vkd3d/tests/hlsl/sm6-ternary.shader_test
Giovanni Mascellani 51f13391e6 vkd3d-shader/ir: Introduce a simple control flow graph structurizer.
The structurizer is implemented along the lines of what is usually called
the "structured program theorem": the control flow is completely
virtualized by mean of an additional TEMP register which stores the
block index which is currently running. The whole program is then
converted to a huge switch construction enclosed in a loop, executing
at each iteration the appropriate block and updating the register
depending on block jump instruction.

The algorithm's generality is also its major weakness: it accepts any
input program, even if its CFG is not reducible, but the output
program lacks any useful convergence information. It satisfies the
letter of the SPIR-V requirements, but it is expected that it will
be very inefficient to run on a GPU (unless a downstream compiler is
able to devirtualize the control flow and do a proper convergence
analysis pass). The algorithm is however very simple, and good enough
to at least pass tests, enabling further development. A better
alternative is expected to be upstreamed incrementally.

Side note: the structured program theorem is often called the
Böhm-Jacopini theorem; Böhm and Jacopini did indeed prove a variation
of it, but their algorithm is different from what is commontly attributed
to them and implemented here, so I opted for not using their name.
2024-02-06 23:07:07 +01:00

47 lines
749 B
Plaintext

% The ternary operator works differently in sm6.
% It now shortcuts, and is no longer per-component.
[require]
shader model >= 6.0
[pixel shader]
uniform float4 x;
float4 main() : sv_target
{
return x.x ? x : x - 1;
}
[test]
uniform 0 float4 2.0 3.0 4.0 5.0
draw quad
probe all rgba (2.0, 3.0, 4.0, 5.0)
uniform 0 float4 0.0 10.0 11.0 12.0
draw quad
probe all rgba (-1.0, 9.0, 10.0, 11.0)
[pixel shader]
float4 f;
float4 main() : sv_target
{
float f1 = 0.1, f2 = 0.2, f3;
f3 = f.x ? (f1 = 0.5) + 0.2 : (f2 = 0.6);
return float4(f1, f2, f3, 0.0);
}
[test]
uniform 0 float4 1.0 0.0 0.0 0.0
draw quad
probe all rgba (0.5, 0.2, 0.7, 0.0)
[pixel shader fail]
float4 x, y, z;
float4 main() : sv_target
{
return x ? y : z;
}