vkd3d/libs/vkd3d-shader/hlsl_codegen.c

4149 lines
141 KiB
C

/*
* HLSL optimization and code generation
*
* Copyright 2019-2020 Zebediah Figura for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "hlsl.h"
#include <stdio.h>
/* TODO: remove when no longer needed, only used for new_offset_instr_from_deref() */
static struct hlsl_ir_node *new_offset_from_path_index(struct hlsl_ctx *ctx, struct hlsl_block *block,
struct hlsl_type *type, struct hlsl_ir_node *offset, struct hlsl_ir_node *idx,
enum hlsl_regset regset, const struct vkd3d_shader_location *loc)
{
struct hlsl_ir_node *idx_offset = NULL;
struct hlsl_ir_node *c;
hlsl_block_init(block);
switch (type->class)
{
case HLSL_CLASS_VECTOR:
idx_offset = idx;
break;
case HLSL_CLASS_MATRIX:
{
if (!(c = hlsl_new_uint_constant(ctx, 4, loc)))
return NULL;
hlsl_block_add_instr(block, c);
if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, c, idx)))
return NULL;
hlsl_block_add_instr(block, idx_offset);
break;
}
case HLSL_CLASS_ARRAY:
{
unsigned int size = hlsl_type_get_array_element_reg_size(type->e.array.type, regset);
if (!(c = hlsl_new_uint_constant(ctx, size, loc)))
return NULL;
hlsl_block_add_instr(block, c);
if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, c, idx)))
return NULL;
hlsl_block_add_instr(block, idx_offset);
break;
}
case HLSL_CLASS_STRUCT:
{
unsigned int field_idx = hlsl_ir_constant(idx)->value.u[0].u;
struct hlsl_struct_field *field = &type->e.record.fields[field_idx];
if (!(c = hlsl_new_uint_constant(ctx, field->reg_offset[regset], loc)))
return NULL;
hlsl_block_add_instr(block, c);
idx_offset = c;
break;
}
default:
vkd3d_unreachable();
}
if (offset)
{
if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, offset, idx_offset)))
return NULL;
hlsl_block_add_instr(block, idx_offset);
}
return idx_offset;
}
/* TODO: remove when no longer needed, only used for replace_deref_path_with_offset() */
static struct hlsl_ir_node *new_offset_instr_from_deref(struct hlsl_ctx *ctx, struct hlsl_block *block,
const struct hlsl_deref *deref, const struct vkd3d_shader_location *loc)
{
struct hlsl_ir_node *offset = NULL;
struct hlsl_type *type;
unsigned int i;
hlsl_block_init(block);
assert(deref->var);
type = deref->var->data_type;
for (i = 0; i < deref->path_len; ++i)
{
struct hlsl_block idx_block;
if (!(offset = new_offset_from_path_index(ctx, &idx_block, type, offset, deref->path[i].node,
deref->offset_regset, loc)))
return NULL;
hlsl_block_add_block(block, &idx_block);
type = hlsl_get_element_type_from_path_index(ctx, type, deref->path[i].node);
}
return offset;
}
/* TODO: remove when no longer needed, only used for transform_deref_paths_into_offsets() */
static bool replace_deref_path_with_offset(struct hlsl_ctx *ctx, struct hlsl_deref *deref,
struct hlsl_ir_node *instr)
{
const struct hlsl_type *type;
struct hlsl_ir_node *offset;
struct hlsl_block block;
assert(deref->var);
/* register offsets shouldn't be used before this point is reached. */
assert(!deref->offset.node);
type = hlsl_deref_get_type(ctx, deref);
/* Instructions that directly refer to structs or arrays (instead of single-register components)
* are removed later by dce. So it is not a problem to just cleanup their derefs. */
if (type->class == HLSL_CLASS_STRUCT || type->class == HLSL_CLASS_ARRAY)
{
hlsl_cleanup_deref(deref);
return true;
}
deref->offset_regset = hlsl_type_get_regset(type);
if (!(offset = new_offset_instr_from_deref(ctx, &block, deref, &instr->loc)))
return false;
list_move_before(&instr->entry, &block.instrs);
hlsl_cleanup_deref(deref);
hlsl_src_from_node(&deref->offset, offset);
return true;
}
/* Split uniforms into two variables representing the constant and temp
* registers, and copy the former to the latter, so that writes to uniforms
* work. */
static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp)
{
struct vkd3d_string_buffer *name;
struct hlsl_ir_var *uniform;
struct hlsl_ir_node *store;
struct hlsl_ir_load *load;
/* Use the synthetic name for the temp, rather than the uniform, so that we
* can write the uniform name into the shader reflection data. */
if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type,
&temp->loc, NULL, temp->storage_modifiers, &temp->reg_reservation)))
return;
list_add_before(&temp->scope_entry, &uniform->scope_entry);
list_add_tail(&ctx->extern_vars, &uniform->extern_entry);
uniform->is_uniform = 1;
uniform->is_param = temp->is_param;
uniform->buffer = temp->buffer;
if (!(name = hlsl_get_string_buffer(ctx)))
return;
vkd3d_string_buffer_printf(name, "<temp-%s>", temp->name);
temp->name = hlsl_strdup(ctx, name->buffer);
hlsl_release_string_buffer(ctx, name);
if (!(load = hlsl_new_var_load(ctx, uniform, &temp->loc)))
return;
list_add_head(instrs, &load->node.entry);
if (!(store = hlsl_new_simple_store(ctx, temp, &load->node)))
return;
list_add_after(&load->node.entry, &store->entry);
}
static void validate_field_semantic(struct hlsl_ctx *ctx, struct hlsl_struct_field *field)
{
if (!field->semantic.name && hlsl_get_multiarray_element_type(field->type)->class <= HLSL_CLASS_LAST_NUMERIC
&& !field->semantic.reported_missing)
{
hlsl_error(ctx, &field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Field '%s' is missing a semantic.", field->name);
field->semantic.reported_missing = true;
}
}
static enum hlsl_base_type base_type_get_semantic_equivalent(enum hlsl_base_type base)
{
if (base == HLSL_TYPE_BOOL)
return HLSL_TYPE_UINT;
if (base == HLSL_TYPE_INT)
return HLSL_TYPE_UINT;
if (base == HLSL_TYPE_HALF)
return HLSL_TYPE_FLOAT;
return base;
}
static bool types_are_semantic_equivalent(struct hlsl_ctx *ctx, const struct hlsl_type *type1,
const struct hlsl_type *type2)
{
if (ctx->profile->major_version < 4)
return true;
if (type1->dimx != type2->dimx)
return false;
return base_type_get_semantic_equivalent(type1->base_type)
== base_type_get_semantic_equivalent(type2->base_type);
}
static struct hlsl_ir_var *add_semantic_var(struct hlsl_ctx *ctx, struct hlsl_ir_var *var,
struct hlsl_type *type, unsigned int modifiers, struct hlsl_semantic *semantic,
uint32_t index, bool output, const struct vkd3d_shader_location *loc)
{
struct hlsl_semantic new_semantic;
struct vkd3d_string_buffer *name;
struct hlsl_ir_var *ext_var;
if (!(name = hlsl_get_string_buffer(ctx)))
return NULL;
vkd3d_string_buffer_printf(name, "<%s-%s%u>", output ? "output" : "input", semantic->name, index);
LIST_FOR_EACH_ENTRY(ext_var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (!ascii_strcasecmp(ext_var->name, name->buffer))
{
if (output)
{
if (index >= semantic->reported_duplicated_output_next_index)
{
hlsl_error(ctx, loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Output semantic \"%s%u\" is used multiple times.", semantic->name, index);
hlsl_note(ctx, &ext_var->loc, HLSL_LEVEL_ERROR,
"First use of \"%s%u\" is here.", semantic->name, index);
semantic->reported_duplicated_output_next_index = index + 1;
}
}
else
{
if (index >= semantic->reported_duplicated_input_incompatible_next_index
&& !types_are_semantic_equivalent(ctx, ext_var->data_type, type))
{
hlsl_error(ctx, loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Input semantic \"%s%u\" is used multiple times with incompatible types.",
semantic->name, index);
hlsl_note(ctx, &ext_var->loc, HLSL_LEVEL_ERROR,
"First declaration of \"%s%u\" is here.", semantic->name, index);
semantic->reported_duplicated_input_incompatible_next_index = index + 1;
}
}
hlsl_release_string_buffer(ctx, name);
return ext_var;
}
}
if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name)))
{
hlsl_release_string_buffer(ctx, name);
return NULL;
}
new_semantic.index = index;
if (!(ext_var = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, loc, &new_semantic,
modifiers, NULL)))
{
hlsl_release_string_buffer(ctx, name);
hlsl_cleanup_semantic(&new_semantic);
return NULL;
}
hlsl_release_string_buffer(ctx, name);
if (output)
ext_var->is_output_semantic = 1;
else
ext_var->is_input_semantic = 1;
ext_var->is_param = var->is_param;
list_add_before(&var->scope_entry, &ext_var->scope_entry);
list_add_tail(&ctx->extern_vars, &ext_var->extern_entry);
return ext_var;
}
static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *lhs,
unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
{
struct hlsl_type *type = lhs->node.data_type, *vector_type_src, *vector_type_dst;
struct vkd3d_shader_location *loc = &lhs->node.loc;
struct hlsl_ir_var *var = lhs->src.var;
struct hlsl_ir_node *c;
unsigned int i;
if (type->class > HLSL_CLASS_LAST_NUMERIC)
{
struct vkd3d_string_buffer *string;
if (!(string = hlsl_type_to_string(ctx, type)))
return;
hlsl_fixme(ctx, &var->loc, "Input semantics for type %s.", string->buffer);
hlsl_release_string_buffer(ctx, string);
}
if (!semantic->name)
return;
vector_type_src = hlsl_get_vector_type(ctx, type->base_type,
(ctx->profile->major_version < 4) ? 4 : hlsl_type_minor_size(type));
vector_type_dst = hlsl_get_vector_type(ctx, type->base_type, hlsl_type_minor_size(type));
for (i = 0; i < hlsl_type_major_size(type); ++i)
{
struct hlsl_ir_node *store, *cast;
struct hlsl_ir_var *input;
struct hlsl_ir_load *load;
if (!(input = add_semantic_var(ctx, var, vector_type_src, modifiers, semantic,
semantic_index + i, false, loc)))
return;
if (!(load = hlsl_new_var_load(ctx, input, &var->loc)))
return;
list_add_after(&lhs->node.entry, &load->node.entry);
if (!(cast = hlsl_new_cast(ctx, &load->node, vector_type_dst, &var->loc)))
return;
list_add_after(&load->node.entry, &cast->entry);
if (type->class == HLSL_CLASS_MATRIX)
{
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
return;
list_add_after(&cast->entry, &c->entry);
if (!(store = hlsl_new_store_index(ctx, &lhs->src, c, cast, 0, &var->loc)))
return;
list_add_after(&c->entry, &store->entry);
}
else
{
assert(i == 0);
if (!(store = hlsl_new_store_index(ctx, &lhs->src, NULL, cast, 0, &var->loc)))
return;
list_add_after(&cast->entry, &store->entry);
}
}
}
static void prepend_input_copy_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *lhs,
unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
{
struct vkd3d_shader_location *loc = &lhs->node.loc;
struct hlsl_type *type = lhs->node.data_type;
struct hlsl_ir_var *var = lhs->src.var;
struct hlsl_ir_node *c;
unsigned int i;
if (type->class == HLSL_CLASS_ARRAY || type->class == HLSL_CLASS_STRUCT)
{
struct hlsl_ir_load *element_load;
struct hlsl_struct_field *field;
uint32_t elem_semantic_index;
for (i = 0; i < hlsl_type_element_count(type); ++i)
{
if (type->class == HLSL_CLASS_ARRAY)
{
elem_semantic_index = semantic_index
+ i * hlsl_type_get_array_element_reg_size(type->e.array.type, HLSL_REGSET_NUMERIC) / 4;
}
else
{
field = &type->e.record.fields[i];
if (hlsl_type_is_resource(field->type))
continue;
validate_field_semantic(ctx, field);
semantic = &field->semantic;
elem_semantic_index = semantic->index;
loc = &field->loc;
}
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
return;
list_add_after(&lhs->node.entry, &c->entry);
/* This redundant load is expected to be deleted later by DCE. */
if (!(element_load = hlsl_new_load_index(ctx, &lhs->src, c, loc)))
return;
list_add_after(&c->entry, &element_load->node.entry);
prepend_input_copy_recurse(ctx, instrs, element_load, modifiers, semantic, elem_semantic_index);
}
}
else
{
prepend_input_copy(ctx, instrs, lhs, modifiers, semantic, semantic_index);
}
}
/* Split inputs into two variables representing the semantic and temp registers,
* and copy the former to the latter, so that writes to input variables work. */
static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var)
{
struct hlsl_ir_load *load;
/* This redundant load is expected to be deleted later by DCE. */
if (!(load = hlsl_new_var_load(ctx, var, &var->loc)))
return;
list_add_head(instrs, &load->node.entry);
prepend_input_copy_recurse(ctx, instrs, load, var->storage_modifiers, &var->semantic, var->semantic.index);
}
static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *rhs,
unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
{
struct hlsl_type *type = rhs->node.data_type, *vector_type;
struct vkd3d_shader_location *loc = &rhs->node.loc;
struct hlsl_ir_var *var = rhs->src.var;
struct hlsl_ir_node *c;
unsigned int i;
if (type->class > HLSL_CLASS_LAST_NUMERIC)
{
struct vkd3d_string_buffer *string;
if (!(string = hlsl_type_to_string(ctx, type)))
return;
hlsl_fixme(ctx, &var->loc, "Output semantics for type %s.", string->buffer);
hlsl_release_string_buffer(ctx, string);
}
if (!semantic->name)
return;
vector_type = hlsl_get_vector_type(ctx, type->base_type, hlsl_type_minor_size(type));
for (i = 0; i < hlsl_type_major_size(type); ++i)
{
struct hlsl_ir_node *store;
struct hlsl_ir_var *output;
struct hlsl_ir_load *load;
if (!(output = add_semantic_var(ctx, var, vector_type, modifiers, semantic, semantic_index + i, true, loc)))
return;
if (type->class == HLSL_CLASS_MATRIX)
{
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
return;
list_add_tail(instrs, &c->entry);
if (!(load = hlsl_new_load_index(ctx, &rhs->src, c, &var->loc)))
return;
list_add_tail(instrs, &load->node.entry);
}
else
{
assert(i == 0);
if (!(load = hlsl_new_load_index(ctx, &rhs->src, NULL, &var->loc)))
return;
list_add_tail(instrs, &load->node.entry);
}
if (!(store = hlsl_new_simple_store(ctx, output, &load->node)))
return;
list_add_tail(instrs, &store->entry);
}
}
static void append_output_copy_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *rhs,
unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
{
struct vkd3d_shader_location *loc = &rhs->node.loc;
struct hlsl_type *type = rhs->node.data_type;
struct hlsl_ir_var *var = rhs->src.var;
struct hlsl_ir_node *c;
unsigned int i;
if (type->class == HLSL_CLASS_ARRAY || type->class == HLSL_CLASS_STRUCT)
{
struct hlsl_ir_load *element_load;
struct hlsl_struct_field *field;
uint32_t elem_semantic_index;
for (i = 0; i < hlsl_type_element_count(type); ++i)
{
if (type->class == HLSL_CLASS_ARRAY)
{
elem_semantic_index = semantic_index
+ i * hlsl_type_get_array_element_reg_size(type->e.array.type, HLSL_REGSET_NUMERIC) / 4;
}
else
{
field = &type->e.record.fields[i];
if (hlsl_type_is_resource(field->type))
continue;
validate_field_semantic(ctx, field);
semantic = &field->semantic;
elem_semantic_index = semantic->index;
loc = &field->loc;
}
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
return;
list_add_tail(instrs, &c->entry);
if (!(element_load = hlsl_new_load_index(ctx, &rhs->src, c, loc)))
return;
list_add_tail(instrs, &element_load->node.entry);
append_output_copy_recurse(ctx, instrs, element_load, modifiers, semantic, elem_semantic_index);
}
}
else
{
append_output_copy(ctx, instrs, rhs, modifiers, semantic, semantic_index);
}
}
/* Split outputs into two variables representing the temp and semantic
* registers, and copy the former to the latter, so that reads from output
* variables work. */
static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var)
{
struct hlsl_ir_load *load;
/* This redundant load is expected to be deleted later by DCE. */
if (!(load = hlsl_new_var_load(ctx, var, &var->loc)))
return;
list_add_tail(instrs, &load->node.entry);
append_output_copy_recurse(ctx, instrs, load, var->storage_modifiers, &var->semantic, var->semantic.index);
}
bool hlsl_transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *),
struct hlsl_block *block, void *context)
{
struct hlsl_ir_node *instr, *next;
bool progress = false;
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
{
if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
progress |= hlsl_transform_ir(ctx, func, &iff->then_block, context);
progress |= hlsl_transform_ir(ctx, func, &iff->else_block, context);
}
else if (instr->type == HLSL_IR_LOOP)
progress |= hlsl_transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context);
progress |= func(ctx, instr, context);
}
return progress;
}
static bool transform_instr_derefs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
bool res;
bool (*func)(struct hlsl_ctx *ctx, struct hlsl_deref *, struct hlsl_ir_node *) = context;
switch(instr->type)
{
case HLSL_IR_LOAD:
res = func(ctx, &hlsl_ir_load(instr)->src, instr);
return res;
case HLSL_IR_STORE:
res = func(ctx, &hlsl_ir_store(instr)->lhs, instr);
return res;
case HLSL_IR_RESOURCE_LOAD:
res = func(ctx, &hlsl_ir_resource_load(instr)->resource, instr);
if (hlsl_ir_resource_load(instr)->sampler.var)
res |= func(ctx, &hlsl_ir_resource_load(instr)->sampler, instr);
return res;
case HLSL_IR_RESOURCE_STORE:
res = func(ctx, &hlsl_ir_resource_store(instr)->resource, instr);
return res;
default:
return false;
}
return false;
}
static bool transform_derefs(struct hlsl_ctx *ctx,
bool (*func)(struct hlsl_ctx *ctx, struct hlsl_deref *, struct hlsl_ir_node *),
struct hlsl_block *block)
{
return hlsl_transform_ir(ctx, transform_instr_derefs, block, func);
}
struct recursive_call_ctx
{
const struct hlsl_ir_function_decl **backtrace;
size_t count, capacity;
};
static bool find_recursive_calls(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct recursive_call_ctx *call_ctx = context;
struct hlsl_ir_function_decl *decl;
const struct hlsl_ir_call *call;
size_t i;
if (instr->type != HLSL_IR_CALL)
return false;
call = hlsl_ir_call(instr);
decl = call->decl;
for (i = 0; i < call_ctx->count; ++i)
{
if (call_ctx->backtrace[i] == decl)
{
hlsl_error(ctx, &call->node.loc, VKD3D_SHADER_ERROR_HLSL_RECURSIVE_CALL,
"Recursive call to \"%s\".", decl->func->name);
/* Native returns E_NOTIMPL instead of E_FAIL here. */
ctx->result = VKD3D_ERROR_NOT_IMPLEMENTED;
return false;
}
}
if (!hlsl_array_reserve(ctx, (void **)&call_ctx->backtrace, &call_ctx->capacity,
call_ctx->count + 1, sizeof(*call_ctx->backtrace)))
return false;
call_ctx->backtrace[call_ctx->count++] = decl;
hlsl_transform_ir(ctx, find_recursive_calls, &decl->body, call_ctx);
--call_ctx->count;
return false;
}
static void insert_early_return_break(struct hlsl_ctx *ctx,
struct hlsl_ir_function_decl *func, struct hlsl_ir_node *cf_instr)
{
struct hlsl_ir_node *iff, *jump;
struct hlsl_block then_block;
struct hlsl_ir_load *load;
hlsl_block_init(&then_block);
if (!(load = hlsl_new_var_load(ctx, func->early_return_var, &cf_instr->loc)))
return;
list_add_after(&cf_instr->entry, &load->node.entry);
if (!(jump = hlsl_new_jump(ctx, HLSL_IR_JUMP_BREAK, &cf_instr->loc)))
return;
hlsl_block_add_instr(&then_block, jump);
if (!(iff = hlsl_new_if(ctx, &load->node, &then_block, NULL, &cf_instr->loc)))
return;
list_add_after(&load->node.entry, &iff->entry);
}
/* Remove HLSL_IR_JUMP_RETURN calls by altering subsequent control flow. */
static bool lower_return(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *func,
struct hlsl_block *block, bool in_loop)
{
struct hlsl_ir_node *return_instr = NULL, *cf_instr = NULL;
struct hlsl_ir_node *instr, *next;
bool has_early_return = false;
/* SM1 has no function calls. SM4 does, but native d3dcompiler inlines
* everything anyway. We are safest following suit.
*
* The basic idea is to keep track of whether the function has executed an
* early return in a synthesized boolean variable (func->early_return_var)
* and guard all code after the return on that variable being false. In the
* case of loops we also replace the return with a break.
*
* The following algorithm loops over instructions in a block, recursing
* into inferior CF blocks, until it hits one of the following two things:
*
* - A return statement. In this case, we remove everything after the return
* statement in this block. We have to stop and do this in a separate
* loop, because instructions must be deleted in reverse order (due to
* def-use chains.)
*
* If we're inside of a loop CF block, we can instead just turn the
* return into a break, which offers the right semantics—except that it
* won't break out of nested loops.
*
* - A CF block which contains a return statement. After calling
* lower_return() on the CF block body, we stop, pull out everything after
* the CF instruction, shove it into an if block, and then lower that if
* block.
*
* (We could return a "did we make progress" boolean like hlsl_transform_ir()
* and run this pass multiple times, but we already know the only block
* that still needs to be addressed, so there's not much point.)
*
* If we're inside of a loop CF block, we again do things differently. We
* already turned any returns into breaks. If the block we just processed
* was conditional, then "break" did our work for us. If it was a loop,
* we need to propagate that break to the outer loop.
*
* We return true if there was an early return anywhere in the block we just
* processed (including CF contained inside that block).
*/
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
{
if (instr->type == HLSL_IR_CALL)
{
struct hlsl_ir_call *call = hlsl_ir_call(instr);
lower_return(ctx, call->decl, &call->decl->body, false);
}
else if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
has_early_return |= lower_return(ctx, func, &iff->then_block, in_loop);
has_early_return |= lower_return(ctx, func, &iff->else_block, in_loop);
if (has_early_return)
{
/* If we're in a loop, we don't need to do anything here. We
* turned the return into a break, and that will already skip
* anything that comes after this "if" block. */
if (!in_loop)
{
cf_instr = instr;
break;
}
}
}
else if (instr->type == HLSL_IR_LOOP)
{
has_early_return |= lower_return(ctx, func, &hlsl_ir_loop(instr)->body, true);
if (has_early_return)
{
if (in_loop)
{
/* "instr" is a nested loop. "return" breaks out of all
* loops, so break out of this one too now. */
insert_early_return_break(ctx, func, instr);
}
else
{
cf_instr = instr;
break;
}
}
}
else if (instr->type == HLSL_IR_JUMP)
{
struct hlsl_ir_jump *jump = hlsl_ir_jump(instr);
struct hlsl_ir_node *constant, *store;
if (jump->type == HLSL_IR_JUMP_RETURN)
{
if (!(constant = hlsl_new_bool_constant(ctx, true, &jump->node.loc)))
return false;
list_add_before(&jump->node.entry, &constant->entry);
if (!(store = hlsl_new_simple_store(ctx, func->early_return_var, constant)))
return false;
list_add_after(&constant->entry, &store->entry);
has_early_return = true;
if (in_loop)
{
jump->type = HLSL_IR_JUMP_BREAK;
}
else
{
return_instr = instr;
break;
}
}
}
}
if (return_instr)
{
/* If we're in a loop, we should have used "break" instead. */
assert(!in_loop);
/* Iterate in reverse, to avoid use-after-free when unlinking sources from
* the "uses" list. */
LIST_FOR_EACH_ENTRY_SAFE_REV(instr, next, &block->instrs, struct hlsl_ir_node, entry)
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
/* Yes, we just freed it, but we're comparing pointers. */
if (instr == return_instr)
break;
}
}
else if (cf_instr)
{
struct list *tail = list_tail(&block->instrs);
struct hlsl_ir_node *not, *iff;
struct hlsl_block then_block;
struct hlsl_ir_load *load;
/* If we're in a loop, we should have used "break" instead. */
assert(!in_loop);
if (tail == &cf_instr->entry)
return has_early_return;
hlsl_block_init(&then_block);
list_move_slice_tail(&then_block.instrs, list_next(&block->instrs, &cf_instr->entry), tail);
lower_return(ctx, func, &then_block, in_loop);
if (!(load = hlsl_new_var_load(ctx, func->early_return_var, &cf_instr->loc)))
return false;
hlsl_block_add_instr(block, &load->node);
if (!(not = hlsl_new_unary_expr(ctx, HLSL_OP1_LOGIC_NOT, &load->node, &cf_instr->loc)))
return false;
hlsl_block_add_instr(block, not);
if (!(iff = hlsl_new_if(ctx, not, &then_block, NULL, &cf_instr->loc)))
return false;
list_add_tail(&block->instrs, &iff->entry);
}
return has_early_return;
}
/* Remove HLSL_IR_CALL instructions by inlining them. */
static bool lower_calls(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_ir_function_decl *decl;
struct hlsl_ir_call *call;
struct hlsl_block block;
if (instr->type != HLSL_IR_CALL)
return false;
call = hlsl_ir_call(instr);
decl = call->decl;
if (!decl->has_body)
hlsl_error(ctx, &call->node.loc, VKD3D_SHADER_ERROR_HLSL_NOT_DEFINED,
"Function \"%s\" is not defined.", decl->func->name);
if (!hlsl_clone_block(ctx, &block, &decl->body))
return false;
list_move_before(&call->node.entry, &block.instrs);
list_remove(&call->node.entry);
hlsl_free_instr(&call->node);
return true;
}
static struct hlsl_ir_node *add_zero_mipmap_level(struct hlsl_ctx *ctx, struct hlsl_ir_node *index,
const struct vkd3d_shader_location *loc)
{
unsigned int dim_count = index->data_type->dimx;
struct hlsl_ir_node *store, *zero;
struct hlsl_ir_load *coords_load;
struct hlsl_deref coords_deref;
struct hlsl_ir_var *coords;
assert(dim_count < 4);
if (!(coords = hlsl_new_synthetic_var(ctx, "coords",
hlsl_get_vector_type(ctx, HLSL_TYPE_UINT, dim_count + 1), loc)))
return NULL;
hlsl_init_simple_deref_from_var(&coords_deref, coords);
if (!(store = hlsl_new_store_index(ctx, &coords_deref, NULL, index, (1u << dim_count) - 1, loc)))
return NULL;
list_add_after(&index->entry, &store->entry);
if (!(zero = hlsl_new_uint_constant(ctx, 0, loc)))
return NULL;
list_add_after(&store->entry, &zero->entry);
if (!(store = hlsl_new_store_index(ctx, &coords_deref, NULL, zero, 1u << dim_count, loc)))
return NULL;
list_add_after(&zero->entry, &store->entry);
if (!(coords_load = hlsl_new_var_load(ctx, coords, loc)))
return NULL;
list_add_after(&store->entry, &coords_load->node.entry);
return &coords_load->node;
}
/* hlsl_ir_index nodes are a parse-time construct used to represent array indexing and struct
* record access before knowing if they will be used in the lhs of an assignment --in which case
* they are lowered into a deref-- or as the load of an element within a larger value.
* For the latter case, this pass takes care of lowering hlsl_ir_indexes into individual
* hlsl_ir_loads, or individual hlsl_ir_resource_loads, in case the indexing is a
* resource access. */
static bool lower_index_loads(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *val, *store;
struct hlsl_deref var_deref;
struct hlsl_ir_index *index;
struct hlsl_ir_load *load;
struct hlsl_ir_var *var;
if (instr->type != HLSL_IR_INDEX)
return false;
index = hlsl_ir_index(instr);
val = index->val.node;
if (hlsl_index_is_resource_access(index))
{
unsigned int dim_count = hlsl_sampler_dim_count(val->data_type->sampler_dim);
struct hlsl_ir_node *coords = index->idx.node;
struct hlsl_resource_load_params params = {0};
struct hlsl_ir_node *load;
assert(coords->data_type->class == HLSL_CLASS_VECTOR);
assert(coords->data_type->base_type == HLSL_TYPE_UINT);
assert(coords->data_type->dimx == dim_count);
if (!(coords = add_zero_mipmap_level(ctx, coords, &instr->loc)))
return false;
params.type = HLSL_RESOURCE_LOAD;
params.resource = val;
params.coords = coords;
params.format = val->data_type->e.resource_format;
if (!(load = hlsl_new_resource_load(ctx, &params, &instr->loc)))
return false;
list_add_before(&instr->entry, &load->entry);
hlsl_replace_node(instr, load);
return true;
}
if (!(var = hlsl_new_synthetic_var(ctx, "index-val", val->data_type, &instr->loc)))
return false;
hlsl_init_simple_deref_from_var(&var_deref, var);
if (!(store = hlsl_new_simple_store(ctx, var, val)))
return false;
list_add_before(&instr->entry, &store->entry);
if (hlsl_index_is_noncontiguous(index))
{
struct hlsl_ir_node *mat = index->val.node;
struct hlsl_deref row_deref;
unsigned int i;
assert(!hlsl_type_is_row_major(mat->data_type));
if (!(var = hlsl_new_synthetic_var(ctx, "row", instr->data_type, &instr->loc)))
return false;
hlsl_init_simple_deref_from_var(&row_deref, var);
for (i = 0; i < mat->data_type->dimx; ++i)
{
struct hlsl_ir_node *c;
if (!(c = hlsl_new_uint_constant(ctx, i, &instr->loc)))
return false;
list_add_before(&instr->entry, &c->entry);
if (!(load = hlsl_new_load_index(ctx, &var_deref, c, &instr->loc)))
return false;
list_add_before(&instr->entry, &load->node.entry);
if (!(load = hlsl_new_load_index(ctx, &load->src, index->idx.node, &instr->loc)))
return false;
list_add_before(&instr->entry, &load->node.entry);
if (!(store = hlsl_new_store_index(ctx, &row_deref, c, &load->node, 0, &instr->loc)))
return false;
list_add_before(&instr->entry, &store->entry);
}
if (!(load = hlsl_new_var_load(ctx, var, &instr->loc)))
return false;
list_add_before(&instr->entry, &load->node.entry);
hlsl_replace_node(instr, &load->node);
}
else
{
if (!(load = hlsl_new_load_index(ctx, &var_deref, index->idx.node, &instr->loc)))
return false;
list_add_before(&instr->entry, &load->node.entry);
hlsl_replace_node(instr, &load->node);
}
return true;
}
/* Lower casts from vec1 to vecN to swizzles. */
static bool lower_broadcasts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_type *src_type, *dst_type;
struct hlsl_type *dst_scalar_type;
struct hlsl_ir_expr *cast;
if (instr->type != HLSL_IR_EXPR)
return false;
cast = hlsl_ir_expr(instr);
if (cast->op != HLSL_OP1_CAST)
return false;
src_type = cast->operands[0].node->data_type;
dst_type = cast->node.data_type;
if (src_type->class <= HLSL_CLASS_VECTOR && dst_type->class <= HLSL_CLASS_VECTOR && src_type->dimx == 1)
{
struct hlsl_ir_node *replacement, *new_cast, *swizzle;
dst_scalar_type = hlsl_get_scalar_type(ctx, dst_type->base_type);
/* We need to preserve the cast since it might be doing more than just
* turning the scalar into a vector. */
if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_scalar_type, &cast->node.loc)))
return false;
list_add_after(&cast->node.entry, &new_cast->entry);
replacement = new_cast;
if (dst_type->dimx != 1)
{
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), dst_type->dimx, replacement, &cast->node.loc)))
return false;
list_add_after(&new_cast->entry, &swizzle->entry);
replacement = swizzle;
}
hlsl_replace_node(&cast->node, replacement);
return true;
}
return false;
}
/*
* Copy propagation. The basic idea is to recognize instruction sequences of the
* form:
*
* 2: <any instruction>
* 3: v = @2
* 4: load(v)
*
* and replace the load (@4) with the original instruction (@2).
* This works for multiple components, even if they're written using separate
* store instructions, as long as the rhs is the same in every case. This basic
* detection is implemented by copy_propagation_replace_with_single_instr().
*
* In some cases, the load itself might not have a single source, but a
* subsequent swizzle might; hence we also try to replace swizzles of loads.
*
* We use the same infrastructure to implement a more specialized
* transformation. We recognize sequences of the form:
*
* 2: 123
* 3: var.x = @2
* 4: 345
* 5: var.y = @4
* 6: load(var.xy)
*
* where the load (@6) originates from different sources but that are constant,
* and transform it into a single constant vector. This latter pass is done
* by copy_propagation_replace_with_constant_vector().
*
* This is a specialized form of vectorization, and begs the question: why does
* the load need to be involved? Can we just vectorize the stores into a single
* instruction, and then use "normal" copy-prop to convert that into a single
* vector?
*
* In general, the answer is yes, but there is a special case which necessitates
* the use of this transformation: non-uniform control flow. Copy-prop can act
* across some control flow, and in cases like the following:
*
* 2: 123
* 3: var.x = @2
* 4: if (...)
* 5: 456
* 6: var.y = @5
* 7: load(var.xy)
*
* we can copy-prop the load (@7) into a constant vector {123, 456}, but we
* cannot easily vectorize the stores @3 and @6.
*/
enum copy_propagation_value_state
{
VALUE_STATE_NOT_WRITTEN = 0,
VALUE_STATE_STATICALLY_WRITTEN,
VALUE_STATE_DYNAMICALLY_WRITTEN,
};
struct copy_propagation_value
{
enum copy_propagation_value_state state;
struct hlsl_ir_node *node;
unsigned int component;
};
struct copy_propagation_var_def
{
struct rb_entry entry;
struct hlsl_ir_var *var;
struct copy_propagation_value values[];
};
struct copy_propagation_state
{
struct rb_tree var_defs;
struct copy_propagation_state *parent;
};
static int copy_propagation_var_def_compare(const void *key, const struct rb_entry *entry)
{
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
uintptr_t key_int = (uintptr_t)key, entry_int = (uintptr_t)var_def->var;
return (key_int > entry_int) - (key_int < entry_int);
}
static void copy_propagation_var_def_destroy(struct rb_entry *entry, void *context)
{
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
vkd3d_free(var_def);
}
static struct copy_propagation_value *copy_propagation_get_value(const struct copy_propagation_state *state,
const struct hlsl_ir_var *var, unsigned int component)
{
for (; state; state = state->parent)
{
struct rb_entry *entry = rb_get(&state->var_defs, var);
if (entry)
{
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
unsigned int component_count = hlsl_type_component_count(var->data_type);
enum copy_propagation_value_state state;
assert(component < component_count);
state = var_def->values[component].state;
switch (state)
{
case VALUE_STATE_STATICALLY_WRITTEN:
return &var_def->values[component];
case VALUE_STATE_DYNAMICALLY_WRITTEN:
return NULL;
case VALUE_STATE_NOT_WRITTEN:
break;
}
}
}
return NULL;
}
static struct copy_propagation_var_def *copy_propagation_create_var_def(struct hlsl_ctx *ctx,
struct copy_propagation_state *state, struct hlsl_ir_var *var)
{
struct rb_entry *entry = rb_get(&state->var_defs, var);
struct copy_propagation_var_def *var_def;
unsigned int component_count = hlsl_type_component_count(var->data_type);
int res;
if (entry)
return RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
if (!(var_def = hlsl_alloc(ctx, offsetof(struct copy_propagation_var_def, values[component_count]))))
return NULL;
var_def->var = var;
res = rb_put(&state->var_defs, var, &var_def->entry);
assert(!res);
return var_def;
}
static void copy_propagation_invalidate_variable(struct copy_propagation_var_def *var_def,
unsigned int comp, unsigned char writemask)
{
unsigned i;
TRACE("Invalidate variable %s[%u]%s.\n", var_def->var->name, comp, debug_hlsl_writemask(writemask));
for (i = 0; i < 4; ++i)
{
if (writemask & (1u << i))
var_def->values[comp + i].state = VALUE_STATE_DYNAMICALLY_WRITTEN;
}
}
static void copy_propagation_invalidate_variable_from_deref_recurse(struct hlsl_ctx *ctx,
struct copy_propagation_var_def *var_def, const struct hlsl_deref *deref,
struct hlsl_type *type, unsigned int depth, unsigned int comp_start, unsigned char writemask)
{
unsigned int i, subtype_comp_count;
struct hlsl_ir_node *path_node;
struct hlsl_type *subtype;
if (depth == deref->path_len)
{
copy_propagation_invalidate_variable(var_def, comp_start, writemask);
return;
}
path_node = deref->path[depth].node;
subtype = hlsl_get_element_type_from_path_index(ctx, type, path_node);
if (type->class == HLSL_CLASS_STRUCT)
{
unsigned int idx = hlsl_ir_constant(path_node)->value.u[0].u;
for (i = 0; i < idx; ++i)
comp_start += hlsl_type_component_count(type->e.record.fields[i].type);
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype,
depth + 1, comp_start, writemask);
}
else
{
subtype_comp_count = hlsl_type_component_count(subtype);
if (path_node->type == HLSL_IR_CONSTANT)
{
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype,
depth + 1, hlsl_ir_constant(path_node)->value.u[0].u * subtype_comp_count, writemask);
}
else
{
for (i = 0; i < hlsl_type_element_count(type); ++i)
{
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype,
depth + 1, i * subtype_comp_count, writemask);
}
}
}
}
static void copy_propagation_invalidate_variable_from_deref(struct hlsl_ctx *ctx,
struct copy_propagation_var_def *var_def, const struct hlsl_deref *deref, unsigned char writemask)
{
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, deref->var->data_type,
0, 0, writemask);
}
static void copy_propagation_set_value(struct copy_propagation_var_def *var_def, unsigned int comp,
unsigned char writemask, struct hlsl_ir_node *instr)
{
unsigned int i, j = 0;
for (i = 0; i < 4; ++i)
{
if (writemask & (1u << i))
{
TRACE("Variable %s[%u] is written by instruction %p%s.\n",
var_def->var->name, comp + i, instr, debug_hlsl_writemask(1u << i));
var_def->values[comp + i].state = VALUE_STATE_STATICALLY_WRITTEN;
var_def->values[comp + i].node = instr;
var_def->values[comp + i].component = j++;
}
}
}
static bool copy_propagation_replace_with_single_instr(struct hlsl_ctx *ctx,
const struct copy_propagation_state *state, const struct hlsl_deref *deref,
unsigned int swizzle, struct hlsl_ir_node *instr)
{
const unsigned int instr_component_count = hlsl_type_component_count(instr->data_type);
const struct hlsl_ir_var *var = deref->var;
struct hlsl_ir_node *new_instr = NULL;
unsigned int start, count, i;
unsigned int ret_swizzle = 0;
if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count))
return false;
for (i = 0; i < instr_component_count; ++i)
{
struct copy_propagation_value *value;
if (!(value = copy_propagation_get_value(state, var, start + hlsl_swizzle_get_component(swizzle, i))))
return false;
if (!new_instr)
{
new_instr = value->node;
}
else if (new_instr != value->node)
{
TRACE("No single source for propagating load from %s[%u-%u]%s\n",
var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count));
return false;
}
ret_swizzle |= value->component << HLSL_SWIZZLE_SHIFT(i);
}
TRACE("Load from %s[%u-%u]%s propagated as instruction %p%s.\n",
var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count),
new_instr, debug_hlsl_swizzle(ret_swizzle, instr_component_count));
if (instr->data_type->class != HLSL_CLASS_OBJECT)
{
struct hlsl_ir_node *swizzle_node;
if (!(swizzle_node = hlsl_new_swizzle(ctx, ret_swizzle, instr_component_count, new_instr, &instr->loc)))
return false;
list_add_before(&instr->entry, &swizzle_node->entry);
new_instr = swizzle_node;
}
hlsl_replace_node(instr, new_instr);
return true;
}
static bool copy_propagation_replace_with_constant_vector(struct hlsl_ctx *ctx,
const struct copy_propagation_state *state, const struct hlsl_deref *deref,
unsigned int swizzle, struct hlsl_ir_node *instr)
{
const unsigned int instr_component_count = hlsl_type_component_count(instr->data_type);
const struct hlsl_ir_var *var = deref->var;
struct hlsl_constant_value values = {0};
unsigned int start, count, i;
struct hlsl_ir_node *cons;
if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count))
return false;
for (i = 0; i < instr_component_count; ++i)
{
struct copy_propagation_value *value;
if (!(value = copy_propagation_get_value(state, var, start + hlsl_swizzle_get_component(swizzle, i)))
|| value->node->type != HLSL_IR_CONSTANT)
return false;
values.u[i] = hlsl_ir_constant(value->node)->value.u[value->component];
}
if (!(cons = hlsl_new_constant(ctx, instr->data_type, &values, &instr->loc)))
return false;
list_add_before(&instr->entry, &cons->entry);
TRACE("Load from %s[%u-%u]%s turned into a constant %p.\n",
var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count), cons);
hlsl_replace_node(instr, cons);
return true;
}
static bool copy_propagation_transform_load(struct hlsl_ctx *ctx,
struct hlsl_ir_load *load, struct copy_propagation_state *state)
{
struct hlsl_type *type = load->node.data_type;
switch (type->class)
{
case HLSL_CLASS_SCALAR:
case HLSL_CLASS_VECTOR:
case HLSL_CLASS_OBJECT:
break;
case HLSL_CLASS_MATRIX:
case HLSL_CLASS_ARRAY:
case HLSL_CLASS_STRUCT:
/* FIXME: Actually we shouldn't even get here, but we don't split
* matrices yet. */
return false;
}
if (copy_propagation_replace_with_constant_vector(ctx, state, &load->src, HLSL_SWIZZLE(X, Y, Z, W), &load->node))
return true;
if (copy_propagation_replace_with_single_instr(ctx, state, &load->src, HLSL_SWIZZLE(X, Y, Z, W), &load->node))
return true;
return false;
}
static bool copy_propagation_transform_swizzle(struct hlsl_ctx *ctx,
struct hlsl_ir_swizzle *swizzle, struct copy_propagation_state *state)
{
struct hlsl_ir_load *load;
if (swizzle->val.node->type != HLSL_IR_LOAD)
return false;
load = hlsl_ir_load(swizzle->val.node);
if (copy_propagation_replace_with_constant_vector(ctx, state, &load->src, swizzle->swizzle, &swizzle->node))
return true;
if (copy_propagation_replace_with_single_instr(ctx, state, &load->src, swizzle->swizzle, &swizzle->node))
return true;
return false;
}
static bool copy_propagation_transform_object_load(struct hlsl_ctx *ctx,
struct hlsl_deref *deref, struct copy_propagation_state *state)
{
struct copy_propagation_value *value;
struct hlsl_ir_load *load;
unsigned int start, count;
if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count))
return false;
assert(count == 1);
if (!(value = copy_propagation_get_value(state, deref->var, start)))
return false;
assert(value->component == 0);
/* Only HLSL_IR_LOAD can produce an object. */
load = hlsl_ir_load(value->node);
/* As we are replacing the instruction's deref (with the one in the hlsl_ir_load) and not the
* instruction itself, we won't be able to rely on the value retrieved by
* copy_propagation_get_value() for the new deref in subsequent iterations of copy propagation.
* This is because another value may be written to that deref between the hlsl_ir_load and
* this instruction.
*
* For this reason, we only replace the new deref when it corresponds to a uniform variable,
* which cannot be written to.
*
* In a valid shader, all object references must resolve statically to a single uniform object.
* If this is the case, we can expect copy propagation on regular store/loads and the other
* compilation passes to replace all hlsl_ir_loads with loads to uniform objects, so this
* implementation is complete, even with this restriction.
*/
if (!load->src.var->is_uniform)
{
TRACE("Ignoring load from non-uniform object variable %s\n", load->src.var->name);
return false;
}
hlsl_cleanup_deref(deref);
hlsl_copy_deref(ctx, deref, &load->src);
return true;
}
static bool copy_propagation_transform_resource_load(struct hlsl_ctx *ctx,
struct hlsl_ir_resource_load *load, struct copy_propagation_state *state)
{
bool progress = false;
progress |= copy_propagation_transform_object_load(ctx, &load->resource, state);
if (load->sampler.var)
progress |= copy_propagation_transform_object_load(ctx, &load->sampler, state);
return progress;
}
static bool copy_propagation_transform_resource_store(struct hlsl_ctx *ctx,
struct hlsl_ir_resource_store *store, struct copy_propagation_state *state)
{
bool progress = false;
progress |= copy_propagation_transform_object_load(ctx, &store->resource, state);
return progress;
}
static void copy_propagation_record_store(struct hlsl_ctx *ctx, struct hlsl_ir_store *store,
struct copy_propagation_state *state)
{
struct copy_propagation_var_def *var_def;
struct hlsl_deref *lhs = &store->lhs;
struct hlsl_ir_var *var = lhs->var;
unsigned int start, count;
if (!(var_def = copy_propagation_create_var_def(ctx, state, var)))
return;
if (hlsl_component_index_range_from_deref(ctx, lhs, &start, &count))
{
unsigned int writemask = store->writemask;
if (store->rhs.node->data_type->class == HLSL_CLASS_OBJECT)
writemask = VKD3DSP_WRITEMASK_0;
copy_propagation_set_value(var_def, start, writemask, store->rhs.node);
}
else
{
copy_propagation_invalidate_variable_from_deref(ctx, var_def, lhs, store->writemask);
}
}
static void copy_propagation_state_init(struct hlsl_ctx *ctx, struct copy_propagation_state *state,
struct copy_propagation_state *parent)
{
rb_init(&state->var_defs, copy_propagation_var_def_compare);
state->parent = parent;
}
static void copy_propagation_state_destroy(struct copy_propagation_state *state)
{
rb_destroy(&state->var_defs, copy_propagation_var_def_destroy, NULL);
}
static void copy_propagation_invalidate_from_block(struct hlsl_ctx *ctx, struct copy_propagation_state *state,
struct hlsl_block *block)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
struct copy_propagation_var_def *var_def;
struct hlsl_deref *lhs = &store->lhs;
struct hlsl_ir_var *var = lhs->var;
if (!(var_def = copy_propagation_create_var_def(ctx, state, var)))
continue;
copy_propagation_invalidate_variable_from_deref(ctx, var_def, lhs, store->writemask);
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
copy_propagation_invalidate_from_block(ctx, state, &iff->then_block);
copy_propagation_invalidate_from_block(ctx, state, &iff->else_block);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
copy_propagation_invalidate_from_block(ctx, state, &loop->body);
break;
}
default:
break;
}
}
}
static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block,
struct copy_propagation_state *state);
static bool copy_propagation_process_if(struct hlsl_ctx *ctx, struct hlsl_ir_if *iff,
struct copy_propagation_state *state)
{
struct copy_propagation_state inner_state;
bool progress = false;
copy_propagation_state_init(ctx, &inner_state, state);
progress |= copy_propagation_transform_block(ctx, &iff->then_block, &inner_state);
copy_propagation_state_destroy(&inner_state);
copy_propagation_state_init(ctx, &inner_state, state);
progress |= copy_propagation_transform_block(ctx, &iff->else_block, &inner_state);
copy_propagation_state_destroy(&inner_state);
/* Ideally we'd invalidate the outer state looking at what was
* touched in the two inner states, but this doesn't work for
* loops (because we need to know what is invalidated in advance),
* so we need copy_propagation_invalidate_from_block() anyway. */
copy_propagation_invalidate_from_block(ctx, state, &iff->then_block);
copy_propagation_invalidate_from_block(ctx, state, &iff->else_block);
return progress;
}
static bool copy_propagation_process_loop(struct hlsl_ctx *ctx, struct hlsl_ir_loop *loop,
struct copy_propagation_state *state)
{
struct copy_propagation_state inner_state;
bool progress = false;
copy_propagation_invalidate_from_block(ctx, state, &loop->body);
copy_propagation_state_init(ctx, &inner_state, state);
progress |= copy_propagation_transform_block(ctx, &loop->body, &inner_state);
copy_propagation_state_destroy(&inner_state);
return progress;
}
static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block,
struct copy_propagation_state *state)
{
struct hlsl_ir_node *instr, *next;
bool progress = false;
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_LOAD:
progress |= copy_propagation_transform_load(ctx, hlsl_ir_load(instr), state);
break;
case HLSL_IR_RESOURCE_LOAD:
progress |= copy_propagation_transform_resource_load(ctx, hlsl_ir_resource_load(instr), state);
break;
case HLSL_IR_RESOURCE_STORE:
progress |= copy_propagation_transform_resource_store(ctx, hlsl_ir_resource_store(instr), state);
break;
case HLSL_IR_STORE:
copy_propagation_record_store(ctx, hlsl_ir_store(instr), state);
break;
case HLSL_IR_SWIZZLE:
progress |= copy_propagation_transform_swizzle(ctx, hlsl_ir_swizzle(instr), state);
break;
case HLSL_IR_IF:
progress |= copy_propagation_process_if(ctx, hlsl_ir_if(instr), state);
break;
case HLSL_IR_LOOP:
progress |= copy_propagation_process_loop(ctx, hlsl_ir_loop(instr), state);
break;
default:
break;
}
}
return progress;
}
bool hlsl_copy_propagation_execute(struct hlsl_ctx *ctx, struct hlsl_block *block)
{
struct copy_propagation_state state;
bool progress;
copy_propagation_state_init(ctx, &state, NULL);
progress = copy_propagation_transform_block(ctx, block, &state);
copy_propagation_state_destroy(&state);
return progress;
}
static void note_non_static_deref_expressions(struct hlsl_ctx *ctx, const struct hlsl_deref *deref,
const char *usage)
{
unsigned int i;
for (i = 0; i < deref->path_len; ++i)
{
struct hlsl_ir_node *path_node = deref->path[i].node;
assert(path_node);
if (path_node->type != HLSL_IR_CONSTANT)
hlsl_note(ctx, &path_node->loc, VKD3D_SHADER_LOG_ERROR,
"Expression for %s within \"%s\" cannot be resolved statically.",
usage, deref->var->name);
}
}
static bool validate_static_object_references(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr,
void *context)
{
unsigned int start, count;
if (instr->type == HLSL_IR_RESOURCE_LOAD)
{
struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr);
if (!(load->resource.var->storage_modifiers & HLSL_STORAGE_UNIFORM))
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
"Loaded resource must have a single uniform source.");
}
else if (!hlsl_component_index_range_from_deref(ctx, &load->resource, &start, &count))
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
"Loaded resource from \"%s\" must be determinable at compile time.",
load->resource.var->name);
note_non_static_deref_expressions(ctx, &load->resource, "loaded resource");
}
if (load->sampler.var)
{
if (!(load->sampler.var->storage_modifiers & HLSL_STORAGE_UNIFORM))
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
"Resource load sampler must have a single uniform source.");
}
else if (!hlsl_component_index_range_from_deref(ctx, &load->sampler, &start, &count))
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
"Resource load sampler from \"%s\" must be determinable at compile time.",
load->sampler.var->name);
note_non_static_deref_expressions(ctx, &load->sampler, "resource load sampler");
}
}
}
else if (instr->type == HLSL_IR_RESOURCE_STORE)
{
struct hlsl_ir_resource_store *store = hlsl_ir_resource_store(instr);
if (!(store->resource.var->storage_modifiers & HLSL_STORAGE_UNIFORM))
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
"Accessed resource must have a single uniform source.");
}
else if (!hlsl_component_index_range_from_deref(ctx, &store->resource, &start, &count))
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
"Accessed resource from \"%s\" must be determinable at compile time.",
store->resource.var->name);
note_non_static_deref_expressions(ctx, &store->resource, "accessed resource");
}
}
return false;
}
static bool is_vec1(const struct hlsl_type *type)
{
return (type->class == HLSL_CLASS_SCALAR) || (type->class == HLSL_CLASS_VECTOR && type->dimx == 1);
}
static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
if (instr->type == HLSL_IR_EXPR)
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
const struct hlsl_type *dst_type = expr->node.data_type;
const struct hlsl_type *src_type;
if (expr->op != HLSL_OP1_CAST)
return false;
src_type = expr->operands[0].node->data_type;
if (hlsl_types_are_equal(src_type, dst_type)
|| (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type)))
{
hlsl_replace_node(&expr->node, expr->operands[0].node);
return true;
}
}
return false;
}
/* Copy an element of a complex variable. Helper for
* split_array_copies(), split_struct_copies() and
* split_matrix_copies(). Inserts new instructions right before
* "store". */
static bool split_copy(struct hlsl_ctx *ctx, struct hlsl_ir_store *store,
const struct hlsl_ir_load *load, const unsigned int idx, struct hlsl_type *type)
{
struct hlsl_ir_node *split_store, *c;
struct hlsl_ir_load *split_load;
if (!(c = hlsl_new_uint_constant(ctx, idx, &store->node.loc)))
return false;
list_add_before(&store->node.entry, &c->entry);
if (!(split_load = hlsl_new_load_index(ctx, &load->src, c, &store->node.loc)))
return false;
list_add_before(&store->node.entry, &split_load->node.entry);
if (!(split_store = hlsl_new_store_index(ctx, &store->lhs, c, &split_load->node, 0, &store->node.loc)))
return false;
list_add_before(&store->node.entry, &split_store->entry);
return true;
}
static bool split_array_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_ir_node *rhs;
struct hlsl_type *element_type;
const struct hlsl_type *type;
struct hlsl_ir_store *store;
unsigned int i;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->class != HLSL_CLASS_ARRAY)
return false;
element_type = type->e.array.type;
if (rhs->type != HLSL_IR_LOAD)
{
hlsl_fixme(ctx, &instr->loc, "Array store rhs is not HLSL_IR_LOAD. Broadcast may be missing.");
return false;
}
for (i = 0; i < type->e.array.elements_count; ++i)
{
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, element_type))
return false;
}
/* Remove the store instruction, so that we can split structs which contain
* other structs. Although assignments produce a value, we don't allow
* HLSL_IR_STORE to be used as a source. */
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_ir_node *rhs;
const struct hlsl_type *type;
struct hlsl_ir_store *store;
size_t i;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->class != HLSL_CLASS_STRUCT)
return false;
if (rhs->type != HLSL_IR_LOAD)
{
hlsl_fixme(ctx, &instr->loc, "Struct store rhs is not HLSL_IR_LOAD. Broadcast may be missing.");
return false;
}
for (i = 0; i < type->e.record.field_count; ++i)
{
const struct hlsl_struct_field *field = &type->e.record.fields[i];
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, field->type))
return false;
}
/* Remove the store instruction, so that we can split structs which contain
* other structs. Although assignments produce a value, we don't allow
* HLSL_IR_STORE to be used as a source. */
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static bool split_matrix_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_ir_node *rhs;
struct hlsl_type *element_type;
const struct hlsl_type *type;
unsigned int i;
struct hlsl_ir_store *store;
if (instr->type != HLSL_IR_STORE)
return false;
store = hlsl_ir_store(instr);
rhs = store->rhs.node;
type = rhs->data_type;
if (type->class != HLSL_CLASS_MATRIX)
return false;
element_type = hlsl_get_vector_type(ctx, type->base_type, hlsl_type_minor_size(type));
if (rhs->type != HLSL_IR_LOAD)
{
hlsl_fixme(ctx, &instr->loc, "Copying from unsupported node type.\n");
return false;
}
for (i = 0; i < hlsl_type_major_size(type); ++i)
{
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, element_type))
return false;
}
list_remove(&store->node.entry);
hlsl_free_instr(&store->node);
return true;
}
static bool lower_narrowing_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
const struct hlsl_type *src_type, *dst_type;
struct hlsl_type *dst_vector_type;
struct hlsl_ir_expr *cast;
if (instr->type != HLSL_IR_EXPR)
return false;
cast = hlsl_ir_expr(instr);
if (cast->op != HLSL_OP1_CAST)
return false;
src_type = cast->operands[0].node->data_type;
dst_type = cast->node.data_type;
if (src_type->class <= HLSL_CLASS_VECTOR && dst_type->class <= HLSL_CLASS_VECTOR && dst_type->dimx < src_type->dimx)
{
struct hlsl_ir_node *new_cast, *swizzle;
dst_vector_type = hlsl_get_vector_type(ctx, dst_type->base_type, src_type->dimx);
/* We need to preserve the cast since it might be doing more than just
* narrowing the vector. */
if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_vector_type, &cast->node.loc)))
return false;
list_add_after(&cast->node.entry, &new_cast->entry);
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, Y, Z, W), dst_type->dimx, new_cast, &cast->node.loc)))
return false;
list_add_after(&new_cast->entry, &swizzle->entry);
hlsl_replace_node(&cast->node, swizzle);
return true;
}
return false;
}
static bool fold_swizzle_chains(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_swizzle *swizzle;
struct hlsl_ir_node *next_instr;
if (instr->type != HLSL_IR_SWIZZLE)
return false;
swizzle = hlsl_ir_swizzle(instr);
next_instr = swizzle->val.node;
if (next_instr->type == HLSL_IR_SWIZZLE)
{
struct hlsl_ir_node *new_swizzle;
unsigned int combined_swizzle;
combined_swizzle = hlsl_combine_swizzles(hlsl_ir_swizzle(next_instr)->swizzle,
swizzle->swizzle, instr->data_type->dimx);
next_instr = hlsl_ir_swizzle(next_instr)->val.node;
if (!(new_swizzle = hlsl_new_swizzle(ctx, combined_swizzle, instr->data_type->dimx, next_instr, &instr->loc)))
return false;
list_add_before(&instr->entry, &new_swizzle->entry);
hlsl_replace_node(instr, new_swizzle);
return true;
}
return false;
}
static bool remove_trivial_swizzles(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_swizzle *swizzle;
unsigned int i;
if (instr->type != HLSL_IR_SWIZZLE)
return false;
swizzle = hlsl_ir_swizzle(instr);
if (instr->data_type->dimx != swizzle->val.node->data_type->dimx)
return false;
for (i = 0; i < instr->data_type->dimx; ++i)
if (hlsl_swizzle_get_component(swizzle->swizzle, i) != i)
return false;
hlsl_replace_node(instr, swizzle->val.node);
return true;
}
static bool lower_nonconstant_vector_derefs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *idx;
struct hlsl_deref *deref;
struct hlsl_type *type;
unsigned int i;
if (instr->type != HLSL_IR_LOAD)
return false;
deref = &hlsl_ir_load(instr)->src;
assert(deref->var);
if (deref->path_len == 0)
return false;
type = deref->var->data_type;
for (i = 0; i < deref->path_len - 1; ++i)
type = hlsl_get_element_type_from_path_index(ctx, type, deref->path[i].node);
idx = deref->path[deref->path_len - 1].node;
if (type->class == HLSL_CLASS_VECTOR && idx->type != HLSL_IR_CONSTANT)
{
struct hlsl_ir_node *eq, *swizzle, *dot, *c, *operands[HLSL_MAX_OPERANDS] = {0};
struct hlsl_constant_value value;
struct hlsl_ir_load *vector_load;
enum hlsl_ir_expr_op op;
if (!(vector_load = hlsl_new_load_parent(ctx, deref, &instr->loc)))
return false;
list_add_before(&instr->entry, &vector_load->node.entry);
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), type->dimx, idx, &instr->loc)))
return false;
list_add_before(&instr->entry, &swizzle->entry);
value.u[0].u = 0;
value.u[1].u = 1;
value.u[2].u = 2;
value.u[3].u = 3;
if (!(c = hlsl_new_constant(ctx, hlsl_get_vector_type(ctx, HLSL_TYPE_UINT, type->dimx), &value, &instr->loc)))
return false;
list_add_before(&instr->entry, &c->entry);
operands[0] = swizzle;
operands[1] = c;
if (!(eq = hlsl_new_expr(ctx, HLSL_OP2_EQUAL, operands,
hlsl_get_vector_type(ctx, HLSL_TYPE_BOOL, type->dimx), &instr->loc)))
return false;
list_add_before(&instr->entry, &eq->entry);
if (!(eq = hlsl_new_cast(ctx, eq, type, &instr->loc)))
return false;
list_add_before(&instr->entry, &eq->entry);
op = HLSL_OP2_DOT;
if (type->dimx == 1)
op = type->base_type == HLSL_TYPE_BOOL ? HLSL_OP2_LOGIC_AND : HLSL_OP2_MUL;
/* Note: We may be creating a DOT for bool vectors here, which we need to lower to
* LOGIC_OR + LOGIC_AND. */
operands[0] = &vector_load->node;
operands[1] = eq;
if (!(dot = hlsl_new_expr(ctx, op, operands, instr->data_type, &instr->loc)))
return false;
list_add_before(&instr->entry, &dot->entry);
hlsl_replace_node(instr, dot);
return true;
}
return false;
}
/* Lower DIV to RCP + MUL. */
static bool lower_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_expr *expr;
struct hlsl_ir_node *rcp;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP2_DIV)
return false;
if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_OP1_RCP, expr->operands[1].node, &instr->loc)))
return false;
list_add_before(&expr->node.entry, &rcp->entry);
expr->op = HLSL_OP2_MUL;
hlsl_src_remove(&expr->operands[1]);
hlsl_src_from_node(&expr->operands[1], rcp);
return true;
}
/* Lower SQRT to RSQ + RCP. */
static bool lower_sqrt(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_expr *expr;
struct hlsl_ir_node *rsq;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP1_SQRT)
return false;
if (!(rsq = hlsl_new_unary_expr(ctx, HLSL_OP1_RSQ, expr->operands[0].node, &instr->loc)))
return false;
list_add_before(&expr->node.entry, &rsq->entry);
expr->op = HLSL_OP1_RCP;
hlsl_src_remove(&expr->operands[0]);
hlsl_src_from_node(&expr->operands[0], rsq);
return true;
}
/* Lower DP2 to MUL + ADD */
static bool lower_dot(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg1, *arg2, *mul, *replacement, *zero, *add_x, *add_y;
struct hlsl_ir_expr *expr;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
arg1 = expr->operands[0].node;
arg2 = expr->operands[1].node;
if (expr->op != HLSL_OP2_DOT)
return false;
if (arg1->data_type->dimx != 2)
return false;
if (ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
{
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = { 0 };
if (!(zero = hlsl_new_float_constant(ctx, 0.0f, &expr->node.loc)))
return false;
list_add_before(&instr->entry, &zero->entry);
operands[0] = arg1;
operands[1] = arg2;
operands[2] = zero;
if (!(replacement = hlsl_new_expr(ctx, HLSL_OP3_DP2ADD, operands, instr->data_type, &expr->node.loc)))
return false;
}
else
{
if (!(mul = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, expr->operands[0].node, expr->operands[1].node)))
return false;
list_add_before(&instr->entry, &mul->entry);
if (!(add_x = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), instr->data_type->dimx, mul, &expr->node.loc)))
return false;
list_add_before(&instr->entry, &add_x->entry);
if (!(add_y = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(Y, Y, Y, Y), instr->data_type->dimx, mul, &expr->node.loc)))
return false;
list_add_before(&instr->entry, &add_y->entry);
if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, add_x, add_y)))
return false;
}
list_add_before(&instr->entry, &replacement->entry);
hlsl_replace_node(instr, replacement);
return true;
}
/* Lower ABS to MAX */
static bool lower_abs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg, *neg, *replacement;
struct hlsl_ir_expr *expr;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
arg = expr->operands[0].node;
if (expr->op != HLSL_OP1_ABS)
return false;
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg->entry);
if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_MAX, neg, arg)))
return false;
list_add_before(&instr->entry, &replacement->entry);
hlsl_replace_node(instr, replacement);
return true;
}
/* Lower ROUND using FRC, ROUND(x) -> ((x + 0.5) - FRC(x + 0.5)). */
static bool lower_round(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg, *neg, *sum, *frc, *half, *replacement;
struct hlsl_type *type = instr->data_type;
struct hlsl_constant_value half_value;
unsigned int i, component_count;
struct hlsl_ir_expr *expr;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
arg = expr->operands[0].node;
if (expr->op != HLSL_OP1_ROUND)
return false;
component_count = hlsl_type_component_count(type);
for (i = 0; i < component_count; ++i)
half_value.u[i].f = 0.5f;
if (!(half = hlsl_new_constant(ctx, type, &half_value, &expr->node.loc)))
return false;
list_add_before(&instr->entry, &half->entry);
if (!(sum = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, arg, half)))
return false;
list_add_before(&instr->entry, &sum->entry);
if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, sum, &instr->loc)))
return false;
list_add_before(&instr->entry, &frc->entry);
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, frc, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg->entry);
if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, sum, neg)))
return false;
list_add_before(&instr->entry, &replacement->entry);
hlsl_replace_node(instr, replacement);
return true;
}
static bool lower_casts_to_bool(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_type *type = instr->data_type, *arg_type;
static const struct hlsl_constant_value zero_value;
struct hlsl_ir_node *zero;
struct hlsl_ir_expr *expr;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP1_CAST)
return false;
arg_type = expr->operands[0].node->data_type;
if (type->class > HLSL_CLASS_VECTOR || arg_type->class > HLSL_CLASS_VECTOR)
return false;
if (type->base_type != HLSL_TYPE_BOOL)
return false;
/* Narrowing casts should have already been lowered. */
assert(type->dimx == arg_type->dimx);
zero = hlsl_new_constant(ctx, arg_type, &zero_value, &instr->loc);
if (!zero)
return false;
list_add_before(&instr->entry, &zero->entry);
expr->op = HLSL_OP2_NEQUAL;
hlsl_src_from_node(&expr->operands[1], zero);
return true;
}
struct hlsl_ir_node *hlsl_add_conditional(struct hlsl_ctx *ctx, struct list *instrs,
struct hlsl_ir_node *condition, struct hlsl_ir_node *if_true, struct hlsl_ir_node *if_false)
{
struct hlsl_block then_block, else_block;
struct hlsl_ir_node *iff, *store;
struct hlsl_ir_load *load;
struct hlsl_ir_var *var;
assert(hlsl_types_are_equal(if_true->data_type, if_false->data_type));
if (!(var = hlsl_new_synthetic_var(ctx, "conditional", if_true->data_type, &condition->loc)))
return NULL;
hlsl_block_init(&then_block);
hlsl_block_init(&else_block);
if (!(store = hlsl_new_simple_store(ctx, var, if_true)))
return NULL;
hlsl_block_add_instr(&then_block, store);
if (!(store = hlsl_new_simple_store(ctx, var, if_false)))
return NULL;
hlsl_block_add_instr(&else_block, store);
if (!(iff = hlsl_new_if(ctx, condition, &then_block, &else_block, &condition->loc)))
return NULL;
list_add_tail(instrs, &iff->entry);
if (!(load = hlsl_new_var_load(ctx, var, &condition->loc)))
return NULL;
list_add_tail(instrs, &load->node.entry);
return &load->node;
}
static bool lower_int_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg1, *arg2, *xor, *and, *abs1, *abs2, *div, *neg, *cast1, *cast2, *cast3, *cond, *high_bit;
struct hlsl_type *type = instr->data_type, *utype;
struct hlsl_constant_value high_bit_value;
struct hlsl_ir_expr *expr;
unsigned int i;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
arg1 = expr->operands[0].node;
arg2 = expr->operands[1].node;
if (expr->op != HLSL_OP2_DIV)
return false;
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
return false;
if (type->base_type != HLSL_TYPE_INT)
return false;
utype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_UINT, type->dimx, type->dimy);
if (!(xor = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_XOR, arg1, arg2)))
return false;
list_add_before(&instr->entry, &xor->entry);
for (i = 0; i < type->dimx; ++i)
high_bit_value.u[i].u = 0x80000000;
if (!(high_bit = hlsl_new_constant(ctx, type, &high_bit_value, &instr->loc)))
return false;
list_add_before(&instr->entry, &high_bit->entry);
if (!(and = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_AND, xor, high_bit)))
return false;
list_add_before(&instr->entry, &and->entry);
if (!(abs1 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg1, &instr->loc)))
return false;
list_add_before(&instr->entry, &abs1->entry);
if (!(cast1 = hlsl_new_cast(ctx, abs1, utype, &instr->loc)))
return false;
list_add_before(&instr->entry, &cast1->entry);
if (!(abs2 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg2, &instr->loc)))
return false;
list_add_before(&instr->entry, &abs2->entry);
if (!(cast2 = hlsl_new_cast(ctx, abs2, utype, &instr->loc)))
return false;
list_add_before(&instr->entry, &cast2->entry);
if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_DIV, cast1, cast2)))
return false;
list_add_before(&instr->entry, &div->entry);
if (!(cast3 = hlsl_new_cast(ctx, div, type, &instr->loc)))
return false;
list_add_before(&instr->entry, &cast3->entry);
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, cast3, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg->entry);
if (!(cond = hlsl_add_conditional(ctx, &instr->entry, and, neg, cast3)))
return false;
hlsl_replace_node(instr, cond);
return true;
}
static bool lower_int_modulus(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg1, *arg2, *and, *abs1, *abs2, *div, *neg, *cast1, *cast2, *cast3, *cond, *high_bit;
struct hlsl_type *type = instr->data_type, *utype;
struct hlsl_constant_value high_bit_value;
struct hlsl_ir_expr *expr;
unsigned int i;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
arg1 = expr->operands[0].node;
arg2 = expr->operands[1].node;
if (expr->op != HLSL_OP2_MOD)
return false;
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
return false;
if (type->base_type != HLSL_TYPE_INT)
return false;
utype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_UINT, type->dimx, type->dimy);
for (i = 0; i < type->dimx; ++i)
high_bit_value.u[i].u = 0x80000000;
if (!(high_bit = hlsl_new_constant(ctx, type, &high_bit_value, &instr->loc)))
return false;
list_add_before(&instr->entry, &high_bit->entry);
if (!(and = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_AND, arg1, high_bit)))
return false;
list_add_before(&instr->entry, &and->entry);
if (!(abs1 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg1, &instr->loc)))
return false;
list_add_before(&instr->entry, &abs1->entry);
if (!(cast1 = hlsl_new_cast(ctx, abs1, utype, &instr->loc)))
return false;
list_add_before(&instr->entry, &cast1->entry);
if (!(abs2 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg2, &instr->loc)))
return false;
list_add_before(&instr->entry, &abs2->entry);
if (!(cast2 = hlsl_new_cast(ctx, abs2, utype, &instr->loc)))
return false;
list_add_before(&instr->entry, &cast2->entry);
if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_MOD, cast1, cast2)))
return false;
list_add_before(&instr->entry, &div->entry);
if (!(cast3 = hlsl_new_cast(ctx, div, type, &instr->loc)))
return false;
list_add_before(&instr->entry, &cast3->entry);
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, cast3, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg->entry);
if (!(cond = hlsl_add_conditional(ctx, &instr->entry, and, neg, cast3)))
return false;
hlsl_replace_node(instr, cond);
return true;
}
static bool lower_int_abs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_type *type = instr->data_type;
struct hlsl_ir_node *arg, *neg;
struct hlsl_ir_expr *expr;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP1_ABS)
return false;
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
return false;
if (type->base_type != HLSL_TYPE_INT)
return false;
arg = expr->operands[0].node;
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg->entry);
expr->op = HLSL_OP2_MAX;
hlsl_src_from_node(&expr->operands[1], neg);
return true;
}
static bool lower_int_dot(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg1, *arg2, *mult, *comps[4] = {0}, *res;
struct hlsl_type *type = instr->data_type;
struct hlsl_ir_expr *expr;
unsigned int i, dimx;
bool is_bool;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
if (expr->op != HLSL_OP2_DOT)
return false;
if (type->base_type == HLSL_TYPE_INT || type->base_type == HLSL_TYPE_UINT
|| type->base_type == HLSL_TYPE_BOOL)
{
arg1 = expr->operands[0].node;
arg2 = expr->operands[1].node;
assert(arg1->data_type->dimx == arg2->data_type->dimx);
dimx = arg1->data_type->dimx;
is_bool = type->base_type == HLSL_TYPE_BOOL;
if (!(mult = hlsl_new_binary_expr(ctx, is_bool ? HLSL_OP2_LOGIC_AND : HLSL_OP2_MUL, arg1, arg2)))
return false;
list_add_before(&instr->entry, &mult->entry);
for (i = 0; i < dimx; ++i)
{
unsigned int s = hlsl_swizzle_from_writemask(1 << i);
if (!(comps[i] = hlsl_new_swizzle(ctx, s, 1, mult, &instr->loc)))
return false;
list_add_before(&instr->entry, &comps[i]->entry);
}
res = comps[0];
for (i = 1; i < dimx; ++i)
{
if (!(res = hlsl_new_binary_expr(ctx, is_bool ? HLSL_OP2_LOGIC_OR : HLSL_OP2_ADD, res, comps[i])))
return false;
list_add_before(&instr->entry, &res->entry);
}
hlsl_replace_node(instr, res);
return true;
}
return false;
}
static bool lower_float_modulus(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_node *arg1, *arg2, *mul1, *neg1, *ge, *neg2, *div, *mul2, *frc, *cond, *one;
struct hlsl_type *type = instr->data_type, *btype;
struct hlsl_constant_value one_value;
struct hlsl_ir_expr *expr;
unsigned int i;
if (instr->type != HLSL_IR_EXPR)
return false;
expr = hlsl_ir_expr(instr);
arg1 = expr->operands[0].node;
arg2 = expr->operands[1].node;
if (expr->op != HLSL_OP2_MOD)
return false;
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
return false;
if (type->base_type != HLSL_TYPE_FLOAT)
return false;
btype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_BOOL, type->dimx, type->dimy);
if (!(mul1 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, arg2, arg1)))
return false;
list_add_before(&instr->entry, &mul1->entry);
if (!(neg1 = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, mul1, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg1->entry);
if (!(ge = hlsl_new_binary_expr(ctx, HLSL_OP2_GEQUAL, mul1, neg1)))
return false;
ge->data_type = btype;
list_add_before(&instr->entry, &ge->entry);
if (!(neg2 = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg2, &instr->loc)))
return false;
list_add_before(&instr->entry, &neg2->entry);
if (!(cond = hlsl_add_conditional(ctx, &instr->entry, ge, arg2, neg2)))
return false;
for (i = 0; i < type->dimx; ++i)
one_value.u[i].f = 1.0f;
if (!(one = hlsl_new_constant(ctx, type, &one_value, &instr->loc)))
return false;
list_add_before(&instr->entry, &one->entry);
if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_DIV, one, cond)))
return false;
list_add_before(&instr->entry, &div->entry);
if (!(mul2 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, div, arg1)))
return false;
list_add_before(&instr->entry, &mul2->entry);
if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, mul2, &instr->loc)))
return false;
list_add_before(&instr->entry, &frc->entry);
expr->op = HLSL_OP2_MUL;
hlsl_src_remove(&expr->operands[0]);
hlsl_src_remove(&expr->operands[1]);
hlsl_src_from_node(&expr->operands[0], frc);
hlsl_src_from_node(&expr->operands[1], cond);
return true;
}
static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
switch (instr->type)
{
case HLSL_IR_CONSTANT:
case HLSL_IR_EXPR:
case HLSL_IR_INDEX:
case HLSL_IR_LOAD:
case HLSL_IR_RESOURCE_LOAD:
case HLSL_IR_SWIZZLE:
if (list_empty(&instr->uses))
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
return true;
}
break;
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
struct hlsl_ir_var *var = store->lhs.var;
if (var->last_read < instr->index)
{
list_remove(&instr->entry);
hlsl_free_instr(instr);
return true;
}
break;
}
case HLSL_IR_CALL:
case HLSL_IR_IF:
case HLSL_IR_JUMP:
case HLSL_IR_LOOP:
case HLSL_IR_RESOURCE_STORE:
break;
}
return false;
}
/* Allocate a unique, ordered index to each instruction, which will be used for
* computing liveness ranges. */
static unsigned int index_instructions(struct hlsl_block *block, unsigned int index)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
instr->index = index++;
if (instr->type == HLSL_IR_IF)
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
index = index_instructions(&iff->then_block, index);
index = index_instructions(&iff->else_block, index);
}
else if (instr->type == HLSL_IR_LOOP)
{
index = index_instructions(&hlsl_ir_loop(instr)->body, index);
hlsl_ir_loop(instr)->next_index = index;
}
}
return index;
}
static void dump_function_decl(struct rb_entry *entry, void *context)
{
struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry);
struct hlsl_ctx *ctx = context;
if (func->has_body)
hlsl_dump_function(ctx, func);
}
static void dump_function(struct rb_entry *entry, void *context)
{
struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry);
struct hlsl_ctx *ctx = context;
rb_for_each_entry(&func->overloads, dump_function_decl, ctx);
}
static char get_regset_name(enum hlsl_regset regset)
{
switch (regset)
{
case HLSL_REGSET_SAMPLERS:
return 's';
case HLSL_REGSET_TEXTURES:
return 't';
case HLSL_REGSET_UAVS:
return 'u';
case HLSL_REGSET_NUMERIC:
vkd3d_unreachable();
}
vkd3d_unreachable();
}
static void allocate_register_reservations(struct hlsl_ctx *ctx)
{
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
enum hlsl_regset regset;
if (!hlsl_type_is_resource(var->data_type))
continue;
regset = hlsl_type_get_regset(var->data_type);
if (var->reg_reservation.reg_type)
{
if (var->reg_reservation.reg_type != get_regset_name(regset))
{
struct vkd3d_string_buffer *type_string;
type_string = hlsl_type_to_string(ctx, var->data_type);
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"Object of type '%s' must be bound to register type '%c'.",
type_string->buffer, get_regset_name(regset));
hlsl_release_string_buffer(ctx, type_string);
}
else
{
var->regs[regset].allocated = true;
var->regs[regset].id = var->reg_reservation.reg_index;
var->regs[regset].bind_count = var->data_type->reg_size[regset];
TRACE("Allocated reserved %s to %c%u-%c%u.\n", var->name, var->reg_reservation.reg_type,
var->reg_reservation.reg_index, var->reg_reservation.reg_type,
var->reg_reservation.reg_index + var->regs[regset].bind_count);
}
}
}
}
/* Compute the earliest and latest liveness for each variable. In the case that
* a variable is accessed inside of a loop, we promote its liveness to extend
* to at least the range of the entire loop. We also do this for nodes, so that
* nodes produced before the loop have their temp register protected from being
* overridden after the last read within an iteration. */
static void compute_liveness_recurse(struct hlsl_block *block, unsigned int loop_first, unsigned int loop_last)
{
struct hlsl_ir_node *instr;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
const unsigned int last_read = loop_last ? max(instr->index, loop_last) : instr->index;
switch (instr->type)
{
case HLSL_IR_CALL:
/* We should have inlined all calls before computing liveness. */
vkd3d_unreachable();
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
var = store->lhs.var;
if (!var->first_write)
var->first_write = loop_first ? min(instr->index, loop_first) : instr->index;
store->rhs.node->last_read = last_read;
if (store->lhs.offset.node)
store->lhs.offset.node->last_read = last_read;
break;
}
case HLSL_IR_EXPR:
{
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i)
expr->operands[i].node->last_read = last_read;
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
compute_liveness_recurse(&iff->then_block, loop_first, loop_last);
compute_liveness_recurse(&iff->else_block, loop_first, loop_last);
iff->condition.node->last_read = last_read;
break;
}
case HLSL_IR_LOAD:
{
struct hlsl_ir_load *load = hlsl_ir_load(instr);
var = load->src.var;
var->last_read = max(var->last_read, last_read);
if (load->src.offset.node)
load->src.offset.node->last_read = last_read;
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index,
loop_last ? loop_last : loop->next_index);
break;
}
case HLSL_IR_RESOURCE_LOAD:
{
struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr);
var = load->resource.var;
var->last_read = max(var->last_read, last_read);
if (load->resource.offset.node)
load->resource.offset.node->last_read = last_read;
if ((var = load->sampler.var))
{
var->last_read = max(var->last_read, last_read);
if (load->sampler.offset.node)
load->sampler.offset.node->last_read = last_read;
}
load->coords.node->last_read = last_read;
if (load->texel_offset.node)
load->texel_offset.node->last_read = last_read;
if (load->lod.node)
load->lod.node->last_read = last_read;
if (load->ddx.node)
load->ddx.node->last_read = last_read;
if (load->ddy.node)
load->ddy.node->last_read = last_read;
if (load->sample_index.node)
load->sample_index.node->last_read = last_read;
if (load->cmp.node)
load->cmp.node->last_read = last_read;
break;
}
case HLSL_IR_RESOURCE_STORE:
{
struct hlsl_ir_resource_store *store = hlsl_ir_resource_store(instr);
var = store->resource.var;
var->last_read = max(var->last_read, last_read);
if (store->resource.offset.node)
store->resource.offset.node->last_read = last_read;
store->coords.node->last_read = last_read;
store->value.node->last_read = last_read;
break;
}
case HLSL_IR_SWIZZLE:
{
struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr);
swizzle->val.node->last_read = last_read;
break;
}
case HLSL_IR_INDEX:
{
struct hlsl_ir_index *index = hlsl_ir_index(instr);
index->val.node->last_read = last_read;
index->idx.node->last_read = last_read;
break;
}
case HLSL_IR_CONSTANT:
case HLSL_IR_JUMP:
break;
}
}
}
static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct hlsl_scope *scope;
struct hlsl_ir_var *var;
/* Index 0 means unused; index 1 means function entry, so start at 2. */
index_instructions(&entry_func->body, 2);
LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry)
{
LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry)
var->first_write = var->last_read = 0;
}
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform || var->is_input_semantic)
var->first_write = 1;
else if (var->is_output_semantic)
var->last_read = UINT_MAX;
}
compute_liveness_recurse(&entry_func->body, 0, 0);
}
struct register_allocator
{
size_t count, capacity;
/* Highest register index that has been allocated.
* Used to declare sm4 temp count. */
uint32_t max_reg;
struct allocation
{
uint32_t reg;
unsigned int writemask;
unsigned int first_write, last_read;
} *allocations;
};
static unsigned int get_available_writemask(const struct register_allocator *allocator,
unsigned int first_write, unsigned int last_read, uint32_t reg_idx)
{
unsigned int writemask = VKD3DSP_WRITEMASK_ALL;
size_t i;
for (i = 0; i < allocator->count; ++i)
{
const struct allocation *allocation = &allocator->allocations[i];
/* We do not overlap if first write == last read:
* this is the case where we are allocating the result of that
* expression, e.g. "add r0, r0, r1". */
if (allocation->reg == reg_idx
&& first_write < allocation->last_read && last_read > allocation->first_write)
writemask &= ~allocation->writemask;
if (!writemask)
break;
}
return writemask;
}
static void record_allocation(struct hlsl_ctx *ctx, struct register_allocator *allocator,
uint32_t reg_idx, unsigned int writemask, unsigned int first_write, unsigned int last_read)
{
struct allocation *allocation;
if (!hlsl_array_reserve(ctx, (void **)&allocator->allocations, &allocator->capacity,
allocator->count + 1, sizeof(*allocator->allocations)))
return;
allocation = &allocator->allocations[allocator->count++];
allocation->reg = reg_idx;
allocation->writemask = writemask;
allocation->first_write = first_write;
allocation->last_read = last_read;
allocator->max_reg = max(allocator->max_reg, reg_idx);
}
/* reg_size is the number of register components to be reserved, while component_count is the number
* of components for the register's writemask. In SM1, floats and vectors allocate the whole
* register, even if they don't use it completely. */
static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct register_allocator *allocator,
unsigned int first_write, unsigned int last_read, unsigned int reg_size,
unsigned int component_count)
{
struct hlsl_reg ret = {0};
unsigned int writemask;
uint32_t reg_idx;
assert(component_count <= reg_size);
for (reg_idx = 0;; ++reg_idx)
{
writemask = get_available_writemask(allocator, first_write, last_read, reg_idx);
if (vkd3d_popcount(writemask) >= reg_size)
{
writemask = hlsl_combine_writemasks(writemask, (1u << reg_size) - 1);
break;
}
}
record_allocation(ctx, allocator, reg_idx, writemask, first_write, last_read);
ret.id = reg_idx;
ret.bind_count = 1;
ret.writemask = hlsl_combine_writemasks(writemask, (1u << component_count) - 1);
ret.allocated = true;
return ret;
}
static bool is_range_available(const struct register_allocator *allocator,
unsigned int first_write, unsigned int last_read, uint32_t reg_idx, unsigned int reg_size)
{
uint32_t i;
for (i = 0; i < (reg_size / 4); ++i)
{
if (get_available_writemask(allocator, first_write, last_read, reg_idx + i) != VKD3DSP_WRITEMASK_ALL)
return false;
}
return true;
}
static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct register_allocator *allocator,
unsigned int first_write, unsigned int last_read, unsigned int reg_size)
{
struct hlsl_reg ret = {0};
uint32_t reg_idx;
unsigned int i;
for (reg_idx = 0;; ++reg_idx)
{
if (is_range_available(allocator, first_write, last_read, reg_idx, reg_size))
break;
}
for (i = 0; i < reg_size / 4; ++i)
record_allocation(ctx, allocator, reg_idx + i, VKD3DSP_WRITEMASK_ALL, first_write, last_read);
ret.id = reg_idx;
ret.bind_count = align(reg_size, 4) / 4;
ret.allocated = true;
return ret;
}
static struct hlsl_reg allocate_numeric_registers_for_type(struct hlsl_ctx *ctx, struct register_allocator *allocator,
unsigned int first_write, unsigned int last_read, const struct hlsl_type *type)
{
unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC];
if (type->class <= HLSL_CLASS_VECTOR)
return allocate_register(ctx, allocator, first_write, last_read, reg_size, type->dimx);
else
return allocate_range(ctx, allocator, first_write, last_read, reg_size);
}
static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type)
{
static const char writemask_offset[] = {'w','x','y','z'};
unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC];
if (reg_size > 4)
{
if (reg_size & 3)
return vkd3d_dbg_sprintf("%c%u-%c%u.%c", class, reg.id, class, reg.id + (reg_size / 4),
writemask_offset[reg_size & 3]);
return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class, reg.id + (reg_size / 4) - 1);
}
return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask));
}
static bool track_object_components_usage(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
{
struct hlsl_ir_resource_load *load;
struct hlsl_ir_var *var;
enum hlsl_regset regset;
unsigned int index;
if (instr->type != HLSL_IR_RESOURCE_LOAD)
return false;
load = hlsl_ir_resource_load(instr);
var = load->resource.var;
regset = hlsl_type_get_regset(hlsl_deref_get_type(ctx, &load->resource));
if (regset == HLSL_REGSET_SAMPLERS)
{
enum hlsl_sampler_dim dim;
assert(!load->sampler.var);
if (!hlsl_regset_index_from_deref(ctx, &load->resource, regset, &index))
return false;
dim = var->objects_usage[regset][index].sampler_dim;
if (dim != load->sampling_dim)
{
if (dim == HLSL_SAMPLER_DIM_GENERIC)
{
var->objects_usage[regset][index].first_sampler_dim_loc = instr->loc;
}
else
{
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INCONSISTENT_SAMPLER,
"Inconsistent generic sampler usage dimension.");
hlsl_note(ctx, &var->objects_usage[regset][index].first_sampler_dim_loc,
VKD3D_SHADER_LOG_ERROR, "First use is here.");
return false;
}
}
var->objects_usage[regset][index].used = true;
var->objects_usage[regset][index].sampler_dim = load->sampling_dim;
}
else
{
if (!hlsl_regset_index_from_deref(ctx, &load->resource, regset, &index))
return false;
var->objects_usage[regset][index].used = true;
var->objects_usage[regset][index].sampler_dim = load->sampling_dim;
if (load->sampler.var)
{
var = load->sampler.var;
if (!hlsl_regset_index_from_deref(ctx, &load->sampler, HLSL_REGSET_SAMPLERS, &index))
return false;
var->objects_usage[HLSL_REGSET_SAMPLERS][index].used = true;
}
}
return false;
}
static void calculate_resource_register_counts(struct hlsl_ctx *ctx)
{
struct hlsl_ir_var *var;
struct hlsl_type *type;
unsigned int i, k;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
type = var->data_type;
for (k = 0; k <= HLSL_REGSET_LAST_OBJECT; ++k)
{
for (i = 0; i < type->reg_size[k]; ++i)
{
/* Samplers are only allocated until the last used one. */
if (var->objects_usage[k][i].used)
var->regs[k].bind_count = (k == HLSL_REGSET_SAMPLERS) ? i + 1 : type->reg_size[k];
}
}
}
}
static void allocate_variable_temp_register(struct hlsl_ctx *ctx,
struct hlsl_ir_var *var, struct register_allocator *allocator)
{
if (var->is_input_semantic || var->is_output_semantic || var->is_uniform)
return;
if (!var->regs[HLSL_REGSET_NUMERIC].allocated && var->last_read)
{
var->regs[HLSL_REGSET_NUMERIC] = allocate_numeric_registers_for_type(ctx, allocator,
var->first_write, var->last_read, var->data_type);
TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name, debug_register('r',
var->regs[HLSL_REGSET_NUMERIC], var->data_type), var->first_write, var->last_read);
}
}
static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx,
struct hlsl_block *block, struct register_allocator *allocator)
{
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
/* In SM4 all constants are inlined. */
if (ctx->profile->major_version >= 4 && instr->type == HLSL_IR_CONSTANT)
continue;
if (!instr->reg.allocated && instr->last_read)
{
instr->reg = allocate_numeric_registers_for_type(ctx, allocator, instr->index, instr->last_read,
instr->data_type);
TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index,
debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read);
}
switch (instr->type)
{
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
allocate_temp_registers_recurse(ctx, &iff->then_block, allocator);
allocate_temp_registers_recurse(ctx, &iff->else_block, allocator);
break;
}
case HLSL_IR_LOAD:
{
struct hlsl_ir_load *load = hlsl_ir_load(instr);
/* We need to at least allocate a variable for undefs.
* FIXME: We should probably find a way to remove them instead. */
allocate_variable_temp_register(ctx, load->src.var, allocator);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
allocate_temp_registers_recurse(ctx, &loop->body, allocator);
break;
}
case HLSL_IR_STORE:
{
struct hlsl_ir_store *store = hlsl_ir_store(instr);
allocate_variable_temp_register(ctx, store->lhs.var, allocator);
break;
}
default:
break;
}
}
}
static void allocate_const_registers_recurse(struct hlsl_ctx *ctx,
struct hlsl_block *block, struct register_allocator *allocator)
{
struct hlsl_constant_defs *defs = &ctx->constant_defs;
struct hlsl_ir_node *instr;
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
{
switch (instr->type)
{
case HLSL_IR_CONSTANT:
{
struct hlsl_ir_constant *constant = hlsl_ir_constant(instr);
const struct hlsl_type *type = instr->data_type;
unsigned int x, y, i, writemask, end_reg;
unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC];
constant->reg = allocate_numeric_registers_for_type(ctx, allocator, 1, UINT_MAX, type);
TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type));
if (!hlsl_array_reserve(ctx, (void **)&defs->values, &defs->size,
constant->reg.id + reg_size / 4, sizeof(*defs->values)))
return;
end_reg = constant->reg.id + reg_size / 4;
if (end_reg > defs->count)
{
memset(&defs->values[defs->count], 0, sizeof(*defs->values) * (end_reg - defs->count));
defs->count = end_reg;
}
assert(type->class <= HLSL_CLASS_LAST_NUMERIC);
if (!(writemask = constant->reg.writemask))
writemask = (1u << type->dimx) - 1;
for (y = 0; y < type->dimy; ++y)
{
for (x = 0, i = 0; x < 4; ++x)
{
const union hlsl_constant_value_component *value;
float f;
if (!(writemask & (1u << x)))
continue;
value = &constant->value.u[i++];
switch (type->base_type)
{
case HLSL_TYPE_BOOL:
f = !!value->u;
break;
case HLSL_TYPE_FLOAT:
case HLSL_TYPE_HALF:
f = value->f;
break;
case HLSL_TYPE_INT:
f = value->i;
break;
case HLSL_TYPE_UINT:
f = value->u;
break;
case HLSL_TYPE_DOUBLE:
FIXME("Double constant.\n");
return;
default:
vkd3d_unreachable();
}
defs->values[constant->reg.id + y].f[x] = f;
}
}
break;
}
case HLSL_IR_IF:
{
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
allocate_const_registers_recurse(ctx, &iff->then_block, allocator);
allocate_const_registers_recurse(ctx, &iff->else_block, allocator);
break;
}
case HLSL_IR_LOOP:
{
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
allocate_const_registers_recurse(ctx, &loop->body, allocator);
break;
}
default:
break;
}
}
}
static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct register_allocator allocator = {0};
struct hlsl_ir_var *var;
allocate_const_registers_recurse(ctx, &entry_func->body, &allocator);
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform && var->last_read)
{
unsigned int reg_size = var->data_type->reg_size[HLSL_REGSET_NUMERIC];
if (reg_size == 0)
continue;
var->regs[HLSL_REGSET_NUMERIC] = allocate_numeric_registers_for_type(ctx, &allocator,
1, UINT_MAX, var->data_type);
TRACE("Allocated %s to %s.\n", var->name,
debug_register('c', var->regs[HLSL_REGSET_NUMERIC], var->data_type));
}
}
vkd3d_free(allocator.allocations);
}
/* Simple greedy temporary register allocation pass that just assigns a unique
* index to all (simultaneously live) variables or intermediate values. Agnostic
* as to how many registers are actually available for the current backend, and
* does not handle constants. */
static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
{
struct register_allocator allocator = {0};
/* ps_1_* outputs are special and go in temp register 0. */
if (ctx->profile->major_version == 1 && ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
{
size_t i;
for (i = 0; i < entry_func->parameters.count; ++i)
{
const struct hlsl_ir_var *var = entry_func->parameters.vars[i];
if (var->is_output_semantic)
{
record_allocation(ctx, &allocator, 0, VKD3DSP_WRITEMASK_ALL, var->first_write, var->last_read);
break;
}
}
}
allocate_temp_registers_recurse(ctx, &entry_func->body, &allocator);
ctx->temp_count = allocator.max_reg + 1;
vkd3d_free(allocator.allocations);
}
static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output)
{
static const char *const shader_names[] =
{
[VKD3D_SHADER_TYPE_PIXEL] = "Pixel",
[VKD3D_SHADER_TYPE_VERTEX] = "Vertex",
[VKD3D_SHADER_TYPE_GEOMETRY] = "Geometry",
[VKD3D_SHADER_TYPE_HULL] = "Hull",
[VKD3D_SHADER_TYPE_DOMAIN] = "Domain",
[VKD3D_SHADER_TYPE_COMPUTE] = "Compute",
};
unsigned int type;
uint32_t reg;
bool builtin;
assert(var->semantic.name);
if (ctx->profile->major_version < 4)
{
D3DDECLUSAGE usage;
uint32_t usage_idx;
/* ps_1_* outputs are special and go in temp register 0. */
if (ctx->profile->major_version == 1 && output && ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
return;
builtin = hlsl_sm1_register_from_semantic(ctx, &var->semantic, output, &type, &reg);
if (!builtin && !hlsl_sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx))
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Invalid semantic '%s'.", var->semantic.name);
return;
}
if ((!output && !var->last_read) || (output && !var->first_write))
return;
}
else
{
D3D_NAME usage;
bool has_idx;
if (!hlsl_sm4_usage_from_semantic(ctx, &var->semantic, output, &usage))
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
"Invalid semantic '%s'.", var->semantic.name);
return;
}
if ((builtin = hlsl_sm4_register_from_semantic(ctx, &var->semantic, output, &type, NULL, &has_idx)))
reg = has_idx ? var->semantic.index : 0;
}
if (builtin)
{
TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n", shader_names[ctx->profile->type],
output ? "output" : "input", var->semantic.name, var->semantic.index, type, reg);
}
else
{
var->regs[HLSL_REGSET_NUMERIC].allocated = true;
var->regs[HLSL_REGSET_NUMERIC].id = (*counter)++;
var->regs[HLSL_REGSET_NUMERIC].bind_count = 1;
var->regs[HLSL_REGSET_NUMERIC].writemask = (1 << var->data_type->dimx) - 1;
TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v',
var->regs[HLSL_REGSET_NUMERIC], var->data_type));
}
}
static void allocate_semantic_registers(struct hlsl_ctx *ctx)
{
unsigned int input_counter = 0, output_counter = 0;
struct hlsl_ir_var *var;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_input_semantic)
allocate_semantic_register(ctx, var, &input_counter, false);
if (var->is_output_semantic)
allocate_semantic_register(ctx, var, &output_counter, true);
}
}
static const struct hlsl_buffer *get_reserved_buffer(struct hlsl_ctx *ctx, uint32_t index)
{
const struct hlsl_buffer *buffer;
LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, const struct hlsl_buffer, entry)
{
if (buffer->used_size && buffer->reservation.reg_type == 'b' && buffer->reservation.reg_index == index)
return buffer;
}
return NULL;
}
static void calculate_buffer_offset(struct hlsl_ctx *ctx, struct hlsl_ir_var *var)
{
unsigned int var_reg_size = var->data_type->reg_size[HLSL_REGSET_NUMERIC];
enum hlsl_type_class var_class = var->data_type->class;
struct hlsl_buffer *buffer = var->buffer;
if (var->reg_reservation.offset_type == 'c')
{
if (var->reg_reservation.offset_index % 4)
{
if (var_class == HLSL_CLASS_MATRIX)
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"packoffset() reservations with matrix types must be aligned with the beginning of a register.");
}
else if (var_class == HLSL_CLASS_ARRAY)
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"packoffset() reservations with array types must be aligned with the beginning of a register.");
}
else if (var_class == HLSL_CLASS_STRUCT)
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"packoffset() reservations with struct types must be aligned with the beginning of a register.");
}
else if (var_class == HLSL_CLASS_VECTOR)
{
unsigned int aligned_offset = hlsl_type_get_sm4_offset(var->data_type, var->reg_reservation.offset_index);
if (var->reg_reservation.offset_index != aligned_offset)
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"packoffset() reservations with vector types cannot span multiple registers.");
}
}
var->buffer_offset = var->reg_reservation.offset_index;
}
else
{
var->buffer_offset = hlsl_type_get_sm4_offset(var->data_type, buffer->size);
}
TRACE("Allocated buffer offset %u to %s.\n", var->buffer_offset, var->name);
buffer->size = max(buffer->size, var->buffer_offset + var_reg_size);
if (var->last_read)
buffer->used_size = max(buffer->used_size, var->buffer_offset + var_reg_size);
}
static void validate_buffer_offsets(struct hlsl_ctx *ctx)
{
struct hlsl_ir_var *var1, *var2;
struct hlsl_buffer *buffer;
LIST_FOR_EACH_ENTRY(var1, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (!var1->is_uniform || var1->data_type->class == HLSL_CLASS_OBJECT)
continue;
buffer = var1->buffer;
if (!buffer->used_size)
continue;
LIST_FOR_EACH_ENTRY(var2, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
unsigned int var1_reg_size, var2_reg_size;
if (!var2->is_uniform || var2->data_type->class == HLSL_CLASS_OBJECT)
continue;
if (var1 == var2 || var1->buffer != var2->buffer)
continue;
/* This is to avoid reporting the error twice for the same pair of overlapping variables. */
if (strcmp(var1->name, var2->name) >= 0)
continue;
var1_reg_size = var1->data_type->reg_size[HLSL_REGSET_NUMERIC];
var2_reg_size = var2->data_type->reg_size[HLSL_REGSET_NUMERIC];
if (var1->buffer_offset < var2->buffer_offset + var2_reg_size
&& var2->buffer_offset < var1->buffer_offset + var1_reg_size)
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"Invalid packoffset() reservation: Variables %s and %s overlap.",
var1->name, var2->name);
}
}
LIST_FOR_EACH_ENTRY(var1, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
buffer = var1->buffer;
if (!buffer || buffer == ctx->globals_buffer)
continue;
if (var1->reg_reservation.offset_type
|| (var1->data_type->class == HLSL_CLASS_OBJECT && var1->reg_reservation.reg_type))
buffer->manually_packed_elements = true;
else
buffer->automatically_packed_elements = true;
if (buffer->manually_packed_elements && buffer->automatically_packed_elements)
{
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"packoffset() must be specified for all the buffer elements, or none of them.");
break;
}
}
}
static void allocate_buffers(struct hlsl_ctx *ctx)
{
struct hlsl_buffer *buffer;
struct hlsl_ir_var *var;
uint32_t index = 0;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->is_uniform && var->data_type->class != HLSL_CLASS_OBJECT)
{
if (var->is_param)
var->buffer = ctx->params_buffer;
calculate_buffer_offset(ctx, var);
}
}
validate_buffer_offsets(ctx);
LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, struct hlsl_buffer, entry)
{
if (!buffer->used_size)
continue;
if (buffer->type == HLSL_BUFFER_CONSTANT)
{
if (buffer->reservation.reg_type == 'b')
{
const struct hlsl_buffer *reserved_buffer = get_reserved_buffer(ctx, buffer->reservation.reg_index);
if (reserved_buffer && reserved_buffer != buffer)
{
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
"Multiple buffers bound to cb%u.", buffer->reservation.reg_index);
hlsl_note(ctx, &reserved_buffer->loc, VKD3D_SHADER_LOG_ERROR,
"Buffer %s is already bound to cb%u.", reserved_buffer->name, buffer->reservation.reg_index);
}
buffer->reg.id = buffer->reservation.reg_index;
buffer->reg.bind_count = 1;
buffer->reg.allocated = true;
TRACE("Allocated reserved %s to cb%u.\n", buffer->name, index);
}
else if (!buffer->reservation.reg_type)
{
while (get_reserved_buffer(ctx, index))
++index;
buffer->reg.id = index;
buffer->reg.bind_count = 1;
buffer->reg.allocated = true;
TRACE("Allocated %s to cb%u.\n", buffer->name, index);
++index;
}
else
{
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
"Constant buffers must be allocated to register type 'b'.");
}
}
else
{
FIXME("Allocate registers for texture buffers.\n");
}
}
}
static const struct hlsl_ir_var *get_allocated_object(struct hlsl_ctx *ctx, enum hlsl_regset regset,
uint32_t index)
{
const struct hlsl_ir_var *var;
unsigned int start, count;
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, const struct hlsl_ir_var, extern_entry)
{
if (!var->regs[regset].allocated)
continue;
start = var->regs[regset].id;
count = var->regs[regset].bind_count;
if (start <= index && index < start + count)
return var;
}
return NULL;
}
static void allocate_objects(struct hlsl_ctx *ctx, enum hlsl_regset regset)
{
char regset_name = get_regset_name(regset);
struct hlsl_ir_var *var;
uint32_t min_index = 0;
if (regset == HLSL_REGSET_UAVS)
{
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
if (var->semantic.name && (!ascii_strcasecmp(var->semantic.name, "color")
|| !ascii_strcasecmp(var->semantic.name, "sv_target")))
min_index = max(min_index, var->semantic.index + 1);
}
}
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
{
unsigned int count = var->regs[regset].bind_count;
if (count == 0)
continue;
if (var->regs[regset].allocated)
{
const struct hlsl_ir_var *reserved_object, *last_reported = NULL;
unsigned int index, i;
if (var->regs[regset].id < min_index)
{
assert(regset == HLSL_REGSET_UAVS);
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
"UAV index (%u) must be higher than the maximum render target index (%u).",
var->regs[regset].id, min_index - 1);
continue;
}
for (i = 0; i < count; ++i)
{
index = var->regs[regset].id + i;
reserved_object = get_allocated_object(ctx, regset, index);
if (reserved_object && reserved_object != var && reserved_object != last_reported)
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
"Multiple variables bound to %c%u.", regset_name, index);
hlsl_note(ctx, &reserved_object->loc, VKD3D_SHADER_LOG_ERROR,
"Variable '%s' is already bound to %c%u.", reserved_object->name,
regset_name, index);
last_reported = reserved_object;
}
}
}
else
{
unsigned int index = min_index;
unsigned int available = 0;
while (available < count)
{
if (get_allocated_object(ctx, regset, index))
available = 0;
else
++available;
++index;
}
index -= count;
var->regs[regset].id = index;
var->regs[regset].allocated = true;
TRACE("Allocated variable %s to %c%u-%c%u.\n", var->name, regset_name, index, regset_name,
index + count);
++index;
}
}
}
bool hlsl_component_index_range_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref,
unsigned int *start, unsigned int *count)
{
struct hlsl_type *type = deref->var->data_type;
unsigned int i, k;
*start = 0;
*count = 0;
for (i = 0; i < deref->path_len; ++i)
{
struct hlsl_ir_node *path_node = deref->path[i].node;
unsigned int idx = 0;
assert(path_node);
if (path_node->type != HLSL_IR_CONSTANT)
return false;
/* We should always have generated a cast to UINT. */
assert(path_node->data_type->class == HLSL_CLASS_SCALAR
&& path_node->data_type->base_type == HLSL_TYPE_UINT);
idx = hlsl_ir_constant(path_node)->value.u[0].u;
switch (type->class)
{
case HLSL_CLASS_VECTOR:
if (idx >= type->dimx)
{
hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
"Vector index is out of bounds. %u/%u", idx, type->dimx);
return false;
}
*start += idx;
break;
case HLSL_CLASS_MATRIX:
if (idx >= hlsl_type_major_size(type))
{
hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
"Matrix index is out of bounds. %u/%u", idx, hlsl_type_major_size(type));
return false;
}
if (hlsl_type_is_row_major(type))
*start += idx * type->dimx;
else
*start += idx * type->dimy;
break;
case HLSL_CLASS_ARRAY:
if (idx >= type->e.array.elements_count)
{
hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
"Array index is out of bounds. %u/%u", idx, type->e.array.elements_count);
return false;
}
*start += idx * hlsl_type_component_count(type->e.array.type);
break;
case HLSL_CLASS_STRUCT:
for (k = 0; k < idx; ++k)
*start += hlsl_type_component_count(type->e.record.fields[k].type);
break;
default:
vkd3d_unreachable();
}
type = hlsl_get_element_type_from_path_index(ctx, type, path_node);
}
*count = hlsl_type_component_count(type);
return true;
}
bool hlsl_regset_index_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref,
enum hlsl_regset regset, unsigned int *index)
{
struct hlsl_type *type = deref->var->data_type;
unsigned int i;
assert(regset <= HLSL_REGSET_LAST_OBJECT);
*index = 0;
for (i = 0; i < deref->path_len; ++i)
{
struct hlsl_ir_node *path_node = deref->path[i].node;
unsigned int idx = 0;
assert(path_node);
if (path_node->type != HLSL_IR_CONSTANT)
return false;
/* We should always have generated a cast to UINT. */
assert(path_node->data_type->class == HLSL_CLASS_SCALAR
&& path_node->data_type->base_type == HLSL_TYPE_UINT);
idx = hlsl_ir_constant(path_node)->value.u[0].u;
switch (type->class)
{
case HLSL_CLASS_ARRAY:
if (idx >= type->e.array.elements_count)
return false;
*index += idx * type->e.array.type->reg_size[regset];
break;
case HLSL_CLASS_STRUCT:
*index += type->e.record.fields[idx].reg_offset[regset];
break;
default:
vkd3d_unreachable();
}
type = hlsl_get_element_type_from_path_index(ctx, type, path_node);
}
assert(type->reg_size[regset] == 1);
return true;
}
bool hlsl_offset_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref, unsigned int *offset)
{
struct hlsl_ir_node *offset_node = deref->offset.node;
unsigned int size;
if (!offset_node)
{
*offset = 0;
return true;
}
/* We should always have generated a cast to UINT. */
assert(offset_node->data_type->class == HLSL_CLASS_SCALAR
&& offset_node->data_type->base_type == HLSL_TYPE_UINT);
if (offset_node->type != HLSL_IR_CONSTANT)
return false;
*offset = hlsl_ir_constant(offset_node)->value.u[0].u;
size = deref->var->data_type->reg_size[deref->offset_regset];
if (*offset >= size)
{
hlsl_error(ctx, &deref->offset.node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
"Dereference is out of bounds. %u/%u", *offset, size);
return false;
}
return true;
}
unsigned int hlsl_offset_from_deref_safe(struct hlsl_ctx *ctx, const struct hlsl_deref *deref)
{
unsigned int offset;
if (hlsl_offset_from_deref(ctx, deref, &offset))
return offset;
hlsl_fixme(ctx, &deref->offset.node->loc, "Dereference with non-constant offset of type %s.",
hlsl_node_type_to_string(deref->offset.node->type));
return 0;
}
struct hlsl_reg hlsl_reg_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref)
{
const struct hlsl_ir_var *var = deref->var;
struct hlsl_reg ret = var->regs[HLSL_REGSET_NUMERIC];
unsigned int offset = hlsl_offset_from_deref_safe(ctx, deref);
assert(deref->offset_regset == HLSL_REGSET_NUMERIC);
ret.id += offset / 4;
ret.writemask = 0xf & (0xf << (offset % 4));
if (var->regs[HLSL_REGSET_NUMERIC].writemask)
ret.writemask = hlsl_combine_writemasks(var->regs[HLSL_REGSET_NUMERIC].writemask, ret.writemask);
return ret;
}
static void parse_numthreads_attribute(struct hlsl_ctx *ctx, const struct hlsl_attribute *attr)
{
unsigned int i;
ctx->found_numthreads = 1;
if (attr->args_count != 3)
{
hlsl_error(ctx, &attr->loc, VKD3D_SHADER_ERROR_HLSL_WRONG_PARAMETER_COUNT,
"Expected 3 parameters for [numthreads] attribute, but got %u.", attr->args_count);
return;
}
for (i = 0; i < attr->args_count; ++i)
{
const struct hlsl_ir_node *instr = attr->args[i].node;
const struct hlsl_type *type = instr->data_type;
const struct hlsl_ir_constant *constant;
if (type->class != HLSL_CLASS_SCALAR
|| (type->base_type != HLSL_TYPE_INT && type->base_type != HLSL_TYPE_UINT))
{
struct vkd3d_string_buffer *string;
if ((string = hlsl_type_to_string(ctx, type)))
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_TYPE,
"Wrong type for argument %u of [numthreads]: expected int or uint, but got %s.",
i, string->buffer);
hlsl_release_string_buffer(ctx, string);
break;
}
if (instr->type != HLSL_IR_CONSTANT)
{
hlsl_fixme(ctx, &instr->loc, "Non-constant expression in [numthreads] initializer.");
break;
}
constant = hlsl_ir_constant(instr);
if ((type->base_type == HLSL_TYPE_INT && constant->value.u[0].i <= 0)
|| (type->base_type == HLSL_TYPE_UINT && !constant->value.u[0].u))
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_THREAD_COUNT,
"Thread count must be a positive integer.");
ctx->thread_count[i] = constant->value.u[0].u;
}
}
static bool type_has_object_components(struct hlsl_type *type)
{
if (type->class == HLSL_CLASS_OBJECT)
return true;
if (type->class == HLSL_CLASS_ARRAY)
return type_has_object_components(type->e.array.type);
if (type->class == HLSL_CLASS_STRUCT)
{
unsigned int i;
for (i = 0; i < type->e.record.field_count; ++i)
{
if (type_has_object_components(type->e.record.fields[i].type))
return true;
}
}
return false;
}
int hlsl_emit_bytecode(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func,
enum vkd3d_shader_target_type target_type, struct vkd3d_shader_code *out)
{
const struct hlsl_profile_info *profile = ctx->profile;
struct hlsl_block *const body = &entry_func->body;
struct recursive_call_ctx recursive_call_ctx;
struct hlsl_ir_var *var;
unsigned int i;
bool progress;
list_move_head(&body->instrs, &ctx->static_initializers.instrs);
memset(&recursive_call_ctx, 0, sizeof(recursive_call_ctx));
hlsl_transform_ir(ctx, find_recursive_calls, body, &recursive_call_ctx);
vkd3d_free(recursive_call_ctx.backtrace);
/* Avoid going into an infinite loop when processing call instructions.
* lower_return() recurses into inferior calls. */
if (ctx->result)
return ctx->result;
lower_return(ctx, entry_func, body, false);
while (hlsl_transform_ir(ctx, lower_calls, body, NULL));
hlsl_transform_ir(ctx, lower_index_loads, body, NULL);
LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry)
{
if (var->storage_modifiers & HLSL_STORAGE_UNIFORM)
prepend_uniform_copy(ctx, &body->instrs, var);
}
for (i = 0; i < entry_func->parameters.count; ++i)
{
var = entry_func->parameters.vars[i];
if (hlsl_type_is_resource(var->data_type) || (var->storage_modifiers & HLSL_STORAGE_UNIFORM))
{
prepend_uniform_copy(ctx, &body->instrs, var);
}
else
{
if (type_has_object_components(var->data_type))
hlsl_fixme(ctx, &var->loc, "Prepend uniform copies for object components within structs.");
if (hlsl_get_multiarray_element_type(var->data_type)->class != HLSL_CLASS_STRUCT
&& !var->semantic.name)
{
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Parameter \"%s\" is missing a semantic.", var->name);
var->semantic.reported_missing = true;
}
if (var->storage_modifiers & HLSL_STORAGE_IN)
prepend_input_var_copy(ctx, &body->instrs, var);
if (var->storage_modifiers & HLSL_STORAGE_OUT)
append_output_var_copy(ctx, &body->instrs, var);
}
}
if (entry_func->return_var)
{
if (entry_func->return_var->data_type->class != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name)
hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
"Entry point \"%s\" is missing a return value semantic.", entry_func->func->name);
append_output_var_copy(ctx, &body->instrs, entry_func->return_var);
}
for (i = 0; i < entry_func->attr_count; ++i)
{
const struct hlsl_attribute *attr = entry_func->attrs[i];
if (!strcmp(attr->name, "numthreads") && profile->type == VKD3D_SHADER_TYPE_COMPUTE)
parse_numthreads_attribute(ctx, attr);
else
hlsl_warning(ctx, &entry_func->attrs[i]->loc, VKD3D_SHADER_WARNING_HLSL_UNKNOWN_ATTRIBUTE,
"Ignoring unknown attribute \"%s\".", entry_func->attrs[i]->name);
}
if (profile->type == VKD3D_SHADER_TYPE_COMPUTE && !ctx->found_numthreads)
hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_ATTRIBUTE,
"Entry point \"%s\" is missing a [numthreads] attribute.", entry_func->func->name);
hlsl_transform_ir(ctx, lower_broadcasts, body, NULL);
while (hlsl_transform_ir(ctx, fold_redundant_casts, body, NULL));
do
{
progress = hlsl_transform_ir(ctx, split_array_copies, body, NULL);
progress |= hlsl_transform_ir(ctx, split_struct_copies, body, NULL);
}
while (progress);
hlsl_transform_ir(ctx, split_matrix_copies, body, NULL);
hlsl_transform_ir(ctx, lower_narrowing_casts, body, NULL);
hlsl_transform_ir(ctx, lower_casts_to_bool, body, NULL);
hlsl_transform_ir(ctx, lower_int_dot, body, NULL);
hlsl_transform_ir(ctx, lower_int_division, body, NULL);
hlsl_transform_ir(ctx, lower_int_modulus, body, NULL);
hlsl_transform_ir(ctx, lower_int_abs, body, NULL);
hlsl_transform_ir(ctx, lower_float_modulus, body, NULL);
hlsl_transform_ir(ctx, fold_redundant_casts, body, NULL);
do
{
progress = hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL);
progress |= hlsl_transform_ir(ctx, hlsl_fold_constant_swizzles, body, NULL);
progress |= hlsl_copy_propagation_execute(ctx, body);
progress |= hlsl_transform_ir(ctx, fold_swizzle_chains, body, NULL);
progress |= hlsl_transform_ir(ctx, remove_trivial_swizzles, body, NULL);
}
while (progress);
hlsl_transform_ir(ctx, lower_nonconstant_vector_derefs, body, NULL);
hlsl_transform_ir(ctx, lower_casts_to_bool, body, NULL);
hlsl_transform_ir(ctx, lower_int_dot, body, NULL);
if (profile->major_version < 4)
{
hlsl_transform_ir(ctx, lower_division, body, NULL);
hlsl_transform_ir(ctx, lower_sqrt, body, NULL);
hlsl_transform_ir(ctx, lower_dot, body, NULL);
hlsl_transform_ir(ctx, lower_round, body, NULL);
}
if (profile->major_version < 2)
{
hlsl_transform_ir(ctx, lower_abs, body, NULL);
}
hlsl_transform_ir(ctx, validate_static_object_references, body, NULL);
hlsl_transform_ir(ctx, track_object_components_usage, body, NULL);
/* TODO: move forward, remove when no longer needed */
transform_derefs(ctx, replace_deref_path_with_offset, body);
while (hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL));
do
compute_liveness(ctx, entry_func);
while (hlsl_transform_ir(ctx, dce, body, NULL));
compute_liveness(ctx, entry_func);
if (TRACE_ON())
rb_for_each_entry(&ctx->functions, dump_function, ctx);
allocate_register_reservations(ctx);
calculate_resource_register_counts(ctx);
allocate_temp_registers(ctx, entry_func);
if (profile->major_version < 4)
{
allocate_const_registers(ctx, entry_func);
}
else
{
allocate_buffers(ctx);
allocate_objects(ctx, HLSL_REGSET_TEXTURES);
allocate_objects(ctx, HLSL_REGSET_UAVS);
}
allocate_semantic_registers(ctx);
allocate_objects(ctx, HLSL_REGSET_SAMPLERS);
if (ctx->result)
return ctx->result;
switch (target_type)
{
case VKD3D_SHADER_TARGET_D3D_BYTECODE:
return hlsl_sm1_write(ctx, entry_func, out);
case VKD3D_SHADER_TARGET_DXBC_TPF:
return hlsl_sm4_write(ctx, entry_func, out);
default:
ERR("Unsupported shader target type %#x.\n", target_type);
return VKD3D_ERROR_INVALID_ARGUMENT;
}
}