRESS_MODE mode)
{
switch (mode)
{
case D3D12_TEXTURE_ADDRESS_MODE_WRAP:
return MTLSamplerAddressModeRepeat;
case D3D12_TEXTURE_ADDRESS_MODE_MIRROR:
return MTLSamplerAddressModeMirrorRepeat;
case D3D12_TEXTURE_ADDRESS_MODE_CLAMP:
return MTLSamplerAddressModeClampToEdge;
case D3D12_TEXTURE_ADDRESS_MODE_BORDER:
return MTLSamplerAddressModeClampToBorderColor;
case D3D12_TEXTURE_ADDRESS_MODE_MIRROR_ONCE:
return MTLSamplerAddressModeMirrorClampToEdge;
default:
fatal_error("Unhandled address mode %#x.\n", mode);
}
}
static MTLCompareFunction get_metal_compare_function(D3D12_COMPARISON_FUNC func)
{
switch (func)
{
case VKD3D_SHADER_COMPARISON_FUNC_NEVER:
return MTLCompareFunctionNever;
case VKD3D_SHADER_COMPARISON_FUNC_LESS:
return MTLCompareFunctionLess;
case VKD3D_SHADER_COMPARISON_FUNC_EQUAL:
return MTLCompareFunctionEqual;
case VKD3D_SHADER_COMPARISON_FUNC_LESS_EQUAL:
return MTLCompareFunctionLessEqual;
case VKD3D_SHADER_COMPARISON_FUNC_GREATER:
return MTLCompareFunctionGreater;
case VKD3D_SHADER_COMPARISON_FUNC_NOT_EQUAL:
return MTLCompareFunctionNotEqual;
case VKD3D_SHADER_COMPARISON_FUNC_GREATER_EQUAL:
return MTLCompareFunctionGreaterEqual;
case VKD3D_SHADER_COMPARISON_FUNC_ALWAYS:
return MTLCompareFunctionAlways;
}
}
static void trace_messages(const char *messages)
{
const char *p, *end, *line;
if (!vkd3d_test_state.debug_level)
return;
p = messages;
end = &p[strlen(p)];
trace("Received messages:\n");
while (p < end)
{
line = p;
if ((p = memchr(line, '\n', end - line)))
++p;
else
p = end;
trace(" %.*s", (int)(p - line), line);
}
}
static struct metal_resource *metal_resource(struct resource *r)
{
return CONTAINING_RECORD(r, struct metal_resource, r);
}
static struct metal_runner *metal_runner(struct shader_runner *r)
{
return CONTAINING_RECORD(r, struct metal_runner, r);
}
static void init_resource_buffer(struct metal_runner *runner,
struct metal_resource *resource, const struct resource_params *params)
{
id<MTLDevice> device = runner->device;
resource->buffer = [device newBufferWithLength:params->data_size
options:DEFAULT_BUFFER_RESOURCE_OPTIONS | MTLResourceStorageModePrivate];
if (params->data)
{
id<MTLCommandBuffer> command_buffer;
id<MTLBlitCommandEncoder> blit;
id<MTLBuffer> upload_buffer;
upload_buffer = [[device newBufferWithBytes:params->data
length:params->data_size
options:DEFAULT_BUFFER_RESOURCE_OPTIONS | MTLResourceStorageModeManaged] autorelease];
command_buffer = [runner->queue commandBuffer];
blit = [command_buffer blitCommandEncoder];
[blit copyFromBuffer:upload_buffer sourceOffset:0 toBuffer:resource->buffer
destinationOffset:0 size:params->data_size];
[blit endEncoding];
[command_buffer commit];
[command_buffer waitUntilCompleted];
}
}
static void init_resource_texture(struct metal_runner *runner,
struct metal_resource *resource, const struct resource_params *params)
{
id<MTLDevice> device = runner->device;
MTLTextureDescriptor *desc;
if (params->desc.sample_count > 1)
{
if (params->desc.level_count > 1)
fatal_error("Multisampled texture has multiple levels.\n");
if (![device supportsTextureSampleCount:params->desc.sample_count])
{
skip("Format #%x with sample count %u is not supported; skipping.\n", params->desc.format,
params->desc.sample_count);
return;
}
}
desc = [[MTLTextureDescriptor alloc] init];
switch (params->desc.dimension)
{
case RESOURCE_DIMENSION_BUFFER:
desc.textureType = MTLTextureTypeTextureBuffer;
break;
case RESOURCE_DIMENSION_2D:
if (params->desc.sample_count > 1)
desc.textureType = params->desc.layer_count > 1 ? MTLTextureType2DMultisampleArray
: MTLTextureType2DMultisample;
else
desc.textureType = params->desc.layer_count > 1 ? MTLTextureType2DArray : MTLTextureType2D;
break;
case RESOURCE_DIMENSION_3D:
desc.textureType = MTLTextureType3D;
break;
case RESOURCE_DIMENSION_CUBE:
desc.textureType = MTLTextureTypeCube;
break;
default:
fatal_error("Unhandled resource dimension %#x.\n", params->desc.dimension);
}
desc.pixelFormat = get_metal_pixel_format(params->desc.format);
ok(desc.pixelFormat != MTLPixelFormatInvalid, "Unhandled pixel format %#x.\n", params->desc.format);
desc.width = params->desc.width;
desc.height = params->desc.height;
desc.depth = params->desc.depth;
if (params->desc.dimension == RESOURCE_DIMENSION_CUBE)
desc.arrayLength = params->desc.layer_count / 6;
else
desc.arrayLength = params->desc.layer_count;
desc.mipmapLevelCount = params->desc.level_count;
desc.sampleCount = max(params->desc.sample_count, 1);
desc.storageMode = MTLStorageModePrivate;
switch (params->desc.type)
{
case RESOURCE_TYPE_RENDER_TARGET:
case RESOURCE_TYPE_DEPTH_STENCIL:
desc.usage = MTLTextureUsageRenderTarget;
break;
case RESOURCE_TYPE_TEXTURE:
desc.usage = MTLTextureUsageShaderRead;
break;
case RESOURCE_TYPE_UAV:
desc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite;
break;
case RESOURCE_TYPE_VERTEX_BUFFER:
break;
}
resource->texture = [device newTextureWithDescriptor:desc];
ok(resource->texture, "Failed to create texture.\n");
if (params->data)
{
unsigned int buffer_offset = 0, layer, level, level_width, level_height, level_depth;
id<MTLCommandBuffer> command_buffer;
id<MTLBlitCommandEncoder> blit;
id<MTLTexture> upload_texture;
if (params->desc.sample_count > 1)
fatal_error("Cannot upload data to a multisampled texture.\n");
desc.storageMode = MTLStorageModeManaged;
upload_texture = [[device newTextureWithDescriptor:desc] autorelease];
for (level = 0; level < params->desc.level_count; ++level)
{
level_width = get_level_dimension(params->desc.width, level);
level_height = get_level_dimension(params->desc.height, level);
level_depth = get_level_dimension(params->desc.depth, level);
for (layer = 0; layer < params->desc.layer_count; ++layer)
{
[upload_texture replaceRegion:MTLRegionMake3D(0, 0, 0, level_width, level_height, level_depth)
mipmapLevel:level
slice:layer
withBytes:&params->data[buffer_offset]
bytesPerRow:level_width * params->desc.texel_size
bytesPerImage:level_height * level_width * params->desc.texel_size];
buffer_offset += level_depth * level_height * level_width * params->desc.texel_size;
}
}
command_buffer = [runner->queue commandBuffer];
blit = [command_buffer blitCommandEncoder];
[blit copyFromTexture:upload_texture toTexture:resource->texture];
[blit endEncoding];
[command_buffer commit];
[command_buffer waitUntilCompleted];
}
[desc release];
}
static struct resource *metal_runner_create_resource(struct shader_runner *r, const struct resource_params *params)
{
struct metal_runner *runner = metal_runner(r);
struct metal_resource *resource;
resource = calloc(1, sizeof(*resource));
init_resource(&resource->r, params);
switch (params->desc.type)
{
case RESOURCE_TYPE_RENDER_TARGET:
case RESOURCE_TYPE_DEPTH_STENCIL:
case RESOURCE_TYPE_TEXTURE:
case RESOURCE_TYPE_UAV:
init_resource_texture(runner, resource, params);
break;
case RESOURCE_TYPE_VERTEX_BUFFER:
init_resource_buffer(runner, resource, params);
break;
}
return &resource->r;
}
static void metal_runner_destroy_resource(struct shader_runner *r, struct resource *res)
{
struct metal_resource *resource = metal_resource(res);
[resource->texture release];
[resource->buffer release];
free(resource);
}
static bool compile_shader(struct metal_runner *runner, enum shader_type type, struct vkd3d_shader_code *out)
{
struct vkd3d_shader_interface_info interface_info = {.type = VKD3D_SHADER_STRUCTURE_TYPE_INTERFACE_INFO};
struct vkd3d_shader_compile_info info = {.type = VKD3D_SHADER_STRUCTURE_TYPE_COMPILE_INFO};
struct vkd3d_shader_resource_binding bindings[MAX_RESOURCES + MAX_SAMPLERS + 1 /* CBV */];
struct vkd3d_shader_resource_binding *binding;
unsigned int i;
char *messages;
int ret;
const struct vkd3d_shader_compile_option options[] =
{
{VKD3D_SHADER_COMPILE_OPTION_API_VERSION, VKD3D_SHADER_API_VERSION_1_16},
{VKD3D_SHADER_COMPILE_OPTION_FEATURE, shader_runner_caps_get_feature_flags(&runner->caps)},
};
if (!(runner->d3d_blobs[type] = compile_hlsl(&runner->r, type)))
return false;
info.next = &interface_info;
info.source.code = ID3D10Blob_GetBufferPointer(runner->d3d_blobs[type]);
info.source.size = ID3D10Blob_GetBufferSize(runner->d3d_blobs[type]);
info.source_type = VKD3D_SHADER_SOURCE_DXBC_TPF;
info.target_type = VKD3D_SHADER_TARGET_MSL;
info.options = options;
info.option_count = ARRAY_SIZE(options);
info.log_level = VKD3D_SHADER_LOG_WARNING;
if (runner->r.uniform_count)
{
binding = &bindings[interface_info.binding_count];
binding->type = VKD3D_SHADER_DESCRIPTOR_TYPE_CBV;
binding->register_space = 0;
binding->register_index = 0;
binding->shader_visibility = VKD3D_SHADER_VISIBILITY_ALL;
binding->flags = VKD3D_SHADER_BINDING_FLAG_BUFFER;
binding->binding.set = 0;
binding->binding.binding = interface_info.binding_count;
binding->binding.count = 1;
++interface_info.binding_count;
}
for (i = 0; i < runner->r.resource_count; ++i)
{
const struct metal_resource *resource = metal_resource(runner->r.resources[i]);
switch (resource->r.desc.type)
{
case RESOURCE_TYPE_TEXTURE:
binding = &bindings[interface_info.binding_count];
binding->type = VKD3D_SHADER_DESCRIPTOR_TYPE_SRV;
binding->register_space = 0;
binding->register_index = resource->r.desc.slot;
binding->shader_visibility = VKD3D_SHADER_VISIBILITY_ALL;
if (resource->r.desc.dimension == RESOURCE_DIMENSION_BUFFER)
binding->flags = VKD3D_SHADER_BINDING_FLAG_BUFFER;
else
binding->flags = VKD3D_SHADER_BINDING_FLAG_IMAGE;
binding->binding.set = 0;
binding->binding.binding = interface_info.binding_count;
binding->binding.count = 1;
++interface_info.binding_count;
break;
case RESOURCE_TYPE_UAV:
binding = &bindings[interface_info.binding_count];
binding->type = VKD3D_SHADER_DESCRIPTOR_TYPE_UAV;
binding->register_space = 0;
binding->register_index = resource->r.desc.slot;
binding->shader_visibility = VKD3D_SHADER_VISIBILITY_ALL;
if (resource->r.desc.dimension == RESOURCE_DIMENSION_BUFFER)
binding->flags = VKD3D_SHADER_BINDING_FLAG_BUFFER;
else
binding->flags = VKD3D_SHADER_BINDING_FLAG_IMAGE;
binding->binding.set = 0;
binding->binding.binding = interface_info.binding_count;
binding->binding.count = 1;
++interface_info.binding_count;
break;
case RESOURCE_TYPE_RENDER_TARGET:
case RESOURCE_TYPE_DEPTH_STENCIL:
case RESOURCE_TYPE_VERTEX_BUFFER:
break;
}
}
for (i = 0; i < runner->r.sampler_count; ++i)
{
binding = &bindings[interface_info.binding_count];
binding->type = VKD3D_SHADER_DESCRIPTOR_TYPE_SAMPLER;
binding->register_space = 0;
binding->register_index = runner->r.samplers[i].slot;
binding->shader_visibility = VKD3D_SHADER_VISIBILITY_ALL;
binding->flags = 0;
binding->binding.set = 0;
binding->binding.binding = interface_info.binding_count;
binding->binding.count = 1;
++interface_info.binding_count;
}
interface_info.bindings = bindings;
interface_info.next = &runner->signatures[type];
runner->signatures[type].type = VKD3D_SHADER_STRUCTURE_TYPE_SCAN_SIGNATURE_INFO;
runner->signatures[type].next = NULL;
ret = vkd3d_shader_compile(&info, out, &messages);
if (messages)
trace_messages(messages);
vkd3d_shader_free_messages(messages);
return ret >= 0;
}
static id<MTLFunction> compile_stage(struct metal_runner *runner, enum shader_type type)
{
struct vkd3d_shader_code out;
id<MTLFunction> function;
id<MTLLibrary> library;
NSString *src;
NSError *err;
if (!compile_shader(runner, type, &out))
return nil;
src = [[[NSString alloc] initWithBytes:out.code length:out.size encoding:NSUTF8StringEncoding] autorelease];
library = [[runner->device newLibraryWithSource:src options:nil error:&err] autorelease];
ok(library, "Failed to create MTLLibrary.\n");
if (err)
trace_messages([err.localizedDescription UTF8String]);
function = [library newFunctionWithName:@"shader_entry"];
ok(function, "Failed to create MTLFunction.\n");
vkd3d_shader_free_shader_code(&out);
return [function autorelease];
}
static bool encode_argument_buffer(struct metal_runner *runner,
id<MTLRenderCommandEncoder> command_encoder, id<MTLSamplerState> *samplers)
{
NSMutableArray<MTLArgumentDescriptor *> *argument_descriptors;
id<MTLDevice> device = runner->device;
MTLArgumentDescriptor *arg_desc;
id<MTLArgumentEncoder> encoder;
id<MTLBuffer> argument_buffer;
unsigned int i, index = 0;
argument_descriptors = [[[NSMutableArray alloc] init] autorelease];
if (runner->r.uniform_count)
{
arg_desc = [MTLArgumentDescriptor argumentDescriptor];
arg_desc.dataType = MTLDataTypePointer;
arg_desc.index = 0;
arg_desc.access = MTLBindingAccessReadOnly;
[argument_descriptors addObject:arg_desc];
}
for (i = 0; i < runner->r.resource_count; ++i)
{
struct metal_resource *resource = metal_resource(runner->r.resources[i]);
switch (resource->r.desc.type)
{
case RESOURCE_TYPE_TEXTURE:
arg_desc = [MTLArgumentDescriptor argumentDescriptor];
arg_desc.dataType = MTLDataTypeTexture;
arg_desc.index = [argument_descriptors count];
arg_desc.access = MTLBindingAccessReadOnly;
arg_desc.textureType = [resource->texture textureType];
[argument_descriptors addObject:arg_desc];
break;
case RESOURCE_TYPE_UAV:
arg_desc = [MTLArgumentDescriptor argumentDescriptor];
arg_desc.dataType = MTLDataTypeTexture;
arg_desc.index = [argument_descriptors count];
arg_desc.access = MTLBindingAccessReadWrite;
arg_desc.textureType = [resource->texture textureType];
[argument_descriptors addObject:arg_desc];
break;
case RESOURCE_TYPE_RENDER_TARGET:
case RESOURCE_TYPE_DEPTH_STENCIL:
case RESOURCE_TYPE_VERTEX_BUFFER:
break;
}
}
for (i = 0; i < runner->r.sampler_count; ++i)
{
arg_desc = [MTLArgumentDescriptor argumentDescriptor];
arg_desc.dataType = MTLDataTypeSampler;
arg_desc.index = [argument_descriptors count];
arg_desc.access = MTLBindingAccessReadOnly;
[argument_descriptors addObject:arg_desc];
}
if (![argument_descriptors count])
return true;
encoder = [[device newArgumentEncoderWithArguments:argument_descriptors] autorelease];
argument_buffer = [[device newBufferWithLength:encoder.encodedLength
options:DEFAULT_BUFFER_RESOURCE_OPTIONS | MTLResourceStorageModeManaged] autorelease];
[encoder setArgumentBuffer:argument_buffer offset:0];
if (runner->r.uniform_count)
{
id<MTLBuffer> cb;
cb = [[device newBufferWithBytes:runner->r.uniforms
length:runner->r.uniform_count * sizeof(*runner->r.uniforms)
options:DEFAULT_BUFFER_RESOURCE_OPTIONS | MTLResourceStorageModeManaged] autorelease];
[encoder setBuffer:cb offset:0 atIndex:index++];
[command_encoder useResource:cb
usage:MTLResourceUsageRead
stages:MTLRenderStageVertex | MTLRenderStageFragment];
}
for (i = 0; i < runner->r.resource_count; ++i)
{
struct metal_resource *resource = metal_resource(runner->r.resources[i]);
switch (resource->r.desc.type)
{
case RESOURCE_TYPE_TEXTURE:
[encoder setTexture:resource->texture atIndex:index++];
[command_encoder useResource:resource->texture
usage:MTLResourceUsageRead
stages:MTLRenderStageVertex | MTLRenderStageFragment];
break;
case RESOURCE_TYPE_UAV:
[encoder setTexture:resource->texture atIndex:index++];
[command_encoder useResource:resource->texture
usage:MTLResourceUsageRead | MTLResourceUsageWrite
stages:MTLRenderStageVertex | MTLRenderStageFragment];
break;
case RESOURCE_TYPE_RENDER_TARGET:
case RESOURCE_TYPE_DEPTH_STENCIL:
case RESOURCE_TYPE_VERTEX_BUFFER:
break;
}
}
for (i = 0; i < runner->r.sampler_count; ++i)
{
[encoder setSamplerState:samplers[i] atIndex:index++];
}
[argument_buffer didModifyRange:NSMakeRange(0, encoder.encodedLength)];
[command_encoder setVertexBuffer:argument_buffer offset:0 atIndex:0];
[command_encoder setFragmentBuffer:argument_buffer offset:0 atIndex:0];
return true;
}
static bool metal_runner_dispatch(struct shader_runner *r, unsigned int x, unsigned int y, unsigned int z)
{
return false;
}
static void metal_runner_clear(struct shader_runner *r, struct resource *res, const struct vec4 *clear_value)
{
struct metal_resource *resource = metal_resource(res);
struct metal_runner *runner = metal_runner(r);
id<MTLRenderCommandEncoder> encoder;
id<MTLCommandBuffer> command_buffer;
MTLRenderPassDescriptor *descriptor;
@autoreleasepool
{
descriptor = [MTLRenderPassDescriptor renderPassDescriptor];
command_buffer = [runner->queue commandBuffer];
switch (resource->r.desc.type)
{
case RESOURCE_TYPE_RENDER_TARGET:
descriptor.colorAttachments[0].texture = resource->texture;
descriptor.colorAttachments[0].loadAction = MTLLoadActionClear;
descriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
descriptor.colorAttachments[0].clearColor =
MTLClearColorMake(clear_value->x, clear_value->y, clear_value->z, clear_value->w);
break;
case RESOURCE_TYPE_DEPTH_STENCIL:
descriptor.depthAttachment.texture = resource->texture;
descriptor.depthAttachment.loadAction = MTLLoadActionClear;
descriptor.depthAttachment.storeAction = MTLStoreActionStore;
descriptor.depthAttachment.clearDepth = clear_value->x;
break;
default:
fatal_error("Clears are not implemented for resource type %#x.\n", resource->r.desc.type);
}
encoder = [command_buffer renderCommandEncoderWithDescriptor:descriptor];
[encoder endEncoding];
[command_buffer commit];
[command_buffer waitUntilCompleted];
}
}
static bool metal_runner_draw(struct shader_runner *r, D3D_PRIMITIVE_TOPOLOGY topology,
unsigned int vertex_count, unsigned int instance_count)
{
MTLViewport viewport = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
MTLRenderPassColorAttachmentDescriptor *attachment;
unsigned int fb_width, fb_height, vb_idx, i, j;
struct metal_runner *runner = metal_runner(r);
MTLRenderPipelineDescriptor *pipeline_desc;
id<MTLSamplerState> samplers[MAX_SAMPLERS];
MTLVertexBufferLayoutDescriptor *binding;
id<MTLDepthStencilState> ds_state = nil;
id<MTLDevice> device = runner->device;
size_t attribute_offsets[32], stride;
id<MTLRenderCommandEncoder> encoder;
id<MTLCommandBuffer> command_buffer;
MTLDepthStencilDescriptor *ds_desc;
MTLRenderPassDescriptor *pass_desc;
MTLSamplerDescriptor *sampler_desc;
MTLVertexDescriptor *vertex_desc;
struct metal_resource *resource;
id<MTLRenderPipelineState> pso;
const struct sampler *sampler;
bool ret = false;
NSError *err;
struct
{
id<MTLBuffer> buffer;
unsigned int idx;
} vb_info[MAX_RESOURCES];
@autoreleasepool
{
pass_desc = [MTLRenderPassDescriptor renderPassDescriptor];
pipeline_desc = [[[MTLRenderPipelineDescriptor alloc] init] autorelease];
vertex_desc = [MTLVertexDescriptor vertexDescriptor];
if (!(pipeline_desc.vertexFunction = compile_stage(runner, SHADER_TYPE_VS)))
{
trace("Failed to compile vertex function.\n");
goto done;
}
if (!(pipeline_desc.fragmentFunction = compile_stage(runner, SHADER_TYPE_PS)))
{
trace("Failed to compile fragment function.\n");
goto done;
}
sampler_desc = [[MTLSamplerDescriptor new] autorelease];
for (i = 0; i < runner->r.sampler_count; ++i)
{
sampler = &runner->r.samplers[i];
sampler_desc.sAddressMode = get_metal_address_mode(sampler->u_address);
sampler_desc.tAddressMode = get_metal_address_mode(sampler->v_address);
sampler_desc.rAddressMode = get_metal_address_mode(sampler->w_address);
sampler_desc.magFilter = (sampler->filter & 0x4)
? MTLSamplerMinMagFilterLinear : MTLSamplerMinMagFilterNearest;
sampler_desc.minFilter = (sampler->filter & 0x1)
? MTLSamplerMinMagFilterLinear : MTLSamplerMinMagFilterNearest;
sampler_desc.mipFilter = (sampler->filter & 0x10)
? MTLSamplerMipFilterLinear : MTLSamplerMipFilterNearest;
sampler_desc.compareFunction = sampler->func
? get_metal_compare_function(sampler->func) : MTLCompareFunctionNever;
sampler_desc.supportArgumentBuffers = true;
samplers[i] = [[device newSamplerStateWithDescriptor:sampler_desc] autorelease];
}
fb_width = ~0u;
fb_height = ~0u;
/* [[buffer(0)]] is used for the descriptor argument buffer. */
vb_idx = 1;
memset(vb_info, 0, sizeof(vb_info));
for (i = 0; i < runner->r.resource_count; ++i)
{
resource = metal_resource(runner->r.resources[i]);
switch (resource->r.desc.type)
{
case RESOURCE_TYPE_RENDER_TARGET:
pipeline_desc.colorAttachments[resource->r.desc.slot].pixelFormat = resource->texture.pixelFormat;
attachment = pass_desc.colorAttachments[resource->r.desc.slot];
attachment.loadAction = MTLLoadActionLoad;
attachment.storeAction = MTLStoreActionStore;
attachment.texture = resource->texture;
if (resource->r.desc.width < fb_width)
fb_width = resource->r.desc.width;
if (resource->r.desc.height < fb_height)
fb_height = resource->r.desc.height;
break;
case RESOURCE_TYPE_DEPTH_STENCIL:
pipeline_desc.depthAttachmentPixelFormat = resource->texture.pixelFormat;
pass_desc.depthAttachment.loadAction = MTLLoadActionLoad;
pass_desc.depthAttachment.storeAction = MTLStoreActionStore;
pass_desc.depthAttachment.texture = resource->texture;
if (resource->r.desc.width < fb_width)
fb_width = resource->r.desc.width;
if (resource->r.desc.height < fb_height)
fb_height = resource->r.desc.height;
ds_desc = [[[MTLDepthStencilDescriptor alloc] init] autorelease];
ds_desc.depthCompareFunction = get_metal_compare_function(runner->r.depth_func);
ds_desc.depthWriteEnabled = true;
ds_state = [[device newDepthStencilStateWithDescriptor:ds_desc] autorelease];
break;
case RESOURCE_TYPE_VERTEX_BUFFER:
assert(resource->r.desc.slot < ARRAY_SIZE(vb_info));
for (j = 0, stride = 0; j < runner->r.input_element_count; ++j)
{
if (runner->r.input_elements[j].slot != resource->r.desc.slot)
continue;
assert(j < ARRAY_SIZE(attribute_offsets));
attribute_offsets[j] = stride;
stride += runner->r.input_elements[j].texel_size;
}
if (!stride)
break;
vb_info[resource->r.desc.slot].buffer = resource->buffer;
vb_info[resource->r.desc.slot].idx = vb_idx;
binding = [vertex_desc.layouts objectAtIndexedSubscript:vb_idx];
binding.stepFunction = MTLVertexStepFunctionPerVertex;
binding.stride = stride;
++vb_idx;
break;
default:
break;
}
}
pipeline_desc.rasterSampleCount = runner->r.sample_count;
pipeline_desc.sampleMask = runner->r.sample_mask;
viewport.width = fb_width;
viewport.height = fb_height;
command_buffer = [runner->queue commandBuffer];
encoder = [command_buffer renderCommandEncoderWithDescriptor:pass_desc];
if (!encode_argument_buffer(runner, encoder, samplers))
{
[encoder endEncoding];
ret = false;
goto done;
}
if (runner->r.input_element_count > 32)
fatal_error("Unsupported input element count %zu.\n", runner->r.input_element_count);
for (i = 0; i < runner->r.input_element_count; ++i)
{
const struct input_element *element = &runner->r.input_elements[i];
const struct vkd3d_shader_signature_element *signature_element;
MTLVertexAttributeDescriptor *attribute;
signature_element = vkd3d_shader_find_signature_element(&runner->signatures[SHADER_TYPE_VS].input,
element->name, element->index, 0);
ok(signature_element, "Cannot find signature element %s%u.\n", element->name, element->index);
attribute = [vertex_desc.attributes objectAtIndexedSubscript:signature_element->register_index];
attribute.bufferIndex = vb_info[element->slot].idx;
attribute.format = get_metal_attribute_format(element->format);
ok(attribute.format != MTLVertexFormatInvalid, "Unhandled attribute format %#x.\n", element->format);
attribute.offset = attribute_offsets[i];
}
for (i = 0; i < ARRAY_SIZE(vb_info); ++i)
{
if (!vb_info[i].buffer)
continue;
[encoder setVertexBuffer:vb_info[i].buffer offset:0 atIndex:vb_info[i].idx];
}
pipeline_desc.vertexDescriptor = vertex_desc;
if (!(pso = [[device newRenderPipelineStateWithDescriptor:pipeline_desc error:&err] autorelease]))
{
trace("Failed to compile pipeline state.\n");
if (err)
trace_messages([err.localizedDescription UTF8String]);
[encoder endEncoding];
goto done;
}
if (ds_state)
[encoder setDepthStencilState:ds_state];
[encoder setRenderPipelineState:pso];
[encoder setViewport:viewport];
[encoder drawPrimitives:get_metal_primitive_type(topology)
vertexStart:0
vertexCount:vertex_count
instanceCount:instance_count];
[encoder endEncoding];
[command_buffer commit];
[command_buffer waitUntilCompleted];
ret = true;
}
done:
for (i = 0; i < SHADER_TYPE_COUNT; ++i)
{
if (!runner->d3d_blobs[i])
continue;
vkd3d_shader_free_scan_signature_info(&runner->signatures[i]);
ID3D10Blob_Release(runner->d3d_blobs[i]);
runner->d3d_blobs[i] = NULL;
}
return ret;
}
static bool metal_runner_copy(struct shader_runner *r, struct resource *src, struct resource *dst)
{
struct metal_resource *s = metal_resource(src);
struct metal_resource *d = metal_resource(dst);
struct metal_runner *runner = metal_runner(r);
id<MTLCommandBuffer> command_buffer;
id<MTLBlitCommandEncoder> blit;
if (src->desc.dimension == RESOURCE_DIMENSION_BUFFER)
return false;
@autoreleasepool
{
command_buffer = [runner->queue commandBuffer];
blit = [command_buffer blitCommandEncoder];
[blit copyFromTexture:s->texture toTexture:d->texture];
[blit endEncoding];
[command_buffer commit];
[command_buffer waitUntilCompleted];
}
return true;
}
static struct resource_readback *metal_runner_get_resource_readback(struct shader_runner *r,
struct resource *res, unsigned int sub_resource_idx)
{
struct metal_resource *resource = metal_resource(res);
MTLRenderPassColorAttachmentDescriptor *attachment;
struct metal_runner *runner = metal_runner(r);
id<MTLRenderCommandEncoder> resolve;
id<MTLCommandBuffer> command_buffer;
struct metal_resource_readback *rb;
MTLRenderPassDescriptor *pass_desc;
MTLTextureDescriptor *texture_desc;
id<MTLBlitCommandEncoder> blit;
id<MTLTexture> src_texture;
unsigned int layer, level;
if (resource->r.desc.dimension != RESOURCE_DIMENSION_BUFFER
&& resource->r.desc.dimension != RESOURCE_DIMENSION_2D)
fatal_error("Unhandled resource dimension %#x.\n", resource->r.desc.dimension);
rb = malloc(sizeof(*rb));
rb->rb.width = resource->r.desc.width;
rb->rb.height = resource->r.desc.height;
rb->rb.depth = resource->r.desc.depth;
rb->rb.row_pitch = rb->rb.width * resource->r.desc.texel_size;
rb->buffer = [runner->device newBufferWithLength:rb->rb.row_pitch * rb->rb.height
options:DEFAULT_BUFFER_RESOURCE_OPTIONS | MTLResourceStorageModeManaged];
level = sub_resource_idx % resource->r.desc.level_count;
layer = sub_resource_idx / resource->r.desc.level_count;
@autoreleasepool
{
command_buffer = [runner->queue commandBuffer];
src_texture = resource->texture;
if (resource->r.desc.sample_count > 1)
{
pass_desc = [MTLRenderPassDescriptor renderPassDescriptor];
attachment = pass_desc.colorAttachments[0];
if (resource->r.desc.type != RESOURCE_TYPE_RENDER_TARGET)
fatal_error("Unhandled multi-sample resolve of resource with type %#x.\n", resource->r.desc.type);
texture_desc = [[MTLTextureDescriptor new] autorelease];
texture_desc.textureType = MTLTextureType2D;
texture_desc.pixelFormat = get_metal_pixel_format(resource->r.desc.format);
texture_desc.width = resource->r.desc.width;
texture_desc.height = resource->r.desc.height;
texture_desc.arrayLength = resource->r.desc.depth;
texture_desc.mipmapLevelCount = resource->r.desc.level_count;
texture_desc.sampleCount = 1;
texture_desc.storageMode = MTLStorageModePrivate;
texture_desc.usage = MTLTextureUsageRenderTarget;
src_texture = [[runner->device newTextureWithDescriptor:texture_desc] autorelease];
ok(src_texture, "Failed to create resolve texture.\n");
attachment.texture = resource->texture;
attachment.resolveTexture = src_texture;
attachment.loadAction = MTLLoadActionLoad;
attachment.storeAction = MTLStoreActionStoreAndMultisampleResolve;
resolve = [command_buffer renderCommandEncoderWithDescriptor:pass_desc];
[resolve endEncoding];
}
blit = [command_buffer blitCommandEncoder];
[blit copyFromTexture:src_texture
sourceSlice:layer
sourceLevel:level
sourceOrigin:MTLOriginMake(0, 0, 0)
sourceSize:MTLSizeMake(rb->rb.width, rb->rb.height, rb->rb.depth)
toBuffer:rb->buffer
destinationOffset:0
destinationBytesPerRow:rb->rb.row_pitch
destinationBytesPerImage:0];
[blit synchronizeResource:rb->buffer];
[blit endEncoding];
[command_buffer commit];
[command_buffer waitUntilCompleted];
}
rb->rb.data = rb->buffer.contents;
return &rb->rb;
}
static void metal_runner_release_readback(struct shader_runner *r, struct resource_readback *rb)
{
struct metal_resource_readback *metal_rb = CONTAINING_RECORD(rb, struct metal_resource_readback, rb);
[metal_rb->buffer release];
free(rb);
}
static const struct shader_runner_ops metal_runner_ops =
{
.create_resource = metal_runner_create_resource,
.destroy_resource = metal_runner_destroy_resource,
.dispatch = metal_runner_dispatch,
.clear = metal_runner_clear,
.draw = metal_runner_draw,
.copy = metal_runner_copy,
.get_resource_readback = metal_runner_get_resource_readback,
.release_readback = metal_runner_release_readback,
};
static bool check_msl_support(void)
{
const enum vkd3d_shader_target_type *target_types;
unsigned int count, i;
target_types = vkd3d_shader_get_supported_target_types(VKD3D_SHADER_SOURCE_DXBC_TPF, &count);
for (i = 0; i < count; ++i)
{
if (target_types[i] == VKD3D_SHADER_TARGET_MSL)
return true;
}
return false;
}
static bool check_argument_buffer_support(id<MTLDevice> device)
{
MTLArgumentDescriptor *d;
d = [MTLArgumentDescriptor argumentDescriptor];
d.dataType = MTLDataTypePointer;
@try
{
[[device newArgumentEncoderWithArguments:@[d]] release];
return true;
}
@catch (NSException *e)
{
return false;
}
}
static bool metal_runner_init(struct metal_runner *runner)
{
NSArray<id<MTLDevice>> *devices;
id<MTLDevice> device;
if (!check_msl_support())
{
skip("MSL support is not enabled. If this is unintentional, "
"add -DVKD3D_SHADER_UNSUPPORTED_MSL to CPPFLAGS.\n");
return false;
}
memset(runner, 0, sizeof(*runner));
devices = MTLCopyAllDevices();
for (device in devices)
{
if (!check_argument_buffer_support(device))
{
trace("Ignoring device \"%s\" because it doesn't have usable argument buffer support.\n",
[[device name] UTF8String]);
continue;
}
if (!runner->device
|| (!device.lowPower && runner->device.lowPower)
|| (!device.removable && runner->device.removable))
runner->device = device;
}
device = [runner->device retain];
[devices release];
if (!device)
{
skip("Failed to find a suitable Metal device.\n");
return false;
}
trace("GPU: %s\n", [[device name] UTF8String]);
if (!(runner->queue = [device newCommandQueue]))
{
skip("Failed to create command queue.\n");
[device release];
return false;
}
runner->caps.runner = "Metal";
runner->caps.compiler = HLSL_COMPILER;
runner->caps.tags[0] = "msl";
runner->caps.tag_count = 1;
runner->caps.minimum_shader_model = SHADER_MODEL_4_0;
runner->caps.maximum_shader_model = SHADER_MODEL_5_0;
return true;
}
static void metal_runner_cleanup(struct metal_runner *runner)
{
[runner->queue release];
[runner->device release];
}
void run_shader_tests_metal(void)
{
struct metal_runner runner;
if (test_skipping_execution("Metal", HLSL_COMPILER, SHADER_MODEL_4_0, SHADER_MODEL_5_0))
return;
if (!metal_runner_init(&runner))
return;
run_shader_tests(&runner.r, &runner.caps, &metal_runner_ops, NULL);
metal_runner_cleanup(&runner);
}