mirror of
https://gitlab.winehq.org/wine/vkd3d.git
synced 2024-11-21 16:46:41 -08:00
50e28f70ed
We potentially generate OOB accesses during loop unrolling that are later deleted.
5923 lines
200 KiB
C
5923 lines
200 KiB
C
/*
|
|
* HLSL optimization and code generation
|
|
*
|
|
* Copyright 2019-2020 Zebediah Figura for CodeWeavers
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include "hlsl.h"
|
|
#include <stdio.h>
|
|
|
|
/* TODO: remove when no longer needed, only used for new_offset_instr_from_deref() */
|
|
static struct hlsl_ir_node *new_offset_from_path_index(struct hlsl_ctx *ctx, struct hlsl_block *block,
|
|
struct hlsl_type *type, struct hlsl_ir_node *base_offset, struct hlsl_ir_node *idx,
|
|
enum hlsl_regset regset, unsigned int *offset_component, const struct vkd3d_shader_location *loc)
|
|
{
|
|
struct hlsl_ir_node *idx_offset = NULL;
|
|
struct hlsl_ir_node *c;
|
|
|
|
switch (type->class)
|
|
{
|
|
case HLSL_CLASS_VECTOR:
|
|
if (idx->type != HLSL_IR_CONSTANT)
|
|
{
|
|
hlsl_fixme(ctx, &idx->loc, "Non-constant vector addressing.");
|
|
break;
|
|
}
|
|
*offset_component += hlsl_ir_constant(idx)->value.u[0].u;
|
|
break;
|
|
|
|
case HLSL_CLASS_MATRIX:
|
|
{
|
|
idx_offset = idx;
|
|
break;
|
|
}
|
|
|
|
case HLSL_CLASS_ARRAY:
|
|
{
|
|
unsigned int size = hlsl_type_get_array_element_reg_size(type->e.array.type, regset);
|
|
|
|
if (regset == HLSL_REGSET_NUMERIC)
|
|
{
|
|
assert(size % 4 == 0);
|
|
size /= 4;
|
|
}
|
|
|
|
if (!(c = hlsl_new_uint_constant(ctx, size, loc)))
|
|
return NULL;
|
|
hlsl_block_add_instr(block, c);
|
|
|
|
if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, c, idx)))
|
|
return NULL;
|
|
hlsl_block_add_instr(block, idx_offset);
|
|
|
|
break;
|
|
}
|
|
|
|
case HLSL_CLASS_STRUCT:
|
|
{
|
|
unsigned int field_idx = hlsl_ir_constant(idx)->value.u[0].u;
|
|
struct hlsl_struct_field *field = &type->e.record.fields[field_idx];
|
|
unsigned int field_offset = field->reg_offset[regset];
|
|
|
|
if (regset == HLSL_REGSET_NUMERIC)
|
|
{
|
|
assert(*offset_component == 0);
|
|
*offset_component = field_offset % 4;
|
|
field_offset /= 4;
|
|
}
|
|
|
|
if (!(c = hlsl_new_uint_constant(ctx, field_offset, loc)))
|
|
return NULL;
|
|
hlsl_block_add_instr(block, c);
|
|
|
|
idx_offset = c;
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
if (idx_offset)
|
|
{
|
|
if (!(base_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, base_offset, idx_offset)))
|
|
return NULL;
|
|
hlsl_block_add_instr(block, base_offset);
|
|
}
|
|
|
|
return base_offset;
|
|
}
|
|
|
|
/* TODO: remove when no longer needed, only used for replace_deref_path_with_offset() */
|
|
static struct hlsl_ir_node *new_offset_instr_from_deref(struct hlsl_ctx *ctx, struct hlsl_block *block,
|
|
const struct hlsl_deref *deref, unsigned int *offset_component, const struct vkd3d_shader_location *loc)
|
|
{
|
|
enum hlsl_regset regset = hlsl_deref_get_regset(ctx, deref);
|
|
struct hlsl_ir_node *offset;
|
|
struct hlsl_type *type;
|
|
unsigned int i;
|
|
|
|
*offset_component = 0;
|
|
|
|
hlsl_block_init(block);
|
|
|
|
if (!(offset = hlsl_new_uint_constant(ctx, 0, loc)))
|
|
return NULL;
|
|
hlsl_block_add_instr(block, offset);
|
|
|
|
assert(deref->var);
|
|
type = deref->var->data_type;
|
|
|
|
for (i = 0; i < deref->path_len; ++i)
|
|
{
|
|
struct hlsl_block idx_block;
|
|
|
|
hlsl_block_init(&idx_block);
|
|
|
|
if (!(offset = new_offset_from_path_index(ctx, &idx_block, type, offset, deref->path[i].node,
|
|
regset, offset_component, loc)))
|
|
{
|
|
hlsl_block_cleanup(&idx_block);
|
|
return NULL;
|
|
}
|
|
|
|
hlsl_block_add_block(block, &idx_block);
|
|
|
|
type = hlsl_get_element_type_from_path_index(ctx, type, deref->path[i].node);
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
/* TODO: remove when no longer needed, only used for transform_deref_paths_into_offsets() */
|
|
static bool replace_deref_path_with_offset(struct hlsl_ctx *ctx, struct hlsl_deref *deref,
|
|
struct hlsl_ir_node *instr)
|
|
{
|
|
unsigned int offset_component;
|
|
struct hlsl_ir_node *offset;
|
|
struct hlsl_block block;
|
|
struct hlsl_type *type;
|
|
|
|
assert(deref->var);
|
|
assert(!hlsl_deref_is_lowered(deref));
|
|
|
|
type = hlsl_deref_get_type(ctx, deref);
|
|
|
|
/* Instructions that directly refer to structs or arrays (instead of single-register components)
|
|
* are removed later by dce. So it is not a problem to just cleanup their derefs. */
|
|
if (type->class == HLSL_CLASS_STRUCT || type->class == HLSL_CLASS_ARRAY)
|
|
{
|
|
hlsl_cleanup_deref(deref);
|
|
return true;
|
|
}
|
|
|
|
deref->data_type = type;
|
|
|
|
if (!(offset = new_offset_instr_from_deref(ctx, &block, deref, &offset_component, &instr->loc)))
|
|
return false;
|
|
list_move_before(&instr->entry, &block.instrs);
|
|
|
|
hlsl_cleanup_deref(deref);
|
|
hlsl_src_from_node(&deref->rel_offset, offset);
|
|
deref->const_offset = offset_component;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool clean_constant_deref_offset_srcs(struct hlsl_ctx *ctx, struct hlsl_deref *deref,
|
|
struct hlsl_ir_node *instr)
|
|
{
|
|
if (deref->rel_offset.node && deref->rel_offset.node->type == HLSL_IR_CONSTANT)
|
|
{
|
|
enum hlsl_regset regset = hlsl_deref_get_regset(ctx, deref);
|
|
|
|
if (regset == HLSL_REGSET_NUMERIC)
|
|
deref->const_offset += 4 * hlsl_ir_constant(deref->rel_offset.node)->value.u[0].u;
|
|
else
|
|
deref->const_offset += hlsl_ir_constant(deref->rel_offset.node)->value.u[0].u;
|
|
hlsl_src_remove(&deref->rel_offset);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Split uniforms into two variables representing the constant and temp
|
|
* registers, and copy the former to the latter, so that writes to uniforms
|
|
* work. */
|
|
static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_var *temp)
|
|
{
|
|
struct hlsl_ir_var *uniform;
|
|
struct hlsl_ir_node *store;
|
|
struct hlsl_ir_load *load;
|
|
char *new_name;
|
|
|
|
/* Use the synthetic name for the temp, rather than the uniform, so that we
|
|
* can write the uniform name into the shader reflection data. */
|
|
|
|
if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type,
|
|
&temp->loc, NULL, temp->storage_modifiers, &temp->reg_reservation)))
|
|
return;
|
|
list_add_before(&temp->scope_entry, &uniform->scope_entry);
|
|
list_add_tail(&ctx->extern_vars, &uniform->extern_entry);
|
|
uniform->is_uniform = 1;
|
|
uniform->is_param = temp->is_param;
|
|
uniform->buffer = temp->buffer;
|
|
if (temp->default_values)
|
|
{
|
|
/* Transfer default values from the temp to the uniform. */
|
|
assert(!uniform->default_values);
|
|
assert(hlsl_type_component_count(temp->data_type) == hlsl_type_component_count(uniform->data_type));
|
|
uniform->default_values = temp->default_values;
|
|
temp->default_values = NULL;
|
|
}
|
|
|
|
if (!(new_name = hlsl_sprintf_alloc(ctx, "<temp-%s>", temp->name)))
|
|
return;
|
|
temp->name = new_name;
|
|
|
|
if (!(load = hlsl_new_var_load(ctx, uniform, &temp->loc)))
|
|
return;
|
|
list_add_head(&block->instrs, &load->node.entry);
|
|
|
|
if (!(store = hlsl_new_simple_store(ctx, temp, &load->node)))
|
|
return;
|
|
list_add_after(&load->node.entry, &store->entry);
|
|
}
|
|
|
|
static void validate_field_semantic(struct hlsl_ctx *ctx, struct hlsl_struct_field *field)
|
|
{
|
|
if (!field->semantic.name && hlsl_is_numeric_type(hlsl_get_multiarray_element_type(field->type))
|
|
&& !field->semantic.reported_missing)
|
|
{
|
|
hlsl_error(ctx, &field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
|
|
"Field '%s' is missing a semantic.", field->name);
|
|
field->semantic.reported_missing = true;
|
|
}
|
|
}
|
|
|
|
static enum hlsl_base_type base_type_get_semantic_equivalent(enum hlsl_base_type base)
|
|
{
|
|
if (base == HLSL_TYPE_BOOL)
|
|
return HLSL_TYPE_UINT;
|
|
if (base == HLSL_TYPE_INT)
|
|
return HLSL_TYPE_UINT;
|
|
if (base == HLSL_TYPE_HALF)
|
|
return HLSL_TYPE_FLOAT;
|
|
return base;
|
|
}
|
|
|
|
static bool types_are_semantic_equivalent(struct hlsl_ctx *ctx, const struct hlsl_type *type1,
|
|
const struct hlsl_type *type2)
|
|
{
|
|
if (ctx->profile->major_version < 4)
|
|
return true;
|
|
|
|
if (type1->dimx != type2->dimx)
|
|
return false;
|
|
|
|
return base_type_get_semantic_equivalent(type1->e.numeric.type)
|
|
== base_type_get_semantic_equivalent(type2->e.numeric.type);
|
|
}
|
|
|
|
static struct hlsl_ir_var *add_semantic_var(struct hlsl_ctx *ctx, struct hlsl_ir_var *var,
|
|
struct hlsl_type *type, uint32_t modifiers, struct hlsl_semantic *semantic,
|
|
uint32_t index, bool output, const struct vkd3d_shader_location *loc)
|
|
{
|
|
struct hlsl_semantic new_semantic;
|
|
struct hlsl_ir_var *ext_var;
|
|
char *new_name;
|
|
|
|
if (!(new_name = hlsl_sprintf_alloc(ctx, "<%s-%s%u>", output ? "output" : "input", semantic->name, index)))
|
|
return NULL;
|
|
|
|
LIST_FOR_EACH_ENTRY(ext_var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (!ascii_strcasecmp(ext_var->name, new_name))
|
|
{
|
|
if (output)
|
|
{
|
|
if (index >= semantic->reported_duplicated_output_next_index)
|
|
{
|
|
hlsl_error(ctx, loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
|
|
"Output semantic \"%s%u\" is used multiple times.", semantic->name, index);
|
|
hlsl_note(ctx, &ext_var->loc, VKD3D_SHADER_LOG_ERROR,
|
|
"First use of \"%s%u\" is here.", semantic->name, index);
|
|
semantic->reported_duplicated_output_next_index = index + 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (index >= semantic->reported_duplicated_input_incompatible_next_index
|
|
&& !types_are_semantic_equivalent(ctx, ext_var->data_type, type))
|
|
{
|
|
hlsl_error(ctx, loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
|
|
"Input semantic \"%s%u\" is used multiple times with incompatible types.",
|
|
semantic->name, index);
|
|
hlsl_note(ctx, &ext_var->loc, VKD3D_SHADER_LOG_ERROR,
|
|
"First declaration of \"%s%u\" is here.", semantic->name, index);
|
|
semantic->reported_duplicated_input_incompatible_next_index = index + 1;
|
|
}
|
|
}
|
|
|
|
vkd3d_free(new_name);
|
|
return ext_var;
|
|
}
|
|
}
|
|
|
|
if (!(hlsl_clone_semantic(ctx, &new_semantic, semantic)))
|
|
{
|
|
vkd3d_free(new_name);
|
|
return NULL;
|
|
}
|
|
new_semantic.index = index;
|
|
if (!(ext_var = hlsl_new_var(ctx, new_name, type, loc, &new_semantic, modifiers, NULL)))
|
|
{
|
|
vkd3d_free(new_name);
|
|
hlsl_cleanup_semantic(&new_semantic);
|
|
return NULL;
|
|
}
|
|
if (output)
|
|
ext_var->is_output_semantic = 1;
|
|
else
|
|
ext_var->is_input_semantic = 1;
|
|
ext_var->is_param = var->is_param;
|
|
list_add_before(&var->scope_entry, &ext_var->scope_entry);
|
|
list_add_tail(&ctx->extern_vars, &ext_var->extern_entry);
|
|
|
|
return ext_var;
|
|
}
|
|
|
|
static void prepend_input_copy(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_load *lhs,
|
|
uint32_t modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
|
|
{
|
|
struct hlsl_type *type = lhs->node.data_type, *vector_type_src, *vector_type_dst;
|
|
struct vkd3d_shader_location *loc = &lhs->node.loc;
|
|
struct hlsl_ir_var *var = lhs->src.var;
|
|
struct hlsl_ir_node *c;
|
|
unsigned int i;
|
|
|
|
if (!hlsl_is_numeric_type(type))
|
|
{
|
|
struct vkd3d_string_buffer *string;
|
|
if (!(string = hlsl_type_to_string(ctx, type)))
|
|
return;
|
|
hlsl_fixme(ctx, &var->loc, "Input semantics for type %s.", string->buffer);
|
|
hlsl_release_string_buffer(ctx, string);
|
|
}
|
|
if (!semantic->name)
|
|
return;
|
|
|
|
vector_type_dst = hlsl_get_vector_type(ctx, type->e.numeric.type, hlsl_type_minor_size(type));
|
|
vector_type_src = vector_type_dst;
|
|
if (ctx->profile->major_version < 4 && ctx->profile->type == VKD3D_SHADER_TYPE_VERTEX)
|
|
vector_type_src = hlsl_get_vector_type(ctx, type->e.numeric.type, 4);
|
|
|
|
for (i = 0; i < hlsl_type_major_size(type); ++i)
|
|
{
|
|
struct hlsl_ir_node *store, *cast;
|
|
struct hlsl_ir_var *input;
|
|
struct hlsl_ir_load *load;
|
|
|
|
if (!(input = add_semantic_var(ctx, var, vector_type_src, modifiers, semantic,
|
|
semantic_index + i, false, loc)))
|
|
return;
|
|
|
|
if (!(load = hlsl_new_var_load(ctx, input, &var->loc)))
|
|
return;
|
|
list_add_after(&lhs->node.entry, &load->node.entry);
|
|
|
|
if (!(cast = hlsl_new_cast(ctx, &load->node, vector_type_dst, &var->loc)))
|
|
return;
|
|
list_add_after(&load->node.entry, &cast->entry);
|
|
|
|
if (type->class == HLSL_CLASS_MATRIX)
|
|
{
|
|
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
|
|
return;
|
|
list_add_after(&cast->entry, &c->entry);
|
|
|
|
if (!(store = hlsl_new_store_index(ctx, &lhs->src, c, cast, 0, &var->loc)))
|
|
return;
|
|
list_add_after(&c->entry, &store->entry);
|
|
}
|
|
else
|
|
{
|
|
assert(i == 0);
|
|
|
|
if (!(store = hlsl_new_store_index(ctx, &lhs->src, NULL, cast, 0, &var->loc)))
|
|
return;
|
|
list_add_after(&cast->entry, &store->entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void prepend_input_copy_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_load *lhs,
|
|
uint32_t modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
|
|
{
|
|
struct vkd3d_shader_location *loc = &lhs->node.loc;
|
|
struct hlsl_type *type = lhs->node.data_type;
|
|
struct hlsl_ir_var *var = lhs->src.var;
|
|
struct hlsl_ir_node *c;
|
|
unsigned int i;
|
|
|
|
if (type->class == HLSL_CLASS_ARRAY || type->class == HLSL_CLASS_STRUCT)
|
|
{
|
|
struct hlsl_ir_load *element_load;
|
|
struct hlsl_struct_field *field;
|
|
uint32_t elem_semantic_index;
|
|
|
|
for (i = 0; i < hlsl_type_element_count(type); ++i)
|
|
{
|
|
uint32_t element_modifiers = modifiers;
|
|
|
|
if (type->class == HLSL_CLASS_ARRAY)
|
|
{
|
|
elem_semantic_index = semantic_index
|
|
+ i * hlsl_type_get_array_element_reg_size(type->e.array.type, HLSL_REGSET_NUMERIC) / 4;
|
|
}
|
|
else
|
|
{
|
|
field = &type->e.record.fields[i];
|
|
if (hlsl_type_is_resource(field->type))
|
|
{
|
|
hlsl_fixme(ctx, &field->loc, "Prepend uniform copies for resource components within structs.");
|
|
continue;
|
|
}
|
|
validate_field_semantic(ctx, field);
|
|
semantic = &field->semantic;
|
|
elem_semantic_index = semantic->index;
|
|
loc = &field->loc;
|
|
element_modifiers |= field->storage_modifiers;
|
|
|
|
/* TODO: 'sample' modifier is not supported yet */
|
|
|
|
/* 'nointerpolation' always takes precedence, next the same is done for 'sample',
|
|
remaining modifiers are combined. */
|
|
if (element_modifiers & HLSL_STORAGE_NOINTERPOLATION)
|
|
{
|
|
element_modifiers &= ~HLSL_INTERPOLATION_MODIFIERS_MASK;
|
|
element_modifiers |= HLSL_STORAGE_NOINTERPOLATION;
|
|
}
|
|
}
|
|
|
|
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
|
|
return;
|
|
list_add_after(&lhs->node.entry, &c->entry);
|
|
|
|
/* This redundant load is expected to be deleted later by DCE. */
|
|
if (!(element_load = hlsl_new_load_index(ctx, &lhs->src, c, loc)))
|
|
return;
|
|
list_add_after(&c->entry, &element_load->node.entry);
|
|
|
|
prepend_input_copy_recurse(ctx, block, element_load, element_modifiers, semantic, elem_semantic_index);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
prepend_input_copy(ctx, block, lhs, modifiers, semantic, semantic_index);
|
|
}
|
|
}
|
|
|
|
/* Split inputs into two variables representing the semantic and temp registers,
|
|
* and copy the former to the latter, so that writes to input variables work. */
|
|
static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_var *var)
|
|
{
|
|
struct hlsl_ir_load *load;
|
|
|
|
/* This redundant load is expected to be deleted later by DCE. */
|
|
if (!(load = hlsl_new_var_load(ctx, var, &var->loc)))
|
|
return;
|
|
list_add_head(&block->instrs, &load->node.entry);
|
|
|
|
prepend_input_copy_recurse(ctx, block, load, var->storage_modifiers, &var->semantic, var->semantic.index);
|
|
}
|
|
|
|
static void append_output_copy(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_load *rhs,
|
|
uint32_t modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
|
|
{
|
|
struct hlsl_type *type = rhs->node.data_type, *vector_type;
|
|
struct vkd3d_shader_location *loc = &rhs->node.loc;
|
|
struct hlsl_ir_var *var = rhs->src.var;
|
|
struct hlsl_ir_node *c;
|
|
unsigned int i;
|
|
|
|
if (!hlsl_is_numeric_type(type))
|
|
{
|
|
struct vkd3d_string_buffer *string;
|
|
if (!(string = hlsl_type_to_string(ctx, type)))
|
|
return;
|
|
hlsl_fixme(ctx, &var->loc, "Output semantics for type %s.", string->buffer);
|
|
hlsl_release_string_buffer(ctx, string);
|
|
}
|
|
if (!semantic->name)
|
|
return;
|
|
|
|
vector_type = hlsl_get_vector_type(ctx, type->e.numeric.type, hlsl_type_minor_size(type));
|
|
|
|
for (i = 0; i < hlsl_type_major_size(type); ++i)
|
|
{
|
|
struct hlsl_ir_node *store;
|
|
struct hlsl_ir_var *output;
|
|
struct hlsl_ir_load *load;
|
|
|
|
if (!(output = add_semantic_var(ctx, var, vector_type, modifiers, semantic, semantic_index + i, true, loc)))
|
|
return;
|
|
|
|
if (type->class == HLSL_CLASS_MATRIX)
|
|
{
|
|
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
|
|
return;
|
|
hlsl_block_add_instr(block, c);
|
|
|
|
if (!(load = hlsl_new_load_index(ctx, &rhs->src, c, &var->loc)))
|
|
return;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
}
|
|
else
|
|
{
|
|
assert(i == 0);
|
|
|
|
if (!(load = hlsl_new_load_index(ctx, &rhs->src, NULL, &var->loc)))
|
|
return;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
}
|
|
|
|
if (!(store = hlsl_new_simple_store(ctx, output, &load->node)))
|
|
return;
|
|
hlsl_block_add_instr(block, store);
|
|
}
|
|
}
|
|
|
|
static void append_output_copy_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_load *rhs,
|
|
uint32_t modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index)
|
|
{
|
|
struct vkd3d_shader_location *loc = &rhs->node.loc;
|
|
struct hlsl_type *type = rhs->node.data_type;
|
|
struct hlsl_ir_var *var = rhs->src.var;
|
|
struct hlsl_ir_node *c;
|
|
unsigned int i;
|
|
|
|
if (type->class == HLSL_CLASS_ARRAY || type->class == HLSL_CLASS_STRUCT)
|
|
{
|
|
struct hlsl_ir_load *element_load;
|
|
struct hlsl_struct_field *field;
|
|
uint32_t elem_semantic_index;
|
|
|
|
for (i = 0; i < hlsl_type_element_count(type); ++i)
|
|
{
|
|
if (type->class == HLSL_CLASS_ARRAY)
|
|
{
|
|
elem_semantic_index = semantic_index
|
|
+ i * hlsl_type_get_array_element_reg_size(type->e.array.type, HLSL_REGSET_NUMERIC) / 4;
|
|
}
|
|
else
|
|
{
|
|
field = &type->e.record.fields[i];
|
|
if (hlsl_type_is_resource(field->type))
|
|
continue;
|
|
validate_field_semantic(ctx, field);
|
|
semantic = &field->semantic;
|
|
elem_semantic_index = semantic->index;
|
|
loc = &field->loc;
|
|
}
|
|
|
|
if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc)))
|
|
return;
|
|
hlsl_block_add_instr(block, c);
|
|
|
|
if (!(element_load = hlsl_new_load_index(ctx, &rhs->src, c, loc)))
|
|
return;
|
|
hlsl_block_add_instr(block, &element_load->node);
|
|
|
|
append_output_copy_recurse(ctx, block, element_load, modifiers, semantic, elem_semantic_index);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
append_output_copy(ctx, block, rhs, modifiers, semantic, semantic_index);
|
|
}
|
|
}
|
|
|
|
/* Split outputs into two variables representing the temp and semantic
|
|
* registers, and copy the former to the latter, so that reads from output
|
|
* variables work. */
|
|
static void append_output_var_copy(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_ir_var *var)
|
|
{
|
|
struct hlsl_ir_load *load;
|
|
|
|
/* This redundant load is expected to be deleted later by DCE. */
|
|
if (!(load = hlsl_new_var_load(ctx, var, &var->loc)))
|
|
return;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
|
|
append_output_copy_recurse(ctx, block, load, var->storage_modifiers, &var->semantic, var->semantic.index);
|
|
}
|
|
|
|
bool hlsl_transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *),
|
|
struct hlsl_block *block, void *context)
|
|
{
|
|
struct hlsl_ir_node *instr, *next;
|
|
bool progress = false;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
if (instr->type == HLSL_IR_IF)
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
|
|
progress |= hlsl_transform_ir(ctx, func, &iff->then_block, context);
|
|
progress |= hlsl_transform_ir(ctx, func, &iff->else_block, context);
|
|
}
|
|
else if (instr->type == HLSL_IR_LOOP)
|
|
{
|
|
progress |= hlsl_transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context);
|
|
}
|
|
else if (instr->type == HLSL_IR_SWITCH)
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
progress |= hlsl_transform_ir(ctx, func, &c->body, context);
|
|
}
|
|
}
|
|
|
|
progress |= func(ctx, instr, context);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
typedef bool (*PFN_lower_func)(struct hlsl_ctx *, struct hlsl_ir_node *, struct hlsl_block *);
|
|
|
|
static bool call_lower_func(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
PFN_lower_func func = context;
|
|
struct hlsl_block block;
|
|
|
|
hlsl_block_init(&block);
|
|
if (func(ctx, instr, &block))
|
|
{
|
|
struct hlsl_ir_node *replacement = LIST_ENTRY(list_tail(&block.instrs), struct hlsl_ir_node, entry);
|
|
|
|
list_move_before(&instr->entry, &block.instrs);
|
|
hlsl_replace_node(instr, replacement);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
hlsl_block_cleanup(&block);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Specific form of transform_ir() for passes which convert a single instruction
|
|
* to a block of one or more instructions. This helper takes care of setting up
|
|
* the block and calling hlsl_replace_node_with_block(). */
|
|
static bool lower_ir(struct hlsl_ctx *ctx, PFN_lower_func func, struct hlsl_block *block)
|
|
{
|
|
return hlsl_transform_ir(ctx, call_lower_func, block, func);
|
|
}
|
|
|
|
static bool transform_instr_derefs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
bool res;
|
|
bool (*func)(struct hlsl_ctx *ctx, struct hlsl_deref *, struct hlsl_ir_node *) = context;
|
|
|
|
switch(instr->type)
|
|
{
|
|
case HLSL_IR_LOAD:
|
|
res = func(ctx, &hlsl_ir_load(instr)->src, instr);
|
|
return res;
|
|
|
|
case HLSL_IR_STORE:
|
|
res = func(ctx, &hlsl_ir_store(instr)->lhs, instr);
|
|
return res;
|
|
|
|
case HLSL_IR_RESOURCE_LOAD:
|
|
res = func(ctx, &hlsl_ir_resource_load(instr)->resource, instr);
|
|
if (hlsl_ir_resource_load(instr)->sampler.var)
|
|
res |= func(ctx, &hlsl_ir_resource_load(instr)->sampler, instr);
|
|
return res;
|
|
|
|
case HLSL_IR_RESOURCE_STORE:
|
|
res = func(ctx, &hlsl_ir_resource_store(instr)->resource, instr);
|
|
return res;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool transform_derefs(struct hlsl_ctx *ctx,
|
|
bool (*func)(struct hlsl_ctx *ctx, struct hlsl_deref *, struct hlsl_ir_node *),
|
|
struct hlsl_block *block)
|
|
{
|
|
return hlsl_transform_ir(ctx, transform_instr_derefs, block, func);
|
|
}
|
|
|
|
struct recursive_call_ctx
|
|
{
|
|
const struct hlsl_ir_function_decl **backtrace;
|
|
size_t count, capacity;
|
|
};
|
|
|
|
static bool find_recursive_calls(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct recursive_call_ctx *call_ctx = context;
|
|
struct hlsl_ir_function_decl *decl;
|
|
const struct hlsl_ir_call *call;
|
|
size_t i;
|
|
|
|
if (instr->type != HLSL_IR_CALL)
|
|
return false;
|
|
call = hlsl_ir_call(instr);
|
|
decl = call->decl;
|
|
|
|
for (i = 0; i < call_ctx->count; ++i)
|
|
{
|
|
if (call_ctx->backtrace[i] == decl)
|
|
{
|
|
hlsl_error(ctx, &call->node.loc, VKD3D_SHADER_ERROR_HLSL_RECURSIVE_CALL,
|
|
"Recursive call to \"%s\".", decl->func->name);
|
|
/* Native returns E_NOTIMPL instead of E_FAIL here. */
|
|
ctx->result = VKD3D_ERROR_NOT_IMPLEMENTED;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!hlsl_array_reserve(ctx, (void **)&call_ctx->backtrace, &call_ctx->capacity,
|
|
call_ctx->count + 1, sizeof(*call_ctx->backtrace)))
|
|
return false;
|
|
call_ctx->backtrace[call_ctx->count++] = decl;
|
|
|
|
hlsl_transform_ir(ctx, find_recursive_calls, &decl->body, call_ctx);
|
|
|
|
--call_ctx->count;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void insert_early_return_break(struct hlsl_ctx *ctx,
|
|
struct hlsl_ir_function_decl *func, struct hlsl_ir_node *cf_instr)
|
|
{
|
|
struct hlsl_ir_node *iff, *jump;
|
|
struct hlsl_block then_block;
|
|
struct hlsl_ir_load *load;
|
|
|
|
hlsl_block_init(&then_block);
|
|
|
|
if (!(load = hlsl_new_var_load(ctx, func->early_return_var, &cf_instr->loc)))
|
|
return;
|
|
list_add_after(&cf_instr->entry, &load->node.entry);
|
|
|
|
if (!(jump = hlsl_new_jump(ctx, HLSL_IR_JUMP_BREAK, NULL, &cf_instr->loc)))
|
|
return;
|
|
hlsl_block_add_instr(&then_block, jump);
|
|
|
|
if (!(iff = hlsl_new_if(ctx, &load->node, &then_block, NULL, &cf_instr->loc)))
|
|
return;
|
|
list_add_after(&load->node.entry, &iff->entry);
|
|
}
|
|
|
|
/* Remove HLSL_IR_JUMP_RETURN calls by altering subsequent control flow. */
|
|
static bool lower_return(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *func,
|
|
struct hlsl_block *block, bool in_loop)
|
|
{
|
|
struct hlsl_ir_node *return_instr = NULL, *cf_instr = NULL;
|
|
struct hlsl_ir_node *instr, *next;
|
|
bool has_early_return = false;
|
|
|
|
/* SM1 has no function calls. SM4 does, but native d3dcompiler inlines
|
|
* everything anyway. We are safest following suit.
|
|
*
|
|
* The basic idea is to keep track of whether the function has executed an
|
|
* early return in a synthesized boolean variable (func->early_return_var)
|
|
* and guard all code after the return on that variable being false. In the
|
|
* case of loops we also replace the return with a break.
|
|
*
|
|
* The following algorithm loops over instructions in a block, recursing
|
|
* into inferior CF blocks, until it hits one of the following two things:
|
|
*
|
|
* - A return statement. In this case, we remove everything after the return
|
|
* statement in this block. We have to stop and do this in a separate
|
|
* loop, because instructions must be deleted in reverse order (due to
|
|
* def-use chains.)
|
|
*
|
|
* If we're inside of a loop CF block, we can instead just turn the
|
|
* return into a break, which offers the right semantics—except that it
|
|
* won't break out of nested loops.
|
|
*
|
|
* - A CF block which contains a return statement. After calling
|
|
* lower_return() on the CF block body, we stop, pull out everything after
|
|
* the CF instruction, shove it into an if block, and then lower that if
|
|
* block.
|
|
*
|
|
* (We could return a "did we make progress" boolean like hlsl_transform_ir()
|
|
* and run this pass multiple times, but we already know the only block
|
|
* that still needs to be addressed, so there's not much point.)
|
|
*
|
|
* If we're inside of a loop CF block, we again do things differently. We
|
|
* already turned any returns into breaks. If the block we just processed
|
|
* was conditional, then "break" did our work for us. If it was a loop,
|
|
* we need to propagate that break to the outer loop.
|
|
*
|
|
* We return true if there was an early return anywhere in the block we just
|
|
* processed (including CF contained inside that block).
|
|
*/
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
if (instr->type == HLSL_IR_CALL)
|
|
{
|
|
struct hlsl_ir_call *call = hlsl_ir_call(instr);
|
|
|
|
lower_return(ctx, call->decl, &call->decl->body, false);
|
|
}
|
|
else if (instr->type == HLSL_IR_IF)
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
|
|
has_early_return |= lower_return(ctx, func, &iff->then_block, in_loop);
|
|
has_early_return |= lower_return(ctx, func, &iff->else_block, in_loop);
|
|
|
|
if (has_early_return)
|
|
{
|
|
/* If we're in a loop, we don't need to do anything here. We
|
|
* turned the return into a break, and that will already skip
|
|
* anything that comes after this "if" block. */
|
|
if (!in_loop)
|
|
{
|
|
cf_instr = instr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (instr->type == HLSL_IR_LOOP)
|
|
{
|
|
has_early_return |= lower_return(ctx, func, &hlsl_ir_loop(instr)->body, true);
|
|
|
|
if (has_early_return)
|
|
{
|
|
if (in_loop)
|
|
{
|
|
/* "instr" is a nested loop. "return" breaks out of all
|
|
* loops, so break out of this one too now. */
|
|
insert_early_return_break(ctx, func, instr);
|
|
}
|
|
else
|
|
{
|
|
cf_instr = instr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (instr->type == HLSL_IR_JUMP)
|
|
{
|
|
struct hlsl_ir_jump *jump = hlsl_ir_jump(instr);
|
|
struct hlsl_ir_node *constant, *store;
|
|
|
|
if (jump->type == HLSL_IR_JUMP_RETURN)
|
|
{
|
|
if (!(constant = hlsl_new_bool_constant(ctx, true, &jump->node.loc)))
|
|
return false;
|
|
list_add_before(&jump->node.entry, &constant->entry);
|
|
|
|
if (!(store = hlsl_new_simple_store(ctx, func->early_return_var, constant)))
|
|
return false;
|
|
list_add_after(&constant->entry, &store->entry);
|
|
|
|
has_early_return = true;
|
|
if (in_loop)
|
|
{
|
|
jump->type = HLSL_IR_JUMP_BREAK;
|
|
}
|
|
else
|
|
{
|
|
return_instr = instr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (instr->type == HLSL_IR_SWITCH)
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
has_early_return |= lower_return(ctx, func, &c->body, true);
|
|
}
|
|
|
|
if (has_early_return)
|
|
{
|
|
if (in_loop)
|
|
{
|
|
/* For a 'switch' nested in a loop append a break after the 'switch'. */
|
|
insert_early_return_break(ctx, func, instr);
|
|
}
|
|
else
|
|
{
|
|
cf_instr = instr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (return_instr)
|
|
{
|
|
/* If we're in a loop, we should have used "break" instead. */
|
|
assert(!in_loop);
|
|
|
|
/* Iterate in reverse, to avoid use-after-free when unlinking sources from
|
|
* the "uses" list. */
|
|
LIST_FOR_EACH_ENTRY_SAFE_REV(instr, next, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
list_remove(&instr->entry);
|
|
hlsl_free_instr(instr);
|
|
|
|
/* Yes, we just freed it, but we're comparing pointers. */
|
|
if (instr == return_instr)
|
|
break;
|
|
}
|
|
}
|
|
else if (cf_instr)
|
|
{
|
|
struct list *tail = list_tail(&block->instrs);
|
|
struct hlsl_ir_node *not, *iff;
|
|
struct hlsl_block then_block;
|
|
struct hlsl_ir_load *load;
|
|
|
|
/* If we're in a loop, we should have used "break" instead. */
|
|
assert(!in_loop);
|
|
|
|
if (tail == &cf_instr->entry)
|
|
return has_early_return;
|
|
|
|
hlsl_block_init(&then_block);
|
|
list_move_slice_tail(&then_block.instrs, list_next(&block->instrs, &cf_instr->entry), tail);
|
|
lower_return(ctx, func, &then_block, in_loop);
|
|
|
|
if (!(load = hlsl_new_var_load(ctx, func->early_return_var, &cf_instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
|
|
if (!(not = hlsl_new_unary_expr(ctx, HLSL_OP1_LOGIC_NOT, &load->node, &cf_instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, not);
|
|
|
|
if (!(iff = hlsl_new_if(ctx, not, &then_block, NULL, &cf_instr->loc)))
|
|
return false;
|
|
list_add_tail(&block->instrs, &iff->entry);
|
|
}
|
|
|
|
return has_early_return;
|
|
}
|
|
|
|
/* Remove HLSL_IR_CALL instructions by inlining them. */
|
|
static bool lower_calls(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
const struct hlsl_ir_function_decl *decl;
|
|
struct hlsl_ir_call *call;
|
|
struct hlsl_block block;
|
|
|
|
if (instr->type != HLSL_IR_CALL)
|
|
return false;
|
|
call = hlsl_ir_call(instr);
|
|
decl = call->decl;
|
|
|
|
if (!decl->has_body)
|
|
hlsl_error(ctx, &call->node.loc, VKD3D_SHADER_ERROR_HLSL_NOT_DEFINED,
|
|
"Function \"%s\" is not defined.", decl->func->name);
|
|
|
|
if (!hlsl_clone_block(ctx, &block, &decl->body))
|
|
return false;
|
|
list_move_before(&call->node.entry, &block.instrs);
|
|
|
|
list_remove(&call->node.entry);
|
|
hlsl_free_instr(&call->node);
|
|
return true;
|
|
}
|
|
|
|
static struct hlsl_ir_node *add_zero_mipmap_level(struct hlsl_ctx *ctx, struct hlsl_ir_node *index,
|
|
const struct vkd3d_shader_location *loc)
|
|
{
|
|
unsigned int dim_count = index->data_type->dimx;
|
|
struct hlsl_ir_node *store, *zero;
|
|
struct hlsl_ir_load *coords_load;
|
|
struct hlsl_deref coords_deref;
|
|
struct hlsl_ir_var *coords;
|
|
|
|
assert(dim_count < 4);
|
|
|
|
if (!(coords = hlsl_new_synthetic_var(ctx, "coords",
|
|
hlsl_get_vector_type(ctx, HLSL_TYPE_UINT, dim_count + 1), loc)))
|
|
return NULL;
|
|
|
|
hlsl_init_simple_deref_from_var(&coords_deref, coords);
|
|
if (!(store = hlsl_new_store_index(ctx, &coords_deref, NULL, index, (1u << dim_count) - 1, loc)))
|
|
return NULL;
|
|
list_add_after(&index->entry, &store->entry);
|
|
|
|
if (!(zero = hlsl_new_uint_constant(ctx, 0, loc)))
|
|
return NULL;
|
|
list_add_after(&store->entry, &zero->entry);
|
|
|
|
if (!(store = hlsl_new_store_index(ctx, &coords_deref, NULL, zero, 1u << dim_count, loc)))
|
|
return NULL;
|
|
list_add_after(&zero->entry, &store->entry);
|
|
|
|
if (!(coords_load = hlsl_new_var_load(ctx, coords, loc)))
|
|
return NULL;
|
|
list_add_after(&store->entry, &coords_load->node.entry);
|
|
|
|
return &coords_load->node;
|
|
}
|
|
|
|
/* hlsl_ir_swizzle nodes that directly point to a matrix value are only a parse-time construct that
|
|
* represents matrix swizzles (e.g. mat._m01_m23) before we know if they will be used in the lhs of
|
|
* an assignment or as a value made from different components of the matrix. The former cases should
|
|
* have already been split into several separate assignments, but the latter are lowered by this
|
|
* pass. */
|
|
static bool lower_matrix_swizzles(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_swizzle *swizzle;
|
|
struct hlsl_ir_load *var_load;
|
|
struct hlsl_deref var_deref;
|
|
struct hlsl_type *matrix_type;
|
|
struct hlsl_ir_var *var;
|
|
unsigned int x, y, k, i;
|
|
|
|
if (instr->type != HLSL_IR_SWIZZLE)
|
|
return false;
|
|
swizzle = hlsl_ir_swizzle(instr);
|
|
matrix_type = swizzle->val.node->data_type;
|
|
if (matrix_type->class != HLSL_CLASS_MATRIX)
|
|
return false;
|
|
|
|
if (!(var = hlsl_new_synthetic_var(ctx, "matrix-swizzle", instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_init_simple_deref_from_var(&var_deref, var);
|
|
|
|
for (i = 0; i < instr->data_type->dimx; ++i)
|
|
{
|
|
struct hlsl_block store_block;
|
|
struct hlsl_ir_node *load;
|
|
|
|
y = (swizzle->swizzle >> (8 * i + 4)) & 0xf;
|
|
x = (swizzle->swizzle >> 8 * i) & 0xf;
|
|
k = y * matrix_type->dimx + x;
|
|
|
|
if (!(load = hlsl_add_load_component(ctx, block, swizzle->val.node, k, &instr->loc)))
|
|
return false;
|
|
|
|
if (!hlsl_new_store_component(ctx, &store_block, &var_deref, i, load))
|
|
return false;
|
|
hlsl_block_add_block(block, &store_block);
|
|
}
|
|
|
|
if (!(var_load = hlsl_new_var_load(ctx, var, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &var_load->node);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* hlsl_ir_index nodes are a parse-time construct used to represent array indexing and struct
|
|
* record access before knowing if they will be used in the lhs of an assignment --in which case
|
|
* they are lowered into a deref-- or as the load of an element within a larger value.
|
|
* For the latter case, this pass takes care of lowering hlsl_ir_indexes into individual
|
|
* hlsl_ir_loads, or individual hlsl_ir_resource_loads, in case the indexing is a
|
|
* resource access. */
|
|
static bool lower_index_loads(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *val, *store;
|
|
struct hlsl_deref var_deref;
|
|
struct hlsl_ir_index *index;
|
|
struct hlsl_ir_load *load;
|
|
struct hlsl_ir_var *var;
|
|
|
|
if (instr->type != HLSL_IR_INDEX)
|
|
return false;
|
|
index = hlsl_ir_index(instr);
|
|
val = index->val.node;
|
|
|
|
if (hlsl_index_is_resource_access(index))
|
|
{
|
|
unsigned int dim_count = hlsl_sampler_dim_count(val->data_type->sampler_dim);
|
|
struct hlsl_ir_node *coords = index->idx.node;
|
|
struct hlsl_resource_load_params params = {0};
|
|
struct hlsl_ir_node *resource_load;
|
|
|
|
assert(coords->data_type->class == HLSL_CLASS_VECTOR);
|
|
assert(coords->data_type->e.numeric.type == HLSL_TYPE_UINT);
|
|
assert(coords->data_type->dimx == dim_count);
|
|
|
|
if (!(coords = add_zero_mipmap_level(ctx, coords, &instr->loc)))
|
|
return false;
|
|
|
|
params.type = HLSL_RESOURCE_LOAD;
|
|
params.resource = val;
|
|
params.coords = coords;
|
|
params.format = val->data_type->e.resource.format;
|
|
|
|
if (!(resource_load = hlsl_new_resource_load(ctx, ¶ms, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, resource_load);
|
|
return true;
|
|
}
|
|
|
|
if (!(var = hlsl_new_synthetic_var(ctx, "index-val", val->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_init_simple_deref_from_var(&var_deref, var);
|
|
|
|
if (!(store = hlsl_new_simple_store(ctx, var, val)))
|
|
return false;
|
|
hlsl_block_add_instr(block, store);
|
|
|
|
if (hlsl_index_is_noncontiguous(index))
|
|
{
|
|
struct hlsl_ir_node *mat = index->val.node;
|
|
struct hlsl_deref row_deref;
|
|
unsigned int i;
|
|
|
|
assert(!hlsl_type_is_row_major(mat->data_type));
|
|
|
|
if (!(var = hlsl_new_synthetic_var(ctx, "row", instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_init_simple_deref_from_var(&row_deref, var);
|
|
|
|
for (i = 0; i < mat->data_type->dimx; ++i)
|
|
{
|
|
struct hlsl_ir_node *c;
|
|
|
|
if (!(c = hlsl_new_uint_constant(ctx, i, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, c);
|
|
|
|
if (!(load = hlsl_new_load_index(ctx, &var_deref, c, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
|
|
if (!(load = hlsl_new_load_index(ctx, &load->src, index->idx.node, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
|
|
if (!(store = hlsl_new_store_index(ctx, &row_deref, c, &load->node, 0, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, store);
|
|
}
|
|
|
|
if (!(load = hlsl_new_var_load(ctx, var, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
}
|
|
else
|
|
{
|
|
if (!(load = hlsl_new_load_index(ctx, &var_deref, index->idx.node, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &load->node);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Lower casts from vec1 to vecN to swizzles. */
|
|
static bool lower_broadcasts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
const struct hlsl_type *src_type, *dst_type;
|
|
struct hlsl_type *dst_scalar_type;
|
|
struct hlsl_ir_expr *cast;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
cast = hlsl_ir_expr(instr);
|
|
if (cast->op != HLSL_OP1_CAST)
|
|
return false;
|
|
src_type = cast->operands[0].node->data_type;
|
|
dst_type = cast->node.data_type;
|
|
|
|
if (src_type->class <= HLSL_CLASS_VECTOR && dst_type->class <= HLSL_CLASS_VECTOR && src_type->dimx == 1)
|
|
{
|
|
struct hlsl_ir_node *new_cast, *swizzle;
|
|
|
|
dst_scalar_type = hlsl_get_scalar_type(ctx, dst_type->e.numeric.type);
|
|
/* We need to preserve the cast since it might be doing more than just
|
|
* turning the scalar into a vector. */
|
|
if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_scalar_type, &cast->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, new_cast);
|
|
|
|
if (dst_type->dimx != 1)
|
|
{
|
|
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), dst_type->dimx, new_cast, &cast->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, swizzle);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Allocate a unique, ordered index to each instruction, which will be used for
|
|
* copy propagation and computing liveness ranges.
|
|
* Index 0 means unused; index 1 means function entry, so start at 2. */
|
|
static unsigned int index_instructions(struct hlsl_block *block, unsigned int index)
|
|
{
|
|
struct hlsl_ir_node *instr;
|
|
|
|
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
instr->index = index++;
|
|
|
|
if (instr->type == HLSL_IR_IF)
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
index = index_instructions(&iff->then_block, index);
|
|
index = index_instructions(&iff->else_block, index);
|
|
}
|
|
else if (instr->type == HLSL_IR_LOOP)
|
|
{
|
|
index = index_instructions(&hlsl_ir_loop(instr)->body, index);
|
|
hlsl_ir_loop(instr)->next_index = index;
|
|
}
|
|
else if (instr->type == HLSL_IR_SWITCH)
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
index = index_instructions(&c->body, index);
|
|
}
|
|
}
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Copy propagation. The basic idea is to recognize instruction sequences of the
|
|
* form:
|
|
*
|
|
* 2: <any instruction>
|
|
* 3: v = @2
|
|
* 4: load(v)
|
|
*
|
|
* and replace the load (@4) with the original instruction (@2).
|
|
* This works for multiple components, even if they're written using separate
|
|
* store instructions, as long as the rhs is the same in every case. This basic
|
|
* detection is implemented by copy_propagation_replace_with_single_instr().
|
|
*
|
|
* In some cases, the load itself might not have a single source, but a
|
|
* subsequent swizzle might; hence we also try to replace swizzles of loads.
|
|
*
|
|
* We use the same infrastructure to implement a more specialized
|
|
* transformation. We recognize sequences of the form:
|
|
*
|
|
* 2: 123
|
|
* 3: var.x = @2
|
|
* 4: 345
|
|
* 5: var.y = @4
|
|
* 6: load(var.xy)
|
|
*
|
|
* where the load (@6) originates from different sources but that are constant,
|
|
* and transform it into a single constant vector. This latter pass is done
|
|
* by copy_propagation_replace_with_constant_vector().
|
|
*
|
|
* This is a specialized form of vectorization, and begs the question: why does
|
|
* the load need to be involved? Can we just vectorize the stores into a single
|
|
* instruction, and then use "normal" copy-prop to convert that into a single
|
|
* vector?
|
|
*
|
|
* In general, the answer is yes, but there is a special case which necessitates
|
|
* the use of this transformation: non-uniform control flow. Copy-prop can act
|
|
* across some control flow, and in cases like the following:
|
|
*
|
|
* 2: 123
|
|
* 3: var.x = @2
|
|
* 4: if (...)
|
|
* 5: 456
|
|
* 6: var.y = @5
|
|
* 7: load(var.xy)
|
|
*
|
|
* we can copy-prop the load (@7) into a constant vector {123, 456}, but we
|
|
* cannot easily vectorize the stores @3 and @6.
|
|
*/
|
|
|
|
struct copy_propagation_value
|
|
{
|
|
unsigned int timestamp;
|
|
/* If node is NULL, the value was dynamically written and thus, it is unknown.*/
|
|
struct hlsl_ir_node *node;
|
|
unsigned int component;
|
|
};
|
|
|
|
struct copy_propagation_component_trace
|
|
{
|
|
struct copy_propagation_value *records;
|
|
size_t record_count, record_capacity;
|
|
};
|
|
|
|
struct copy_propagation_var_def
|
|
{
|
|
struct rb_entry entry;
|
|
struct hlsl_ir_var *var;
|
|
struct copy_propagation_component_trace traces[];
|
|
};
|
|
|
|
struct copy_propagation_state
|
|
{
|
|
struct rb_tree var_defs;
|
|
struct copy_propagation_state *parent;
|
|
};
|
|
|
|
static int copy_propagation_var_def_compare(const void *key, const struct rb_entry *entry)
|
|
{
|
|
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
|
|
uintptr_t key_int = (uintptr_t)key, entry_int = (uintptr_t)var_def->var;
|
|
|
|
return (key_int > entry_int) - (key_int < entry_int);
|
|
}
|
|
|
|
static void copy_propagation_var_def_destroy(struct rb_entry *entry, void *context)
|
|
{
|
|
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
|
|
unsigned int component_count = hlsl_type_component_count(var_def->var->data_type);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < component_count; ++i)
|
|
vkd3d_free(var_def->traces[i].records);
|
|
vkd3d_free(var_def);
|
|
}
|
|
|
|
static struct copy_propagation_value *copy_propagation_get_value_at_time(
|
|
struct copy_propagation_component_trace *trace, unsigned int time)
|
|
{
|
|
int r;
|
|
|
|
for (r = trace->record_count - 1; r >= 0; --r)
|
|
{
|
|
if (trace->records[r].timestamp < time)
|
|
return &trace->records[r];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct copy_propagation_value *copy_propagation_get_value(const struct copy_propagation_state *state,
|
|
const struct hlsl_ir_var *var, unsigned int component, unsigned int time)
|
|
{
|
|
for (; state; state = state->parent)
|
|
{
|
|
struct rb_entry *entry = rb_get(&state->var_defs, var);
|
|
if (entry)
|
|
{
|
|
struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
|
|
unsigned int component_count = hlsl_type_component_count(var->data_type);
|
|
struct copy_propagation_value *value;
|
|
|
|
assert(component < component_count);
|
|
value = copy_propagation_get_value_at_time(&var_def->traces[component], time);
|
|
|
|
if (!value)
|
|
continue;
|
|
|
|
if (value->node)
|
|
return value;
|
|
else
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct copy_propagation_var_def *copy_propagation_create_var_def(struct hlsl_ctx *ctx,
|
|
struct copy_propagation_state *state, struct hlsl_ir_var *var)
|
|
{
|
|
struct rb_entry *entry = rb_get(&state->var_defs, var);
|
|
struct copy_propagation_var_def *var_def;
|
|
unsigned int component_count = hlsl_type_component_count(var->data_type);
|
|
int res;
|
|
|
|
if (entry)
|
|
return RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry);
|
|
|
|
if (!(var_def = hlsl_alloc(ctx, offsetof(struct copy_propagation_var_def, traces[component_count]))))
|
|
return NULL;
|
|
|
|
var_def->var = var;
|
|
|
|
res = rb_put(&state->var_defs, var, &var_def->entry);
|
|
assert(!res);
|
|
|
|
return var_def;
|
|
}
|
|
|
|
static void copy_propagation_trace_record_value(struct hlsl_ctx *ctx,
|
|
struct copy_propagation_component_trace *trace, struct hlsl_ir_node *node,
|
|
unsigned int component, unsigned int time)
|
|
{
|
|
assert(!trace->record_count || trace->records[trace->record_count - 1].timestamp < time);
|
|
|
|
if (!hlsl_array_reserve(ctx, (void **)&trace->records, &trace->record_capacity,
|
|
trace->record_count + 1, sizeof(trace->records[0])))
|
|
return;
|
|
|
|
trace->records[trace->record_count].timestamp = time;
|
|
trace->records[trace->record_count].node = node;
|
|
trace->records[trace->record_count].component = component;
|
|
|
|
++trace->record_count;
|
|
}
|
|
|
|
static void copy_propagation_invalidate_variable(struct hlsl_ctx *ctx, struct copy_propagation_var_def *var_def,
|
|
unsigned int comp, unsigned char writemask, unsigned int time)
|
|
{
|
|
unsigned i;
|
|
|
|
TRACE("Invalidate variable %s[%u]%s.\n", var_def->var->name, comp, debug_hlsl_writemask(writemask));
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
{
|
|
if (writemask & (1u << i))
|
|
{
|
|
struct copy_propagation_component_trace *trace = &var_def->traces[comp + i];
|
|
|
|
/* Don't add an invalidate record if it is already present. */
|
|
if (trace->record_count && trace->records[trace->record_count - 1].timestamp == time)
|
|
{
|
|
assert(!trace->records[trace->record_count - 1].node);
|
|
continue;
|
|
}
|
|
|
|
copy_propagation_trace_record_value(ctx, trace, NULL, 0, time);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void copy_propagation_invalidate_variable_from_deref_recurse(struct hlsl_ctx *ctx,
|
|
struct copy_propagation_var_def *var_def, const struct hlsl_deref *deref,
|
|
struct hlsl_type *type, unsigned int depth, unsigned int comp_start, unsigned char writemask,
|
|
unsigned int time)
|
|
{
|
|
unsigned int i, subtype_comp_count;
|
|
struct hlsl_ir_node *path_node;
|
|
struct hlsl_type *subtype;
|
|
|
|
if (depth == deref->path_len)
|
|
{
|
|
copy_propagation_invalidate_variable(ctx, var_def, comp_start, writemask, time);
|
|
return;
|
|
}
|
|
|
|
path_node = deref->path[depth].node;
|
|
subtype = hlsl_get_element_type_from_path_index(ctx, type, path_node);
|
|
|
|
if (type->class == HLSL_CLASS_STRUCT)
|
|
{
|
|
unsigned int idx = hlsl_ir_constant(path_node)->value.u[0].u;
|
|
|
|
for (i = 0; i < idx; ++i)
|
|
comp_start += hlsl_type_component_count(type->e.record.fields[i].type);
|
|
|
|
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype,
|
|
depth + 1, comp_start, writemask, time);
|
|
}
|
|
else
|
|
{
|
|
subtype_comp_count = hlsl_type_component_count(subtype);
|
|
|
|
if (path_node->type == HLSL_IR_CONSTANT)
|
|
{
|
|
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype,
|
|
depth + 1, hlsl_ir_constant(path_node)->value.u[0].u * subtype_comp_count,
|
|
writemask, time);
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < hlsl_type_element_count(type); ++i)
|
|
{
|
|
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype,
|
|
depth + 1, i * subtype_comp_count, writemask, time);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void copy_propagation_invalidate_variable_from_deref(struct hlsl_ctx *ctx,
|
|
struct copy_propagation_var_def *var_def, const struct hlsl_deref *deref,
|
|
unsigned char writemask, unsigned int time)
|
|
{
|
|
copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, deref->var->data_type,
|
|
0, 0, writemask, time);
|
|
}
|
|
|
|
static void copy_propagation_set_value(struct hlsl_ctx *ctx, struct copy_propagation_var_def *var_def,
|
|
unsigned int comp, unsigned char writemask, struct hlsl_ir_node *instr, unsigned int time)
|
|
{
|
|
unsigned int i, j = 0;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
{
|
|
if (writemask & (1u << i))
|
|
{
|
|
struct copy_propagation_component_trace *trace = &var_def->traces[comp + i];
|
|
|
|
TRACE("Variable %s[%u] is written by instruction %p%s.\n",
|
|
var_def->var->name, comp + i, instr, debug_hlsl_writemask(1u << i));
|
|
|
|
copy_propagation_trace_record_value(ctx, trace, instr, j++, time);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool copy_propagation_replace_with_single_instr(struct hlsl_ctx *ctx,
|
|
const struct copy_propagation_state *state, const struct hlsl_ir_load *load,
|
|
uint32_t swizzle, struct hlsl_ir_node *instr)
|
|
{
|
|
const unsigned int instr_component_count = hlsl_type_component_count(instr->data_type);
|
|
const struct hlsl_deref *deref = &load->src;
|
|
const struct hlsl_ir_var *var = deref->var;
|
|
struct hlsl_ir_node *new_instr = NULL;
|
|
unsigned int time = load->node.index;
|
|
unsigned int start, count, i;
|
|
uint32_t ret_swizzle = 0;
|
|
|
|
if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count))
|
|
return false;
|
|
|
|
for (i = 0; i < instr_component_count; ++i)
|
|
{
|
|
struct copy_propagation_value *value;
|
|
|
|
if (!(value = copy_propagation_get_value(state, var, start + hlsl_swizzle_get_component(swizzle, i),
|
|
time)))
|
|
return false;
|
|
|
|
if (!new_instr)
|
|
{
|
|
new_instr = value->node;
|
|
}
|
|
else if (new_instr != value->node)
|
|
{
|
|
TRACE("No single source for propagating load from %s[%u-%u]%s\n",
|
|
var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count));
|
|
return false;
|
|
}
|
|
ret_swizzle |= value->component << HLSL_SWIZZLE_SHIFT(i);
|
|
}
|
|
|
|
TRACE("Load from %s[%u-%u]%s propagated as instruction %p%s.\n",
|
|
var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count),
|
|
new_instr, debug_hlsl_swizzle(ret_swizzle, instr_component_count));
|
|
|
|
if (new_instr->data_type->class == HLSL_CLASS_SCALAR || new_instr->data_type->class == HLSL_CLASS_VECTOR)
|
|
{
|
|
struct hlsl_ir_node *swizzle_node;
|
|
|
|
if (!(swizzle_node = hlsl_new_swizzle(ctx, ret_swizzle, instr_component_count, new_instr, &instr->loc)))
|
|
return false;
|
|
list_add_before(&instr->entry, &swizzle_node->entry);
|
|
new_instr = swizzle_node;
|
|
}
|
|
|
|
hlsl_replace_node(instr, new_instr);
|
|
return true;
|
|
}
|
|
|
|
static bool copy_propagation_replace_with_constant_vector(struct hlsl_ctx *ctx,
|
|
const struct copy_propagation_state *state, const struct hlsl_ir_load *load,
|
|
uint32_t swizzle, struct hlsl_ir_node *instr)
|
|
{
|
|
const unsigned int instr_component_count = hlsl_type_component_count(instr->data_type);
|
|
const struct hlsl_deref *deref = &load->src;
|
|
const struct hlsl_ir_var *var = deref->var;
|
|
struct hlsl_constant_value values = {0};
|
|
unsigned int time = load->node.index;
|
|
unsigned int start, count, i;
|
|
struct hlsl_ir_node *cons;
|
|
|
|
if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count))
|
|
return false;
|
|
|
|
for (i = 0; i < instr_component_count; ++i)
|
|
{
|
|
struct copy_propagation_value *value;
|
|
|
|
if (!(value = copy_propagation_get_value(state, var, start + hlsl_swizzle_get_component(swizzle, i),
|
|
time)) || value->node->type != HLSL_IR_CONSTANT)
|
|
return false;
|
|
|
|
values.u[i] = hlsl_ir_constant(value->node)->value.u[value->component];
|
|
}
|
|
|
|
if (!(cons = hlsl_new_constant(ctx, instr->data_type, &values, &instr->loc)))
|
|
return false;
|
|
list_add_before(&instr->entry, &cons->entry);
|
|
|
|
TRACE("Load from %s[%u-%u]%s turned into a constant %p.\n",
|
|
var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count), cons);
|
|
|
|
hlsl_replace_node(instr, cons);
|
|
return true;
|
|
}
|
|
|
|
static bool copy_propagation_transform_load(struct hlsl_ctx *ctx,
|
|
struct hlsl_ir_load *load, struct copy_propagation_state *state)
|
|
{
|
|
struct hlsl_type *type = load->node.data_type;
|
|
|
|
switch (type->class)
|
|
{
|
|
case HLSL_CLASS_DEPTH_STENCIL_STATE:
|
|
case HLSL_CLASS_SCALAR:
|
|
case HLSL_CLASS_VECTOR:
|
|
case HLSL_CLASS_PIXEL_SHADER:
|
|
case HLSL_CLASS_RASTERIZER_STATE:
|
|
case HLSL_CLASS_SAMPLER:
|
|
case HLSL_CLASS_TEXTURE:
|
|
case HLSL_CLASS_UAV:
|
|
case HLSL_CLASS_VERTEX_SHADER:
|
|
break;
|
|
|
|
case HLSL_CLASS_MATRIX:
|
|
case HLSL_CLASS_ARRAY:
|
|
case HLSL_CLASS_STRUCT:
|
|
case HLSL_CLASS_CONSTANT_BUFFER:
|
|
/* FIXME: Actually we shouldn't even get here, but we don't split
|
|
* matrices yet. */
|
|
return false;
|
|
|
|
case HLSL_CLASS_DEPTH_STENCIL_VIEW:
|
|
case HLSL_CLASS_EFFECT_GROUP:
|
|
case HLSL_CLASS_PASS:
|
|
case HLSL_CLASS_RENDER_TARGET_VIEW:
|
|
case HLSL_CLASS_STRING:
|
|
case HLSL_CLASS_TECHNIQUE:
|
|
case HLSL_CLASS_VOID:
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
if (copy_propagation_replace_with_constant_vector(ctx, state, load, HLSL_SWIZZLE(X, Y, Z, W), &load->node))
|
|
return true;
|
|
|
|
if (copy_propagation_replace_with_single_instr(ctx, state, load, HLSL_SWIZZLE(X, Y, Z, W), &load->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool copy_propagation_transform_swizzle(struct hlsl_ctx *ctx,
|
|
struct hlsl_ir_swizzle *swizzle, struct copy_propagation_state *state)
|
|
{
|
|
struct hlsl_ir_load *load;
|
|
|
|
if (swizzle->val.node->type != HLSL_IR_LOAD)
|
|
return false;
|
|
load = hlsl_ir_load(swizzle->val.node);
|
|
|
|
if (copy_propagation_replace_with_constant_vector(ctx, state, load, swizzle->swizzle, &swizzle->node))
|
|
return true;
|
|
|
|
if (copy_propagation_replace_with_single_instr(ctx, state, load, swizzle->swizzle, &swizzle->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool copy_propagation_transform_object_load(struct hlsl_ctx *ctx,
|
|
struct hlsl_deref *deref, struct copy_propagation_state *state, unsigned int time)
|
|
{
|
|
struct copy_propagation_value *value;
|
|
struct hlsl_ir_load *load;
|
|
unsigned int start, count;
|
|
|
|
if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count))
|
|
return false;
|
|
assert(count == 1);
|
|
|
|
if (!(value = copy_propagation_get_value(state, deref->var, start, time)))
|
|
return false;
|
|
assert(value->component == 0);
|
|
|
|
/* Only HLSL_IR_LOAD can produce an object. */
|
|
load = hlsl_ir_load(value->node);
|
|
|
|
/* As we are replacing the instruction's deref (with the one in the hlsl_ir_load) and not the
|
|
* instruction itself, we won't be able to rely on the value retrieved by
|
|
* copy_propagation_get_value() for the new deref in subsequent iterations of copy propagation.
|
|
* This is because another value may be written to that deref between the hlsl_ir_load and
|
|
* this instruction.
|
|
*
|
|
* For this reason, we only replace the new deref when it corresponds to a uniform variable,
|
|
* which cannot be written to.
|
|
*
|
|
* In a valid shader, all object references must resolve statically to a single uniform object.
|
|
* If this is the case, we can expect copy propagation on regular store/loads and the other
|
|
* compilation passes to replace all hlsl_ir_loads with loads to uniform objects, so this
|
|
* implementation is complete, even with this restriction.
|
|
*/
|
|
if (!load->src.var->is_uniform)
|
|
{
|
|
TRACE("Ignoring load from non-uniform object variable %s\n", load->src.var->name);
|
|
return false;
|
|
}
|
|
|
|
hlsl_cleanup_deref(deref);
|
|
hlsl_copy_deref(ctx, deref, &load->src);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool copy_propagation_transform_resource_load(struct hlsl_ctx *ctx,
|
|
struct hlsl_ir_resource_load *load, struct copy_propagation_state *state)
|
|
{
|
|
bool progress = false;
|
|
|
|
progress |= copy_propagation_transform_object_load(ctx, &load->resource, state, load->node.index);
|
|
if (load->sampler.var)
|
|
progress |= copy_propagation_transform_object_load(ctx, &load->sampler, state, load->node.index);
|
|
return progress;
|
|
}
|
|
|
|
static bool copy_propagation_transform_resource_store(struct hlsl_ctx *ctx,
|
|
struct hlsl_ir_resource_store *store, struct copy_propagation_state *state)
|
|
{
|
|
bool progress = false;
|
|
|
|
progress |= copy_propagation_transform_object_load(ctx, &store->resource, state, store->node.index);
|
|
return progress;
|
|
}
|
|
|
|
static void copy_propagation_record_store(struct hlsl_ctx *ctx, struct hlsl_ir_store *store,
|
|
struct copy_propagation_state *state)
|
|
{
|
|
struct copy_propagation_var_def *var_def;
|
|
struct hlsl_deref *lhs = &store->lhs;
|
|
struct hlsl_ir_var *var = lhs->var;
|
|
unsigned int start, count;
|
|
|
|
if (!(var_def = copy_propagation_create_var_def(ctx, state, var)))
|
|
return;
|
|
|
|
if (hlsl_component_index_range_from_deref(ctx, lhs, &start, &count))
|
|
{
|
|
unsigned int writemask = store->writemask;
|
|
|
|
if (!hlsl_is_numeric_type(store->rhs.node->data_type))
|
|
writemask = VKD3DSP_WRITEMASK_0;
|
|
copy_propagation_set_value(ctx, var_def, start, writemask, store->rhs.node, store->node.index);
|
|
}
|
|
else
|
|
{
|
|
copy_propagation_invalidate_variable_from_deref(ctx, var_def, lhs, store->writemask,
|
|
store->node.index);
|
|
}
|
|
}
|
|
|
|
static void copy_propagation_state_init(struct hlsl_ctx *ctx, struct copy_propagation_state *state,
|
|
struct copy_propagation_state *parent)
|
|
{
|
|
rb_init(&state->var_defs, copy_propagation_var_def_compare);
|
|
state->parent = parent;
|
|
}
|
|
|
|
static void copy_propagation_state_destroy(struct copy_propagation_state *state)
|
|
{
|
|
rb_destroy(&state->var_defs, copy_propagation_var_def_destroy, NULL);
|
|
}
|
|
|
|
static void copy_propagation_invalidate_from_block(struct hlsl_ctx *ctx, struct copy_propagation_state *state,
|
|
struct hlsl_block *block, unsigned int time)
|
|
{
|
|
struct hlsl_ir_node *instr;
|
|
|
|
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_STORE:
|
|
{
|
|
struct hlsl_ir_store *store = hlsl_ir_store(instr);
|
|
struct copy_propagation_var_def *var_def;
|
|
struct hlsl_deref *lhs = &store->lhs;
|
|
struct hlsl_ir_var *var = lhs->var;
|
|
|
|
if (!(var_def = copy_propagation_create_var_def(ctx, state, var)))
|
|
continue;
|
|
|
|
copy_propagation_invalidate_variable_from_deref(ctx, var_def, lhs, store->writemask, time);
|
|
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_IF:
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
|
|
copy_propagation_invalidate_from_block(ctx, state, &iff->then_block, time);
|
|
copy_propagation_invalidate_from_block(ctx, state, &iff->else_block, time);
|
|
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_LOOP:
|
|
{
|
|
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
|
|
|
|
copy_propagation_invalidate_from_block(ctx, state, &loop->body, time);
|
|
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_SWITCH:
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
copy_propagation_invalidate_from_block(ctx, state, &c->body, time);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block,
|
|
struct copy_propagation_state *state);
|
|
|
|
static bool copy_propagation_process_if(struct hlsl_ctx *ctx, struct hlsl_ir_if *iff,
|
|
struct copy_propagation_state *state)
|
|
{
|
|
struct copy_propagation_state inner_state;
|
|
bool progress = false;
|
|
|
|
copy_propagation_state_init(ctx, &inner_state, state);
|
|
progress |= copy_propagation_transform_block(ctx, &iff->then_block, &inner_state);
|
|
copy_propagation_state_destroy(&inner_state);
|
|
|
|
copy_propagation_state_init(ctx, &inner_state, state);
|
|
progress |= copy_propagation_transform_block(ctx, &iff->else_block, &inner_state);
|
|
copy_propagation_state_destroy(&inner_state);
|
|
|
|
/* Ideally we'd invalidate the outer state looking at what was
|
|
* touched in the two inner states, but this doesn't work for
|
|
* loops (because we need to know what is invalidated in advance),
|
|
* so we need copy_propagation_invalidate_from_block() anyway. */
|
|
copy_propagation_invalidate_from_block(ctx, state, &iff->then_block, iff->node.index);
|
|
copy_propagation_invalidate_from_block(ctx, state, &iff->else_block, iff->node.index);
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool copy_propagation_process_loop(struct hlsl_ctx *ctx, struct hlsl_ir_loop *loop,
|
|
struct copy_propagation_state *state)
|
|
{
|
|
struct copy_propagation_state inner_state;
|
|
bool progress = false;
|
|
|
|
copy_propagation_invalidate_from_block(ctx, state, &loop->body, loop->node.index);
|
|
|
|
copy_propagation_state_init(ctx, &inner_state, state);
|
|
progress |= copy_propagation_transform_block(ctx, &loop->body, &inner_state);
|
|
copy_propagation_state_destroy(&inner_state);
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool copy_propagation_process_switch(struct hlsl_ctx *ctx, struct hlsl_ir_switch *s,
|
|
struct copy_propagation_state *state)
|
|
{
|
|
struct copy_propagation_state inner_state;
|
|
struct hlsl_ir_switch_case *c;
|
|
bool progress = false;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
copy_propagation_state_init(ctx, &inner_state, state);
|
|
progress |= copy_propagation_transform_block(ctx, &c->body, &inner_state);
|
|
copy_propagation_state_destroy(&inner_state);
|
|
}
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
copy_propagation_invalidate_from_block(ctx, state, &c->body, s->node.index);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block,
|
|
struct copy_propagation_state *state)
|
|
{
|
|
struct hlsl_ir_node *instr, *next;
|
|
bool progress = false;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_LOAD:
|
|
progress |= copy_propagation_transform_load(ctx, hlsl_ir_load(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_RESOURCE_LOAD:
|
|
progress |= copy_propagation_transform_resource_load(ctx, hlsl_ir_resource_load(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_RESOURCE_STORE:
|
|
progress |= copy_propagation_transform_resource_store(ctx, hlsl_ir_resource_store(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_STORE:
|
|
copy_propagation_record_store(ctx, hlsl_ir_store(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_SWIZZLE:
|
|
progress |= copy_propagation_transform_swizzle(ctx, hlsl_ir_swizzle(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_IF:
|
|
progress |= copy_propagation_process_if(ctx, hlsl_ir_if(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_LOOP:
|
|
progress |= copy_propagation_process_loop(ctx, hlsl_ir_loop(instr), state);
|
|
break;
|
|
|
|
case HLSL_IR_SWITCH:
|
|
progress |= copy_propagation_process_switch(ctx, hlsl_ir_switch(instr), state);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool hlsl_copy_propagation_execute(struct hlsl_ctx *ctx, struct hlsl_block *block)
|
|
{
|
|
struct copy_propagation_state state;
|
|
bool progress;
|
|
|
|
index_instructions(block, 2);
|
|
|
|
copy_propagation_state_init(ctx, &state, NULL);
|
|
|
|
progress = copy_propagation_transform_block(ctx, block, &state);
|
|
|
|
copy_propagation_state_destroy(&state);
|
|
|
|
return progress;
|
|
}
|
|
|
|
enum validation_result
|
|
{
|
|
DEREF_VALIDATION_OK,
|
|
DEREF_VALIDATION_OUT_OF_BOUNDS,
|
|
DEREF_VALIDATION_NOT_CONSTANT,
|
|
};
|
|
|
|
static enum validation_result validate_component_index_range_from_deref(struct hlsl_ctx *ctx,
|
|
const struct hlsl_deref *deref)
|
|
{
|
|
struct hlsl_type *type = deref->var->data_type;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < deref->path_len; ++i)
|
|
{
|
|
struct hlsl_ir_node *path_node = deref->path[i].node;
|
|
unsigned int idx = 0;
|
|
|
|
assert(path_node);
|
|
if (path_node->type != HLSL_IR_CONSTANT)
|
|
return DEREF_VALIDATION_NOT_CONSTANT;
|
|
|
|
/* We should always have generated a cast to UINT. */
|
|
assert(path_node->data_type->class == HLSL_CLASS_SCALAR
|
|
&& path_node->data_type->e.numeric.type == HLSL_TYPE_UINT);
|
|
|
|
idx = hlsl_ir_constant(path_node)->value.u[0].u;
|
|
|
|
switch (type->class)
|
|
{
|
|
case HLSL_CLASS_VECTOR:
|
|
if (idx >= type->dimx)
|
|
{
|
|
hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
|
|
"Vector index is out of bounds. %u/%u", idx, type->dimx);
|
|
return DEREF_VALIDATION_OUT_OF_BOUNDS;
|
|
}
|
|
break;
|
|
|
|
case HLSL_CLASS_MATRIX:
|
|
if (idx >= hlsl_type_major_size(type))
|
|
{
|
|
hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
|
|
"Matrix index is out of bounds. %u/%u", idx, hlsl_type_major_size(type));
|
|
return DEREF_VALIDATION_OUT_OF_BOUNDS;
|
|
}
|
|
break;
|
|
|
|
case HLSL_CLASS_ARRAY:
|
|
if (idx >= type->e.array.elements_count)
|
|
{
|
|
hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
|
|
"Array index is out of bounds. %u/%u", idx, type->e.array.elements_count);
|
|
return DEREF_VALIDATION_OUT_OF_BOUNDS;
|
|
}
|
|
break;
|
|
|
|
case HLSL_CLASS_STRUCT:
|
|
break;
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
type = hlsl_get_element_type_from_path_index(ctx, type, path_node);
|
|
}
|
|
|
|
return DEREF_VALIDATION_OK;
|
|
}
|
|
|
|
static void note_non_static_deref_expressions(struct hlsl_ctx *ctx, const struct hlsl_deref *deref,
|
|
const char *usage)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < deref->path_len; ++i)
|
|
{
|
|
struct hlsl_ir_node *path_node = deref->path[i].node;
|
|
|
|
assert(path_node);
|
|
if (path_node->type != HLSL_IR_CONSTANT)
|
|
hlsl_note(ctx, &path_node->loc, VKD3D_SHADER_LOG_ERROR,
|
|
"Expression for %s within \"%s\" cannot be resolved statically.",
|
|
usage, deref->var->name);
|
|
}
|
|
}
|
|
|
|
static bool validate_dereferences(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr,
|
|
void *context)
|
|
{
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_RESOURCE_LOAD:
|
|
{
|
|
struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr);
|
|
|
|
if (!load->resource.var->is_uniform)
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
|
|
"Loaded resource must have a single uniform source.");
|
|
}
|
|
else if (validate_component_index_range_from_deref(ctx, &load->resource) == DEREF_VALIDATION_NOT_CONSTANT)
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
|
|
"Loaded resource from \"%s\" must be determinable at compile time.",
|
|
load->resource.var->name);
|
|
note_non_static_deref_expressions(ctx, &load->resource, "loaded resource");
|
|
}
|
|
|
|
if (load->sampler.var)
|
|
{
|
|
if (!load->sampler.var->is_uniform)
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
|
|
"Resource load sampler must have a single uniform source.");
|
|
}
|
|
else if (validate_component_index_range_from_deref(ctx, &load->sampler) == DEREF_VALIDATION_NOT_CONSTANT)
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
|
|
"Resource load sampler from \"%s\" must be determinable at compile time.",
|
|
load->sampler.var->name);
|
|
note_non_static_deref_expressions(ctx, &load->sampler, "resource load sampler");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case HLSL_IR_RESOURCE_STORE:
|
|
{
|
|
struct hlsl_ir_resource_store *store = hlsl_ir_resource_store(instr);
|
|
|
|
if (!store->resource.var->is_uniform)
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
|
|
"Accessed resource must have a single uniform source.");
|
|
}
|
|
else if (validate_component_index_range_from_deref(ctx, &store->resource) == DEREF_VALIDATION_NOT_CONSTANT)
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF,
|
|
"Accessed resource from \"%s\" must be determinable at compile time.",
|
|
store->resource.var->name);
|
|
note_non_static_deref_expressions(ctx, &store->resource, "accessed resource");
|
|
}
|
|
break;
|
|
}
|
|
case HLSL_IR_LOAD:
|
|
{
|
|
struct hlsl_ir_load *load = hlsl_ir_load(instr);
|
|
validate_component_index_range_from_deref(ctx, &load->src);
|
|
break;
|
|
}
|
|
case HLSL_IR_STORE:
|
|
{
|
|
struct hlsl_ir_store *store = hlsl_ir_store(instr);
|
|
validate_component_index_range_from_deref(ctx, &store->lhs);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_vec1(const struct hlsl_type *type)
|
|
{
|
|
return (type->class == HLSL_CLASS_SCALAR) || (type->class == HLSL_CLASS_VECTOR && type->dimx == 1);
|
|
}
|
|
|
|
static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
if (instr->type == HLSL_IR_EXPR)
|
|
{
|
|
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
|
|
const struct hlsl_type *dst_type = expr->node.data_type;
|
|
const struct hlsl_type *src_type;
|
|
|
|
if (expr->op != HLSL_OP1_CAST)
|
|
return false;
|
|
|
|
src_type = expr->operands[0].node->data_type;
|
|
|
|
if (hlsl_types_are_equal(src_type, dst_type)
|
|
|| (src_type->e.numeric.type == dst_type->e.numeric.type && is_vec1(src_type) && is_vec1(dst_type)))
|
|
{
|
|
hlsl_replace_node(&expr->node, expr->operands[0].node);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Copy an element of a complex variable. Helper for
|
|
* split_array_copies(), split_struct_copies() and
|
|
* split_matrix_copies(). Inserts new instructions right before
|
|
* "store". */
|
|
static bool split_copy(struct hlsl_ctx *ctx, struct hlsl_ir_store *store,
|
|
const struct hlsl_ir_load *load, const unsigned int idx, struct hlsl_type *type)
|
|
{
|
|
struct hlsl_ir_node *split_store, *c;
|
|
struct hlsl_ir_load *split_load;
|
|
|
|
if (!(c = hlsl_new_uint_constant(ctx, idx, &store->node.loc)))
|
|
return false;
|
|
list_add_before(&store->node.entry, &c->entry);
|
|
|
|
if (!(split_load = hlsl_new_load_index(ctx, &load->src, c, &store->node.loc)))
|
|
return false;
|
|
list_add_before(&store->node.entry, &split_load->node.entry);
|
|
|
|
if (!(split_store = hlsl_new_store_index(ctx, &store->lhs, c, &split_load->node, 0, &store->node.loc)))
|
|
return false;
|
|
list_add_before(&store->node.entry, &split_store->entry);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool split_array_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
const struct hlsl_ir_node *rhs;
|
|
struct hlsl_type *element_type;
|
|
const struct hlsl_type *type;
|
|
struct hlsl_ir_store *store;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_STORE)
|
|
return false;
|
|
|
|
store = hlsl_ir_store(instr);
|
|
rhs = store->rhs.node;
|
|
type = rhs->data_type;
|
|
if (type->class != HLSL_CLASS_ARRAY)
|
|
return false;
|
|
element_type = type->e.array.type;
|
|
|
|
if (rhs->type != HLSL_IR_LOAD)
|
|
{
|
|
hlsl_fixme(ctx, &instr->loc, "Array store rhs is not HLSL_IR_LOAD. Broadcast may be missing.");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < type->e.array.elements_count; ++i)
|
|
{
|
|
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, element_type))
|
|
return false;
|
|
}
|
|
|
|
/* Remove the store instruction, so that we can split structs which contain
|
|
* other structs. Although assignments produce a value, we don't allow
|
|
* HLSL_IR_STORE to be used as a source. */
|
|
list_remove(&store->node.entry);
|
|
hlsl_free_instr(&store->node);
|
|
return true;
|
|
}
|
|
|
|
static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
const struct hlsl_ir_node *rhs;
|
|
const struct hlsl_type *type;
|
|
struct hlsl_ir_store *store;
|
|
size_t i;
|
|
|
|
if (instr->type != HLSL_IR_STORE)
|
|
return false;
|
|
|
|
store = hlsl_ir_store(instr);
|
|
rhs = store->rhs.node;
|
|
type = rhs->data_type;
|
|
if (type->class != HLSL_CLASS_STRUCT)
|
|
return false;
|
|
|
|
if (rhs->type != HLSL_IR_LOAD)
|
|
{
|
|
hlsl_fixme(ctx, &instr->loc, "Struct store rhs is not HLSL_IR_LOAD. Broadcast may be missing.");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < type->e.record.field_count; ++i)
|
|
{
|
|
const struct hlsl_struct_field *field = &type->e.record.fields[i];
|
|
|
|
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, field->type))
|
|
return false;
|
|
}
|
|
|
|
/* Remove the store instruction, so that we can split structs which contain
|
|
* other structs. Although assignments produce a value, we don't allow
|
|
* HLSL_IR_STORE to be used as a source. */
|
|
list_remove(&store->node.entry);
|
|
hlsl_free_instr(&store->node);
|
|
return true;
|
|
}
|
|
|
|
static bool split_matrix_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
const struct hlsl_ir_node *rhs;
|
|
struct hlsl_type *element_type;
|
|
const struct hlsl_type *type;
|
|
unsigned int i;
|
|
struct hlsl_ir_store *store;
|
|
|
|
if (instr->type != HLSL_IR_STORE)
|
|
return false;
|
|
|
|
store = hlsl_ir_store(instr);
|
|
rhs = store->rhs.node;
|
|
type = rhs->data_type;
|
|
if (type->class != HLSL_CLASS_MATRIX)
|
|
return false;
|
|
element_type = hlsl_get_vector_type(ctx, type->e.numeric.type, hlsl_type_minor_size(type));
|
|
|
|
if (rhs->type != HLSL_IR_LOAD)
|
|
{
|
|
hlsl_fixme(ctx, &instr->loc, "Copying from unsupported node type.");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < hlsl_type_major_size(type); ++i)
|
|
{
|
|
if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, element_type))
|
|
return false;
|
|
}
|
|
|
|
list_remove(&store->node.entry);
|
|
hlsl_free_instr(&store->node);
|
|
return true;
|
|
}
|
|
|
|
static bool lower_narrowing_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
const struct hlsl_type *src_type, *dst_type;
|
|
struct hlsl_type *dst_vector_type;
|
|
struct hlsl_ir_expr *cast;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
cast = hlsl_ir_expr(instr);
|
|
if (cast->op != HLSL_OP1_CAST)
|
|
return false;
|
|
src_type = cast->operands[0].node->data_type;
|
|
dst_type = cast->node.data_type;
|
|
|
|
if (src_type->class <= HLSL_CLASS_VECTOR && dst_type->class <= HLSL_CLASS_VECTOR && dst_type->dimx < src_type->dimx)
|
|
{
|
|
struct hlsl_ir_node *new_cast, *swizzle;
|
|
|
|
dst_vector_type = hlsl_get_vector_type(ctx, dst_type->e.numeric.type, src_type->dimx);
|
|
/* We need to preserve the cast since it might be doing more than just
|
|
* narrowing the vector. */
|
|
if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_vector_type, &cast->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, new_cast);
|
|
|
|
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, Y, Z, W), dst_type->dimx, new_cast, &cast->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, swizzle);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool fold_swizzle_chains(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_swizzle *swizzle;
|
|
struct hlsl_ir_node *next_instr;
|
|
|
|
if (instr->type != HLSL_IR_SWIZZLE)
|
|
return false;
|
|
swizzle = hlsl_ir_swizzle(instr);
|
|
|
|
next_instr = swizzle->val.node;
|
|
|
|
if (next_instr->type == HLSL_IR_SWIZZLE)
|
|
{
|
|
struct hlsl_ir_node *new_swizzle;
|
|
uint32_t combined_swizzle;
|
|
|
|
combined_swizzle = hlsl_combine_swizzles(hlsl_ir_swizzle(next_instr)->swizzle,
|
|
swizzle->swizzle, instr->data_type->dimx);
|
|
next_instr = hlsl_ir_swizzle(next_instr)->val.node;
|
|
|
|
if (!(new_swizzle = hlsl_new_swizzle(ctx, combined_swizzle, instr->data_type->dimx, next_instr, &instr->loc)))
|
|
return false;
|
|
|
|
list_add_before(&instr->entry, &new_swizzle->entry);
|
|
hlsl_replace_node(instr, new_swizzle);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool remove_trivial_swizzles(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_swizzle *swizzle;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_SWIZZLE)
|
|
return false;
|
|
swizzle = hlsl_ir_swizzle(instr);
|
|
|
|
if (instr->data_type->dimx != swizzle->val.node->data_type->dimx)
|
|
return false;
|
|
|
|
for (i = 0; i < instr->data_type->dimx; ++i)
|
|
if (hlsl_swizzle_get_component(swizzle->swizzle, i) != i)
|
|
return false;
|
|
|
|
hlsl_replace_node(instr, swizzle->val.node);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool remove_trivial_conditional_branches(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_constant *condition;
|
|
struct hlsl_ir_if *iff;
|
|
|
|
if (instr->type != HLSL_IR_IF)
|
|
return false;
|
|
iff = hlsl_ir_if(instr);
|
|
if (iff->condition.node->type != HLSL_IR_CONSTANT)
|
|
return false;
|
|
condition = hlsl_ir_constant(iff->condition.node);
|
|
|
|
list_move_before(&instr->entry, condition->value.u[0].u ? &iff->then_block.instrs : &iff->else_block.instrs);
|
|
list_remove(&instr->entry);
|
|
hlsl_free_instr(instr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool normalize_switch_cases(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_switch_case *c, *def = NULL;
|
|
bool missing_terminal_break = false;
|
|
struct hlsl_ir_node *node;
|
|
struct hlsl_ir_switch *s;
|
|
|
|
if (instr->type != HLSL_IR_SWITCH)
|
|
return false;
|
|
s = hlsl_ir_switch(instr);
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
bool terminal_break = false;
|
|
|
|
if (list_empty(&c->body.instrs))
|
|
{
|
|
terminal_break = !!list_next(&s->cases, &c->entry);
|
|
}
|
|
else
|
|
{
|
|
node = LIST_ENTRY(list_tail(&c->body.instrs), struct hlsl_ir_node, entry);
|
|
if (node->type == HLSL_IR_JUMP)
|
|
terminal_break = (hlsl_ir_jump(node)->type == HLSL_IR_JUMP_BREAK);
|
|
}
|
|
|
|
missing_terminal_break |= !terminal_break;
|
|
|
|
if (!terminal_break)
|
|
{
|
|
if (c->is_default)
|
|
{
|
|
hlsl_error(ctx, &c->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SYNTAX,
|
|
"The 'default' case block is not terminated with 'break' or 'return'.");
|
|
}
|
|
else
|
|
{
|
|
hlsl_error(ctx, &c->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SYNTAX,
|
|
"Switch case block '%u' is not terminated with 'break' or 'return'.", c->value);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (missing_terminal_break)
|
|
return true;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
if (c->is_default)
|
|
{
|
|
def = c;
|
|
|
|
/* Remove preceding empty cases. */
|
|
while (list_prev(&s->cases, &def->entry))
|
|
{
|
|
c = LIST_ENTRY(list_prev(&s->cases, &def->entry), struct hlsl_ir_switch_case, entry);
|
|
if (!list_empty(&c->body.instrs))
|
|
break;
|
|
hlsl_free_ir_switch_case(c);
|
|
}
|
|
|
|
if (list_empty(&def->body.instrs))
|
|
{
|
|
/* Remove following empty cases. */
|
|
while (list_next(&s->cases, &def->entry))
|
|
{
|
|
c = LIST_ENTRY(list_next(&s->cases, &def->entry), struct hlsl_ir_switch_case, entry);
|
|
if (!list_empty(&c->body.instrs))
|
|
break;
|
|
hlsl_free_ir_switch_case(c);
|
|
}
|
|
|
|
/* Merge with the next case. */
|
|
if (list_next(&s->cases, &def->entry))
|
|
{
|
|
c = LIST_ENTRY(list_next(&s->cases, &def->entry), struct hlsl_ir_switch_case, entry);
|
|
c->is_default = true;
|
|
hlsl_free_ir_switch_case(def);
|
|
def = c;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (def)
|
|
{
|
|
list_remove(&def->entry);
|
|
}
|
|
else
|
|
{
|
|
struct hlsl_ir_node *jump;
|
|
|
|
if (!(def = hlsl_new_switch_case(ctx, 0, true, NULL, &s->node.loc)))
|
|
return true;
|
|
if (!(jump = hlsl_new_jump(ctx, HLSL_IR_JUMP_BREAK, NULL, &s->node.loc)))
|
|
{
|
|
hlsl_free_ir_switch_case(def);
|
|
return true;
|
|
}
|
|
hlsl_block_add_instr(&def->body, jump);
|
|
}
|
|
list_add_tail(&s->cases, &def->entry);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool lower_nonconstant_vector_derefs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *idx;
|
|
struct hlsl_deref *deref;
|
|
struct hlsl_type *type;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_LOAD)
|
|
return false;
|
|
|
|
deref = &hlsl_ir_load(instr)->src;
|
|
assert(deref->var);
|
|
|
|
if (deref->path_len == 0)
|
|
return false;
|
|
|
|
type = deref->var->data_type;
|
|
for (i = 0; i < deref->path_len - 1; ++i)
|
|
type = hlsl_get_element_type_from_path_index(ctx, type, deref->path[i].node);
|
|
|
|
idx = deref->path[deref->path_len - 1].node;
|
|
|
|
if (type->class == HLSL_CLASS_VECTOR && idx->type != HLSL_IR_CONSTANT)
|
|
{
|
|
struct hlsl_ir_node *eq, *swizzle, *dot, *c, *operands[HLSL_MAX_OPERANDS] = {0};
|
|
struct hlsl_constant_value value;
|
|
struct hlsl_ir_load *vector_load;
|
|
enum hlsl_ir_expr_op op;
|
|
|
|
if (!(vector_load = hlsl_new_load_parent(ctx, deref, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, &vector_load->node);
|
|
|
|
if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), type->dimx, idx, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, swizzle);
|
|
|
|
value.u[0].u = 0;
|
|
value.u[1].u = 1;
|
|
value.u[2].u = 2;
|
|
value.u[3].u = 3;
|
|
if (!(c = hlsl_new_constant(ctx, hlsl_get_vector_type(ctx, HLSL_TYPE_UINT, type->dimx), &value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, c);
|
|
|
|
operands[0] = swizzle;
|
|
operands[1] = c;
|
|
if (!(eq = hlsl_new_expr(ctx, HLSL_OP2_EQUAL, operands,
|
|
hlsl_get_vector_type(ctx, HLSL_TYPE_BOOL, type->dimx), &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, eq);
|
|
|
|
if (!(eq = hlsl_new_cast(ctx, eq, type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, eq);
|
|
|
|
op = HLSL_OP2_DOT;
|
|
if (type->dimx == 1)
|
|
op = type->e.numeric.type == HLSL_TYPE_BOOL ? HLSL_OP2_LOGIC_AND : HLSL_OP2_MUL;
|
|
|
|
/* Note: We may be creating a DOT for bool vectors here, which we need to lower to
|
|
* LOGIC_OR + LOGIC_AND. */
|
|
operands[0] = &vector_load->node;
|
|
operands[1] = eq;
|
|
if (!(dot = hlsl_new_expr(ctx, op, operands, instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, dot);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool validate_nonconstant_vector_store_derefs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *idx;
|
|
struct hlsl_deref *deref;
|
|
struct hlsl_type *type;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_STORE)
|
|
return false;
|
|
|
|
deref = &hlsl_ir_store(instr)->lhs;
|
|
assert(deref->var);
|
|
|
|
if (deref->path_len == 0)
|
|
return false;
|
|
|
|
type = deref->var->data_type;
|
|
for (i = 0; i < deref->path_len - 1; ++i)
|
|
type = hlsl_get_element_type_from_path_index(ctx, type, deref->path[i].node);
|
|
|
|
idx = deref->path[deref->path_len - 1].node;
|
|
|
|
if (type->class == HLSL_CLASS_VECTOR && idx->type != HLSL_IR_CONSTANT)
|
|
{
|
|
/* We should turn this into an hlsl_error after we implement unrolling, because if we get
|
|
* here after that, it means that the HLSL is invalid. */
|
|
hlsl_fixme(ctx, &instr->loc, "Non-constant vector addressing on store. Unrolling may be missing.");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Lower combined samples and sampler variables to synthesized separated textures and samplers.
|
|
* That is, translate SM1-style samples in the source to SM4-style samples in the bytecode. */
|
|
static bool lower_combined_samples(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_resource_load *load;
|
|
struct vkd3d_string_buffer *name;
|
|
struct hlsl_ir_var *var;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_RESOURCE_LOAD)
|
|
return false;
|
|
load = hlsl_ir_resource_load(instr);
|
|
|
|
switch (load->load_type)
|
|
{
|
|
case HLSL_RESOURCE_LOAD:
|
|
case HLSL_RESOURCE_GATHER_RED:
|
|
case HLSL_RESOURCE_GATHER_GREEN:
|
|
case HLSL_RESOURCE_GATHER_BLUE:
|
|
case HLSL_RESOURCE_GATHER_ALPHA:
|
|
case HLSL_RESOURCE_RESINFO:
|
|
case HLSL_RESOURCE_SAMPLE_CMP:
|
|
case HLSL_RESOURCE_SAMPLE_CMP_LZ:
|
|
case HLSL_RESOURCE_SAMPLE_INFO:
|
|
return false;
|
|
|
|
case HLSL_RESOURCE_SAMPLE:
|
|
case HLSL_RESOURCE_SAMPLE_GRAD:
|
|
case HLSL_RESOURCE_SAMPLE_LOD:
|
|
case HLSL_RESOURCE_SAMPLE_LOD_BIAS:
|
|
case HLSL_RESOURCE_SAMPLE_PROJ:
|
|
break;
|
|
}
|
|
if (load->sampler.var)
|
|
return false;
|
|
|
|
if (!hlsl_type_is_resource(load->resource.var->data_type))
|
|
{
|
|
hlsl_fixme(ctx, &instr->loc, "Lower combined samplers within structs.");
|
|
return false;
|
|
}
|
|
|
|
assert(hlsl_deref_get_regset(ctx, &load->resource) == HLSL_REGSET_SAMPLERS);
|
|
|
|
if (!(name = hlsl_get_string_buffer(ctx)))
|
|
return false;
|
|
vkd3d_string_buffer_printf(name, "<resource>%s", load->resource.var->name);
|
|
|
|
TRACE("Lowering to separate resource %s.\n", debugstr_a(name->buffer));
|
|
|
|
if (!(var = hlsl_get_var(ctx->globals, name->buffer)))
|
|
{
|
|
struct hlsl_type *texture_array_type = hlsl_new_texture_type(ctx, load->sampling_dim,
|
|
hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, 4), 0);
|
|
|
|
/* Create (possibly multi-dimensional) texture array type with the same dims as the sampler array. */
|
|
struct hlsl_type *arr_type = load->resource.var->data_type;
|
|
for (i = 0; i < load->resource.path_len; ++i)
|
|
{
|
|
assert(arr_type->class == HLSL_CLASS_ARRAY);
|
|
texture_array_type = hlsl_new_array_type(ctx, texture_array_type, arr_type->e.array.elements_count);
|
|
arr_type = arr_type->e.array.type;
|
|
}
|
|
|
|
if (!(var = hlsl_new_synthetic_var_named(ctx, name->buffer, texture_array_type, &instr->loc, false)))
|
|
{
|
|
hlsl_release_string_buffer(ctx, name);
|
|
return false;
|
|
}
|
|
var->is_uniform = 1;
|
|
var->is_separated_resource = true;
|
|
|
|
list_add_tail(&ctx->extern_vars, &var->extern_entry);
|
|
}
|
|
hlsl_release_string_buffer(ctx, name);
|
|
|
|
if (load->sampling_dim != var->data_type->sampler_dim)
|
|
{
|
|
hlsl_error(ctx, &load->node.loc, VKD3D_SHADER_ERROR_HLSL_INCONSISTENT_SAMPLER,
|
|
"Cannot split combined samplers from \"%s\" if they have different usage dimensions.",
|
|
load->resource.var->name);
|
|
hlsl_note(ctx, &var->loc, VKD3D_SHADER_LOG_ERROR, "First use as combined sampler is here.");
|
|
return false;
|
|
|
|
}
|
|
|
|
hlsl_copy_deref(ctx, &load->sampler, &load->resource);
|
|
load->resource.var = var;
|
|
assert(hlsl_deref_get_type(ctx, &load->resource)->class == HLSL_CLASS_TEXTURE);
|
|
assert(hlsl_deref_get_type(ctx, &load->sampler)->class == HLSL_CLASS_SAMPLER);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void insert_ensuring_decreasing_bind_count(struct list *list, struct hlsl_ir_var *to_add,
|
|
enum hlsl_regset regset)
|
|
{
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, list, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->bind_count[regset] < to_add->bind_count[regset])
|
|
{
|
|
list_add_before(&var->extern_entry, &to_add->extern_entry);
|
|
return;
|
|
}
|
|
}
|
|
|
|
list_add_tail(list, &to_add->extern_entry);
|
|
}
|
|
|
|
static bool sort_synthetic_separated_samplers_first(struct hlsl_ctx *ctx)
|
|
{
|
|
struct list separated_resources;
|
|
struct hlsl_ir_var *var, *next;
|
|
|
|
list_init(&separated_resources);
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(var, next, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->is_separated_resource)
|
|
{
|
|
list_remove(&var->extern_entry);
|
|
insert_ensuring_decreasing_bind_count(&separated_resources, var, HLSL_REGSET_TEXTURES);
|
|
}
|
|
}
|
|
|
|
list_move_head(&ctx->extern_vars, &separated_resources);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Turn CAST to int or uint into FLOOR + REINTERPRET (which is written as a mere MOV). */
|
|
static bool lower_casts_to_int(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = { 0 };
|
|
struct hlsl_ir_node *arg, *floor, *res;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP1_CAST)
|
|
return false;
|
|
|
|
arg = expr->operands[0].node;
|
|
if (instr->data_type->e.numeric.type != HLSL_TYPE_INT && instr->data_type->e.numeric.type != HLSL_TYPE_UINT)
|
|
return false;
|
|
if (arg->data_type->e.numeric.type != HLSL_TYPE_FLOAT && arg->data_type->e.numeric.type != HLSL_TYPE_HALF)
|
|
return false;
|
|
|
|
if (!(floor = hlsl_new_unary_expr(ctx, HLSL_OP1_FLOOR, arg, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, floor);
|
|
|
|
memset(operands, 0, sizeof(operands));
|
|
operands[0] = floor;
|
|
if (!(res = hlsl_new_expr(ctx, HLSL_OP1_REINTERPRET, operands, instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, res);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower DIV to RCP + MUL. */
|
|
static bool lower_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *rcp, *mul;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP2_DIV)
|
|
return false;
|
|
|
|
if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_OP1_RCP, expr->operands[1].node, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, rcp);
|
|
|
|
if (!(mul = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, expr->operands[0].node, rcp)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower SQRT to RSQ + RCP. */
|
|
static bool lower_sqrt(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *rsq, *rcp;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP1_SQRT)
|
|
return false;
|
|
|
|
if (!(rsq = hlsl_new_unary_expr(ctx, HLSL_OP1_RSQ, expr->operands[0].node, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, rsq);
|
|
|
|
if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_OP1_RCP, rsq, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, rcp);
|
|
return true;
|
|
}
|
|
|
|
/* Lower DP2 to MUL + ADD */
|
|
static bool lower_dot(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg2, *mul, *replacement, *zero, *add_x, *add_y;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
if (expr->op != HLSL_OP2_DOT)
|
|
return false;
|
|
if (arg1->data_type->dimx != 2)
|
|
return false;
|
|
|
|
if (ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
|
|
{
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = { 0 };
|
|
|
|
if (!(zero = hlsl_new_float_constant(ctx, 0.0f, &expr->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, zero);
|
|
|
|
operands[0] = arg1;
|
|
operands[1] = arg2;
|
|
operands[2] = zero;
|
|
|
|
if (!(replacement = hlsl_new_expr(ctx, HLSL_OP3_DP2ADD, operands, instr->data_type, &expr->node.loc)))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (!(mul = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, expr->operands[0].node, expr->operands[1].node)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul);
|
|
|
|
if (!(add_x = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), instr->data_type->dimx, mul, &expr->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, add_x);
|
|
|
|
if (!(add_y = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(Y, Y, Y, Y), instr->data_type->dimx, mul, &expr->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, add_y);
|
|
|
|
if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, add_x, add_y)))
|
|
return false;
|
|
}
|
|
hlsl_block_add_instr(block, replacement);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower ABS to MAX */
|
|
static bool lower_abs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg, *neg, *replacement;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
arg = expr->operands[0].node;
|
|
if (expr->op != HLSL_OP1_ABS)
|
|
return false;
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_MAX, neg, arg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, replacement);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower ROUND using FRC, ROUND(x) -> ((x + 0.5) - FRC(x + 0.5)). */
|
|
static bool lower_round(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg, *neg, *sum, *frc, *half, *replacement;
|
|
struct hlsl_type *type = instr->data_type;
|
|
struct hlsl_constant_value half_value;
|
|
unsigned int i, component_count;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
|
|
expr = hlsl_ir_expr(instr);
|
|
arg = expr->operands[0].node;
|
|
if (expr->op != HLSL_OP1_ROUND)
|
|
return false;
|
|
|
|
component_count = hlsl_type_component_count(type);
|
|
for (i = 0; i < component_count; ++i)
|
|
half_value.u[i].f = 0.5f;
|
|
if (!(half = hlsl_new_constant(ctx, type, &half_value, &expr->node.loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, half);
|
|
|
|
if (!(sum = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, arg, half)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sum);
|
|
|
|
if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, sum, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, frc);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, frc, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, sum, neg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, replacement);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower CEIL to FRC */
|
|
static bool lower_ceil(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg, *neg, *sum, *frc;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
|
|
expr = hlsl_ir_expr(instr);
|
|
arg = expr->operands[0].node;
|
|
if (expr->op != HLSL_OP1_CEIL)
|
|
return false;
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, neg, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, frc);
|
|
|
|
if (!(sum = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, frc, arg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sum);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower FLOOR to FRC */
|
|
static bool lower_floor(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg, *neg, *sum, *frc;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
|
|
expr = hlsl_ir_expr(instr);
|
|
arg = expr->operands[0].node;
|
|
if (expr->op != HLSL_OP1_FLOOR)
|
|
return false;
|
|
|
|
if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, arg, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, frc);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, frc, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(sum = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, neg, arg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sum);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool lower_logic_not(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS];
|
|
struct hlsl_ir_node *arg, *arg_cast, *neg, *one, *sub, *res;
|
|
struct hlsl_constant_value one_value;
|
|
struct hlsl_type *float_type;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP1_LOGIC_NOT)
|
|
return false;
|
|
|
|
arg = expr->operands[0].node;
|
|
float_type = hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, arg->data_type->dimx);
|
|
|
|
/* If this is happens, it means we failed to cast the argument to boolean somewhere. */
|
|
assert(arg->data_type->e.numeric.type == HLSL_TYPE_BOOL);
|
|
|
|
if (!(arg_cast = hlsl_new_cast(ctx, arg, float_type, &arg->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, arg_cast);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg_cast, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
one_value.u[0].f = 1.0;
|
|
one_value.u[1].f = 1.0;
|
|
one_value.u[2].f = 1.0;
|
|
one_value.u[3].f = 1.0;
|
|
if (!(one = hlsl_new_constant(ctx, float_type, &one_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, one);
|
|
|
|
if (!(sub = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, one, neg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sub);
|
|
|
|
memset(operands, 0, sizeof(operands));
|
|
operands[0] = sub;
|
|
if (!(res = hlsl_new_expr(ctx, HLSL_OP1_REINTERPRET, operands, instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, res);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower TERNARY to CMP for SM1. */
|
|
static bool lower_ternary(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = { 0 }, *replacement;
|
|
struct hlsl_ir_node *cond, *first, *second, *float_cond, *neg;
|
|
struct hlsl_ir_expr *expr;
|
|
struct hlsl_type *type;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP3_TERNARY)
|
|
return false;
|
|
|
|
cond = expr->operands[0].node;
|
|
first = expr->operands[1].node;
|
|
second = expr->operands[2].node;
|
|
|
|
if (cond->data_type->class > HLSL_CLASS_VECTOR || instr->data_type->class > HLSL_CLASS_VECTOR)
|
|
{
|
|
hlsl_fixme(ctx, &instr->loc, "Lower ternary of type other than scalar or vector.");
|
|
return false;
|
|
}
|
|
|
|
assert(cond->data_type->e.numeric.type == HLSL_TYPE_BOOL);
|
|
|
|
type = hlsl_get_numeric_type(ctx, instr->data_type->class, HLSL_TYPE_FLOAT,
|
|
instr->data_type->dimx, instr->data_type->dimy);
|
|
|
|
if (!(float_cond = hlsl_new_cast(ctx, cond, type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, float_cond);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, float_cond, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
memset(operands, 0, sizeof(operands));
|
|
operands[0] = neg;
|
|
operands[1] = second;
|
|
operands[2] = first;
|
|
if (!(replacement = hlsl_new_expr(ctx, HLSL_OP3_CMP, operands, first->data_type, &instr->loc)))
|
|
return false;
|
|
|
|
hlsl_block_add_instr(block, replacement);
|
|
return true;
|
|
}
|
|
|
|
static bool lower_comparison_operators(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr,
|
|
struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg1_cast, *arg2, *arg2_cast, *slt, *res, *ret;
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS];
|
|
struct hlsl_type *float_type;
|
|
struct hlsl_ir_expr *expr;
|
|
bool negate = false;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP2_EQUAL && expr->op != HLSL_OP2_NEQUAL && expr->op != HLSL_OP2_LESS
|
|
&& expr->op != HLSL_OP2_GEQUAL)
|
|
return false;
|
|
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
float_type = hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, instr->data_type->dimx);
|
|
|
|
if (!(arg1_cast = hlsl_new_cast(ctx, arg1, float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, arg1_cast);
|
|
|
|
if (!(arg2_cast = hlsl_new_cast(ctx, arg2, float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, arg2_cast);
|
|
|
|
switch (expr->op)
|
|
{
|
|
case HLSL_OP2_EQUAL:
|
|
case HLSL_OP2_NEQUAL:
|
|
{
|
|
struct hlsl_ir_node *neg, *sub, *abs, *abs_neg;
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg2_cast, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(sub = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, arg1_cast, neg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sub);
|
|
|
|
if (ctx->profile->major_version >= 3)
|
|
{
|
|
if (!(abs = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, sub, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs);
|
|
}
|
|
else
|
|
{
|
|
/* Use MUL as a precarious ABS. */
|
|
if (!(abs = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, sub, sub)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs);
|
|
}
|
|
|
|
if (!(abs_neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, abs, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs_neg);
|
|
|
|
if (!(slt = hlsl_new_binary_expr(ctx, HLSL_OP2_SLT, abs_neg, abs)))
|
|
return false;
|
|
hlsl_block_add_instr(block, slt);
|
|
|
|
negate = (expr->op == HLSL_OP2_EQUAL);
|
|
break;
|
|
}
|
|
|
|
case HLSL_OP2_GEQUAL:
|
|
case HLSL_OP2_LESS:
|
|
{
|
|
if (!(slt = hlsl_new_binary_expr(ctx, HLSL_OP2_SLT, arg1_cast, arg2_cast)))
|
|
return false;
|
|
hlsl_block_add_instr(block, slt);
|
|
|
|
negate = (expr->op == HLSL_OP2_GEQUAL);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
if (negate)
|
|
{
|
|
struct hlsl_constant_value one_value;
|
|
struct hlsl_ir_node *one, *slt_neg;
|
|
|
|
one_value.u[0].f = 1.0;
|
|
one_value.u[1].f = 1.0;
|
|
one_value.u[2].f = 1.0;
|
|
one_value.u[3].f = 1.0;
|
|
if (!(one = hlsl_new_constant(ctx, float_type, &one_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, one);
|
|
|
|
if (!(slt_neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, slt, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, slt_neg);
|
|
|
|
if (!(res = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, one, slt_neg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, res);
|
|
}
|
|
else
|
|
{
|
|
res = slt;
|
|
}
|
|
|
|
/* We need a REINTERPRET so that the HLSL IR code is valid. SLT and its arguments must be FLOAT,
|
|
* and casts to BOOL have already been lowered to "!= 0". */
|
|
memset(operands, 0, sizeof(operands));
|
|
operands[0] = res;
|
|
if (!(ret = hlsl_new_expr(ctx, HLSL_OP1_REINTERPRET, operands, instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, ret);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Intended to be used for SM1-SM3, lowers SLT instructions (only available in vertex shaders) to
|
|
* CMP instructions (only available in pixel shaders).
|
|
* Based on the following equivalence:
|
|
* SLT(x, y)
|
|
* = (x < y) ? 1.0 : 0.0
|
|
* = ((x - y) >= 0) ? 0.0 : 1.0
|
|
* = CMP(x - y, 0.0, 1.0)
|
|
*/
|
|
static bool lower_slt(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg2, *arg1_cast, *arg2_cast, *neg, *sub, *zero, *one, *cmp;
|
|
struct hlsl_constant_value zero_value, one_value;
|
|
struct hlsl_type *float_type;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP2_SLT)
|
|
return false;
|
|
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
float_type = hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, instr->data_type->dimx);
|
|
|
|
if (!(arg1_cast = hlsl_new_cast(ctx, arg1, float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, arg1_cast);
|
|
|
|
if (!(arg2_cast = hlsl_new_cast(ctx, arg2, float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, arg2_cast);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg2_cast, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(sub = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, arg1_cast, neg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sub);
|
|
|
|
memset(&zero_value, 0, sizeof(zero_value));
|
|
if (!(zero = hlsl_new_constant(ctx, float_type, &zero_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, zero);
|
|
|
|
one_value.u[0].f = 1.0;
|
|
one_value.u[1].f = 1.0;
|
|
one_value.u[2].f = 1.0;
|
|
one_value.u[3].f = 1.0;
|
|
if (!(one = hlsl_new_constant(ctx, float_type, &one_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, one);
|
|
|
|
if (!(cmp = hlsl_new_ternary_expr(ctx, HLSL_OP3_CMP, sub, zero, one)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Intended to be used for SM1-SM3, lowers CMP instructions (only available in pixel shaders) to
|
|
* SLT instructions (only available in vertex shaders).
|
|
* Based on the following equivalence:
|
|
* CMP(x, y, z)
|
|
* = (x >= 0) ? y : z
|
|
* = z * ((x < 0) ? 1.0 : 0.0) + y * ((x < 0) ? 0.0 : 1.0)
|
|
* = z * SLT(x, 0.0) + y * (1 - SLT(x, 0.0))
|
|
*/
|
|
static bool lower_cmp(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *args[3], *args_cast[3], *slt, *neg_slt, *sub, *zero, *one, *mul1, *mul2, *add;
|
|
struct hlsl_constant_value zero_value, one_value;
|
|
struct hlsl_type *float_type;
|
|
struct hlsl_ir_expr *expr;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP3_CMP)
|
|
return false;
|
|
|
|
float_type = hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, instr->data_type->dimx);
|
|
|
|
for (i = 0; i < 3; ++i)
|
|
{
|
|
args[i] = expr->operands[i].node;
|
|
|
|
if (!(args_cast[i] = hlsl_new_cast(ctx, args[i], float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, args_cast[i]);
|
|
}
|
|
|
|
memset(&zero_value, 0, sizeof(zero_value));
|
|
if (!(zero = hlsl_new_constant(ctx, float_type, &zero_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, zero);
|
|
|
|
one_value.u[0].f = 1.0;
|
|
one_value.u[1].f = 1.0;
|
|
one_value.u[2].f = 1.0;
|
|
one_value.u[3].f = 1.0;
|
|
if (!(one = hlsl_new_constant(ctx, float_type, &one_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, one);
|
|
|
|
if (!(slt = hlsl_new_binary_expr(ctx, HLSL_OP2_SLT, args_cast[0], zero)))
|
|
return false;
|
|
hlsl_block_add_instr(block, slt);
|
|
|
|
if (!(mul1 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, args_cast[2], slt)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul1);
|
|
|
|
if (!(neg_slt = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, slt, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg_slt);
|
|
|
|
if (!(sub = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, one, neg_slt)))
|
|
return false;
|
|
hlsl_block_add_instr(block, sub);
|
|
|
|
if (!(mul2 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, args_cast[1], sub)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul2);
|
|
|
|
if (!(add = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, mul1, mul2)))
|
|
return false;
|
|
hlsl_block_add_instr(block, add);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool lower_casts_to_bool(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_type *type = instr->data_type, *arg_type;
|
|
static const struct hlsl_constant_value zero_value;
|
|
struct hlsl_ir_node *zero, *neq;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op != HLSL_OP1_CAST)
|
|
return false;
|
|
arg_type = expr->operands[0].node->data_type;
|
|
if (type->class > HLSL_CLASS_VECTOR || arg_type->class > HLSL_CLASS_VECTOR)
|
|
return false;
|
|
if (type->e.numeric.type != HLSL_TYPE_BOOL)
|
|
return false;
|
|
|
|
/* Narrowing casts should have already been lowered. */
|
|
assert(type->dimx == arg_type->dimx);
|
|
|
|
zero = hlsl_new_constant(ctx, arg_type, &zero_value, &instr->loc);
|
|
if (!zero)
|
|
return false;
|
|
hlsl_block_add_instr(block, zero);
|
|
|
|
if (!(neq = hlsl_new_binary_expr(ctx, HLSL_OP2_NEQUAL, expr->operands[0].node, zero)))
|
|
return false;
|
|
neq->data_type = expr->node.data_type;
|
|
hlsl_block_add_instr(block, neq);
|
|
|
|
return true;
|
|
}
|
|
|
|
struct hlsl_ir_node *hlsl_add_conditional(struct hlsl_ctx *ctx, struct hlsl_block *instrs,
|
|
struct hlsl_ir_node *condition, struct hlsl_ir_node *if_true, struct hlsl_ir_node *if_false)
|
|
{
|
|
struct hlsl_type *cond_type = condition->data_type;
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS];
|
|
struct hlsl_ir_node *cond;
|
|
|
|
assert(hlsl_types_are_equal(if_true->data_type, if_false->data_type));
|
|
|
|
if (cond_type->e.numeric.type != HLSL_TYPE_BOOL)
|
|
{
|
|
cond_type = hlsl_get_numeric_type(ctx, cond_type->class, HLSL_TYPE_BOOL, cond_type->dimx, cond_type->dimy);
|
|
|
|
if (!(condition = hlsl_new_cast(ctx, condition, cond_type, &condition->loc)))
|
|
return NULL;
|
|
hlsl_block_add_instr(instrs, condition);
|
|
}
|
|
|
|
operands[0] = condition;
|
|
operands[1] = if_true;
|
|
operands[2] = if_false;
|
|
if (!(cond = hlsl_new_expr(ctx, HLSL_OP3_TERNARY, operands, if_true->data_type, &condition->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(instrs, cond);
|
|
|
|
return cond;
|
|
}
|
|
|
|
static bool lower_int_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg2, *xor, *and, *abs1, *abs2, *div, *neg, *cast1, *cast2, *cast3, *high_bit;
|
|
struct hlsl_type *type = instr->data_type, *utype;
|
|
struct hlsl_constant_value high_bit_value;
|
|
struct hlsl_ir_expr *expr;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
if (expr->op != HLSL_OP2_DIV)
|
|
return false;
|
|
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
|
|
return false;
|
|
if (type->e.numeric.type != HLSL_TYPE_INT)
|
|
return false;
|
|
utype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_UINT, type->dimx, type->dimy);
|
|
|
|
if (!(xor = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_XOR, arg1, arg2)))
|
|
return false;
|
|
hlsl_block_add_instr(block, xor);
|
|
|
|
for (i = 0; i < type->dimx; ++i)
|
|
high_bit_value.u[i].u = 0x80000000;
|
|
if (!(high_bit = hlsl_new_constant(ctx, type, &high_bit_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, high_bit);
|
|
|
|
if (!(and = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_AND, xor, high_bit)))
|
|
return false;
|
|
hlsl_block_add_instr(block, and);
|
|
|
|
if (!(abs1 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg1, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs1);
|
|
|
|
if (!(cast1 = hlsl_new_cast(ctx, abs1, utype, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cast1);
|
|
|
|
if (!(abs2 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg2, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs2);
|
|
|
|
if (!(cast2 = hlsl_new_cast(ctx, abs2, utype, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cast2);
|
|
|
|
if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_DIV, cast1, cast2)))
|
|
return false;
|
|
hlsl_block_add_instr(block, div);
|
|
|
|
if (!(cast3 = hlsl_new_cast(ctx, div, type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cast3);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, cast3, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
return hlsl_add_conditional(ctx, block, and, neg, cast3);
|
|
}
|
|
|
|
static bool lower_int_modulus(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg2, *and, *abs1, *abs2, *div, *neg, *cast1, *cast2, *cast3, *high_bit;
|
|
struct hlsl_type *type = instr->data_type, *utype;
|
|
struct hlsl_constant_value high_bit_value;
|
|
struct hlsl_ir_expr *expr;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
if (expr->op != HLSL_OP2_MOD)
|
|
return false;
|
|
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
|
|
return false;
|
|
if (type->e.numeric.type != HLSL_TYPE_INT)
|
|
return false;
|
|
utype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_UINT, type->dimx, type->dimy);
|
|
|
|
for (i = 0; i < type->dimx; ++i)
|
|
high_bit_value.u[i].u = 0x80000000;
|
|
if (!(high_bit = hlsl_new_constant(ctx, type, &high_bit_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, high_bit);
|
|
|
|
if (!(and = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_AND, arg1, high_bit)))
|
|
return false;
|
|
hlsl_block_add_instr(block, and);
|
|
|
|
if (!(abs1 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg1, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs1);
|
|
|
|
if (!(cast1 = hlsl_new_cast(ctx, abs1, utype, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cast1);
|
|
|
|
if (!(abs2 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg2, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, abs2);
|
|
|
|
if (!(cast2 = hlsl_new_cast(ctx, abs2, utype, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cast2);
|
|
|
|
if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_MOD, cast1, cast2)))
|
|
return false;
|
|
hlsl_block_add_instr(block, div);
|
|
|
|
if (!(cast3 = hlsl_new_cast(ctx, div, type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, cast3);
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, cast3, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
return hlsl_add_conditional(ctx, block, and, neg, cast3);
|
|
}
|
|
|
|
static bool lower_int_abs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_type *type = instr->data_type;
|
|
struct hlsl_ir_node *arg, *neg, *max;
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
|
|
if (expr->op != HLSL_OP1_ABS)
|
|
return false;
|
|
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
|
|
return false;
|
|
if (type->e.numeric.type != HLSL_TYPE_INT)
|
|
return false;
|
|
|
|
arg = expr->operands[0].node;
|
|
|
|
if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg);
|
|
|
|
if (!(max = hlsl_new_binary_expr(ctx, HLSL_OP2_MAX, arg, neg)))
|
|
return false;
|
|
hlsl_block_add_instr(block, max);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool lower_int_dot(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg2, *mult, *comps[4] = {0}, *res;
|
|
struct hlsl_type *type = instr->data_type;
|
|
struct hlsl_ir_expr *expr;
|
|
unsigned int i, dimx;
|
|
bool is_bool;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
|
|
if (expr->op != HLSL_OP2_DOT)
|
|
return false;
|
|
|
|
if (type->e.numeric.type == HLSL_TYPE_INT || type->e.numeric.type == HLSL_TYPE_UINT
|
|
|| type->e.numeric.type == HLSL_TYPE_BOOL)
|
|
{
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
assert(arg1->data_type->dimx == arg2->data_type->dimx);
|
|
dimx = arg1->data_type->dimx;
|
|
is_bool = type->e.numeric.type == HLSL_TYPE_BOOL;
|
|
|
|
if (!(mult = hlsl_new_binary_expr(ctx, is_bool ? HLSL_OP2_LOGIC_AND : HLSL_OP2_MUL, arg1, arg2)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mult);
|
|
|
|
for (i = 0; i < dimx; ++i)
|
|
{
|
|
uint32_t s = hlsl_swizzle_from_writemask(1 << i);
|
|
|
|
if (!(comps[i] = hlsl_new_swizzle(ctx, s, 1, mult, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, comps[i]);
|
|
}
|
|
|
|
res = comps[0];
|
|
for (i = 1; i < dimx; ++i)
|
|
{
|
|
if (!(res = hlsl_new_binary_expr(ctx, is_bool ? HLSL_OP2_LOGIC_OR : HLSL_OP2_ADD, res, comps[i])))
|
|
return false;
|
|
hlsl_block_add_instr(block, res);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool lower_float_modulus(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_node *arg1, *arg2, *mul1, *neg1, *ge, *neg2, *div, *mul2, *frc, *cond, *one, *mul3;
|
|
struct hlsl_type *type = instr->data_type, *btype;
|
|
struct hlsl_constant_value one_value;
|
|
struct hlsl_ir_expr *expr;
|
|
unsigned int i;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
arg1 = expr->operands[0].node;
|
|
arg2 = expr->operands[1].node;
|
|
if (expr->op != HLSL_OP2_MOD)
|
|
return false;
|
|
if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR)
|
|
return false;
|
|
if (type->e.numeric.type != HLSL_TYPE_FLOAT)
|
|
return false;
|
|
btype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_BOOL, type->dimx, type->dimy);
|
|
|
|
if (!(mul1 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, arg2, arg1)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul1);
|
|
|
|
if (!(neg1 = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, mul1, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg1);
|
|
|
|
if (!(ge = hlsl_new_binary_expr(ctx, HLSL_OP2_GEQUAL, mul1, neg1)))
|
|
return false;
|
|
ge->data_type = btype;
|
|
hlsl_block_add_instr(block, ge);
|
|
|
|
if (!(neg2 = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg2, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, neg2);
|
|
|
|
if (!(cond = hlsl_add_conditional(ctx, block, ge, arg2, neg2)))
|
|
return false;
|
|
|
|
for (i = 0; i < type->dimx; ++i)
|
|
one_value.u[i].f = 1.0f;
|
|
if (!(one = hlsl_new_constant(ctx, type, &one_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, one);
|
|
|
|
if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_DIV, one, cond)))
|
|
return false;
|
|
hlsl_block_add_instr(block, div);
|
|
|
|
if (!(mul2 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, div, arg1)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul2);
|
|
|
|
if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, mul2, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, frc);
|
|
|
|
if (!(mul3 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, frc, cond)))
|
|
return false;
|
|
hlsl_block_add_instr(block, mul3);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool lower_nonfloat_exprs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, struct hlsl_block *block)
|
|
{
|
|
struct hlsl_ir_expr *expr;
|
|
|
|
if (instr->type != HLSL_IR_EXPR)
|
|
return false;
|
|
expr = hlsl_ir_expr(instr);
|
|
if (expr->op == HLSL_OP1_CAST || instr->data_type->e.numeric.type == HLSL_TYPE_FLOAT)
|
|
return false;
|
|
|
|
switch (expr->op)
|
|
{
|
|
case HLSL_OP1_ABS:
|
|
case HLSL_OP1_NEG:
|
|
case HLSL_OP2_ADD:
|
|
case HLSL_OP2_DIV:
|
|
case HLSL_OP2_LOGIC_AND:
|
|
case HLSL_OP2_LOGIC_OR:
|
|
case HLSL_OP2_MAX:
|
|
case HLSL_OP2_MIN:
|
|
case HLSL_OP2_MUL:
|
|
{
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = {0};
|
|
struct hlsl_ir_node *arg, *arg_cast, *float_expr, *ret;
|
|
struct hlsl_type *float_type;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < HLSL_MAX_OPERANDS; ++i)
|
|
{
|
|
arg = expr->operands[i].node;
|
|
if (!arg)
|
|
continue;
|
|
|
|
float_type = hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, arg->data_type->dimx);
|
|
if (!(arg_cast = hlsl_new_cast(ctx, arg, float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, arg_cast);
|
|
|
|
operands[i] = arg_cast;
|
|
}
|
|
|
|
float_type = hlsl_get_vector_type(ctx, HLSL_TYPE_FLOAT, instr->data_type->dimx);
|
|
if (!(float_expr = hlsl_new_expr(ctx, expr->op, operands, float_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, float_expr);
|
|
|
|
if (!(ret = hlsl_new_cast(ctx, float_expr, instr->data_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(block, ret);
|
|
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool lower_discard_neg(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_node *zero, *bool_false, *or, *cmp, *load;
|
|
static const struct hlsl_constant_value zero_value;
|
|
struct hlsl_type *arg_type, *cmp_type;
|
|
struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = { 0 };
|
|
struct hlsl_ir_jump *jump;
|
|
struct hlsl_block block;
|
|
unsigned int i, count;
|
|
|
|
if (instr->type != HLSL_IR_JUMP)
|
|
return false;
|
|
jump = hlsl_ir_jump(instr);
|
|
if (jump->type != HLSL_IR_JUMP_DISCARD_NEG)
|
|
return false;
|
|
|
|
hlsl_block_init(&block);
|
|
|
|
arg_type = jump->condition.node->data_type;
|
|
if (!(zero = hlsl_new_constant(ctx, arg_type, &zero_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(&block, zero);
|
|
|
|
operands[0] = jump->condition.node;
|
|
operands[1] = zero;
|
|
cmp_type = hlsl_get_numeric_type(ctx, arg_type->class, HLSL_TYPE_BOOL, arg_type->dimx, arg_type->dimy);
|
|
if (!(cmp = hlsl_new_expr(ctx, HLSL_OP2_LESS, operands, cmp_type, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(&block, cmp);
|
|
|
|
if (!(bool_false = hlsl_new_constant(ctx, hlsl_get_scalar_type(ctx, HLSL_TYPE_BOOL), &zero_value, &instr->loc)))
|
|
return false;
|
|
hlsl_block_add_instr(&block, bool_false);
|
|
|
|
or = bool_false;
|
|
|
|
count = hlsl_type_component_count(cmp_type);
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
if (!(load = hlsl_add_load_component(ctx, &block, cmp, i, &instr->loc)))
|
|
return false;
|
|
|
|
if (!(or = hlsl_new_binary_expr(ctx, HLSL_OP2_LOGIC_OR, or, load)))
|
|
return NULL;
|
|
hlsl_block_add_instr(&block, or);
|
|
}
|
|
|
|
list_move_tail(&instr->entry, &block.instrs);
|
|
hlsl_src_remove(&jump->condition);
|
|
hlsl_src_from_node(&jump->condition, or);
|
|
jump->type = HLSL_IR_JUMP_DISCARD_NZ;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_CONSTANT:
|
|
case HLSL_IR_EXPR:
|
|
case HLSL_IR_INDEX:
|
|
case HLSL_IR_LOAD:
|
|
case HLSL_IR_RESOURCE_LOAD:
|
|
case HLSL_IR_SWIZZLE:
|
|
if (list_empty(&instr->uses))
|
|
{
|
|
list_remove(&instr->entry);
|
|
hlsl_free_instr(instr);
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case HLSL_IR_STORE:
|
|
{
|
|
struct hlsl_ir_store *store = hlsl_ir_store(instr);
|
|
struct hlsl_ir_var *var = store->lhs.var;
|
|
|
|
if (var->last_read < instr->index)
|
|
{
|
|
list_remove(&instr->entry);
|
|
hlsl_free_instr(instr);
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_CALL:
|
|
case HLSL_IR_IF:
|
|
case HLSL_IR_JUMP:
|
|
case HLSL_IR_LOOP:
|
|
case HLSL_IR_RESOURCE_STORE:
|
|
case HLSL_IR_SWITCH:
|
|
break;
|
|
case HLSL_IR_STATEBLOCK_CONSTANT:
|
|
/* Stateblock constants should not appear in the shader program. */
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void dump_function(struct rb_entry *entry, void *context)
|
|
{
|
|
struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry);
|
|
struct hlsl_ir_function_decl *decl;
|
|
struct hlsl_ctx *ctx = context;
|
|
|
|
LIST_FOR_EACH_ENTRY(decl, &func->overloads, struct hlsl_ir_function_decl, entry)
|
|
{
|
|
if (decl->has_body)
|
|
hlsl_dump_function(ctx, decl);
|
|
}
|
|
}
|
|
|
|
static bool mark_indexable_vars(struct hlsl_ctx *ctx, struct hlsl_deref *deref,
|
|
struct hlsl_ir_node *instr)
|
|
{
|
|
if (!deref->rel_offset.node)
|
|
return false;
|
|
|
|
assert(deref->var);
|
|
assert(deref->rel_offset.node->type != HLSL_IR_CONSTANT);
|
|
deref->var->indexable = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
static char get_regset_name(enum hlsl_regset regset)
|
|
{
|
|
switch (regset)
|
|
{
|
|
case HLSL_REGSET_SAMPLERS:
|
|
return 's';
|
|
case HLSL_REGSET_TEXTURES:
|
|
return 't';
|
|
case HLSL_REGSET_UAVS:
|
|
return 'u';
|
|
case HLSL_REGSET_NUMERIC:
|
|
vkd3d_unreachable();
|
|
}
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
static void allocate_register_reservations(struct hlsl_ctx *ctx)
|
|
{
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
const struct hlsl_reg_reservation *reservation = &var->reg_reservation;
|
|
unsigned int r;
|
|
|
|
if (reservation->reg_type)
|
|
{
|
|
for (r = 0; r <= HLSL_REGSET_LAST_OBJECT; ++r)
|
|
{
|
|
if (var->regs[r].allocation_size > 0)
|
|
{
|
|
if (reservation->reg_type != get_regset_name(r))
|
|
{
|
|
struct vkd3d_string_buffer *type_string;
|
|
|
|
/* We can throw this error because resources can only span across a single
|
|
* regset, but we have to check for multiple regsets if we support register
|
|
* reservations for structs for SM5. */
|
|
type_string = hlsl_type_to_string(ctx, var->data_type);
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"Object of type '%s' must be bound to register type '%c'.",
|
|
type_string->buffer, get_regset_name(r));
|
|
hlsl_release_string_buffer(ctx, type_string);
|
|
}
|
|
else
|
|
{
|
|
var->regs[r].allocated = true;
|
|
var->regs[r].space = reservation->reg_space;
|
|
var->regs[r].index = reservation->reg_index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void deref_mark_last_read(struct hlsl_deref *deref, unsigned int last_read)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (hlsl_deref_is_lowered(deref))
|
|
{
|
|
if (deref->rel_offset.node)
|
|
deref->rel_offset.node->last_read = last_read;
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < deref->path_len; ++i)
|
|
deref->path[i].node->last_read = last_read;
|
|
}
|
|
}
|
|
|
|
/* Compute the earliest and latest liveness for each variable. In the case that
|
|
* a variable is accessed inside of a loop, we promote its liveness to extend
|
|
* to at least the range of the entire loop. We also do this for nodes, so that
|
|
* nodes produced before the loop have their temp register protected from being
|
|
* overridden after the last read within an iteration. */
|
|
static void compute_liveness_recurse(struct hlsl_block *block, unsigned int loop_first, unsigned int loop_last)
|
|
{
|
|
struct hlsl_ir_node *instr;
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
const unsigned int last_read = loop_last ? max(instr->index, loop_last) : instr->index;
|
|
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_CALL:
|
|
/* We should have inlined all calls before computing liveness. */
|
|
vkd3d_unreachable();
|
|
case HLSL_IR_STATEBLOCK_CONSTANT:
|
|
/* Stateblock constants should not appear in the shader program. */
|
|
vkd3d_unreachable();
|
|
|
|
case HLSL_IR_STORE:
|
|
{
|
|
struct hlsl_ir_store *store = hlsl_ir_store(instr);
|
|
|
|
var = store->lhs.var;
|
|
if (!var->first_write)
|
|
var->first_write = loop_first ? min(instr->index, loop_first) : instr->index;
|
|
store->rhs.node->last_read = last_read;
|
|
deref_mark_last_read(&store->lhs, last_read);
|
|
break;
|
|
}
|
|
case HLSL_IR_EXPR:
|
|
{
|
|
struct hlsl_ir_expr *expr = hlsl_ir_expr(instr);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i)
|
|
expr->operands[i].node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_IF:
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
|
|
compute_liveness_recurse(&iff->then_block, loop_first, loop_last);
|
|
compute_liveness_recurse(&iff->else_block, loop_first, loop_last);
|
|
iff->condition.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_LOAD:
|
|
{
|
|
struct hlsl_ir_load *load = hlsl_ir_load(instr);
|
|
|
|
var = load->src.var;
|
|
var->last_read = max(var->last_read, last_read);
|
|
deref_mark_last_read(&load->src, last_read);
|
|
break;
|
|
}
|
|
case HLSL_IR_LOOP:
|
|
{
|
|
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
|
|
|
|
compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index,
|
|
loop_last ? loop_last : loop->next_index);
|
|
break;
|
|
}
|
|
case HLSL_IR_RESOURCE_LOAD:
|
|
{
|
|
struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr);
|
|
|
|
var = load->resource.var;
|
|
var->last_read = max(var->last_read, last_read);
|
|
deref_mark_last_read(&load->resource, last_read);
|
|
|
|
if ((var = load->sampler.var))
|
|
{
|
|
var->last_read = max(var->last_read, last_read);
|
|
deref_mark_last_read(&load->sampler, last_read);
|
|
}
|
|
|
|
if (load->coords.node)
|
|
load->coords.node->last_read = last_read;
|
|
if (load->texel_offset.node)
|
|
load->texel_offset.node->last_read = last_read;
|
|
if (load->lod.node)
|
|
load->lod.node->last_read = last_read;
|
|
if (load->ddx.node)
|
|
load->ddx.node->last_read = last_read;
|
|
if (load->ddy.node)
|
|
load->ddy.node->last_read = last_read;
|
|
if (load->sample_index.node)
|
|
load->sample_index.node->last_read = last_read;
|
|
if (load->cmp.node)
|
|
load->cmp.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_RESOURCE_STORE:
|
|
{
|
|
struct hlsl_ir_resource_store *store = hlsl_ir_resource_store(instr);
|
|
|
|
var = store->resource.var;
|
|
var->last_read = max(var->last_read, last_read);
|
|
deref_mark_last_read(&store->resource, last_read);
|
|
store->coords.node->last_read = last_read;
|
|
store->value.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_SWIZZLE:
|
|
{
|
|
struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr);
|
|
|
|
swizzle->val.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_INDEX:
|
|
{
|
|
struct hlsl_ir_index *index = hlsl_ir_index(instr);
|
|
|
|
index->val.node->last_read = last_read;
|
|
index->idx.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_JUMP:
|
|
{
|
|
struct hlsl_ir_jump *jump = hlsl_ir_jump(instr);
|
|
|
|
if (jump->condition.node)
|
|
jump->condition.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_SWITCH:
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
compute_liveness_recurse(&c->body, loop_first, loop_last);
|
|
s->selector.node->last_read = last_read;
|
|
break;
|
|
}
|
|
case HLSL_IR_CONSTANT:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
|
|
{
|
|
struct hlsl_scope *scope;
|
|
struct hlsl_ir_var *var;
|
|
|
|
index_instructions(&entry_func->body, 2);
|
|
|
|
LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry)
|
|
{
|
|
LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry)
|
|
var->first_write = var->last_read = 0;
|
|
}
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->is_uniform || var->is_input_semantic)
|
|
var->first_write = 1;
|
|
else if (var->is_output_semantic)
|
|
var->last_read = UINT_MAX;
|
|
}
|
|
|
|
compute_liveness_recurse(&entry_func->body, 0, 0);
|
|
}
|
|
|
|
struct register_allocator
|
|
{
|
|
struct allocation
|
|
{
|
|
uint32_t reg;
|
|
unsigned int writemask;
|
|
unsigned int first_write, last_read;
|
|
} *allocations;
|
|
size_t count, capacity;
|
|
|
|
/* Indexable temps are allocated separately and always keep their index regardless of their
|
|
* lifetime. */
|
|
size_t indexable_count;
|
|
|
|
/* Total number of registers allocated so far. Used to declare sm4 temp count. */
|
|
uint32_t reg_count;
|
|
};
|
|
|
|
static unsigned int get_available_writemask(const struct register_allocator *allocator,
|
|
unsigned int first_write, unsigned int last_read, uint32_t reg_idx)
|
|
{
|
|
unsigned int writemask = VKD3DSP_WRITEMASK_ALL;
|
|
size_t i;
|
|
|
|
for (i = 0; i < allocator->count; ++i)
|
|
{
|
|
const struct allocation *allocation = &allocator->allocations[i];
|
|
|
|
/* We do not overlap if first write == last read:
|
|
* this is the case where we are allocating the result of that
|
|
* expression, e.g. "add r0, r0, r1". */
|
|
|
|
if (allocation->reg == reg_idx
|
|
&& first_write < allocation->last_read && last_read > allocation->first_write)
|
|
writemask &= ~allocation->writemask;
|
|
|
|
if (!writemask)
|
|
break;
|
|
}
|
|
|
|
return writemask;
|
|
}
|
|
|
|
static void record_allocation(struct hlsl_ctx *ctx, struct register_allocator *allocator,
|
|
uint32_t reg_idx, unsigned int writemask, unsigned int first_write, unsigned int last_read)
|
|
{
|
|
struct allocation *allocation;
|
|
|
|
if (!hlsl_array_reserve(ctx, (void **)&allocator->allocations, &allocator->capacity,
|
|
allocator->count + 1, sizeof(*allocator->allocations)))
|
|
return;
|
|
|
|
allocation = &allocator->allocations[allocator->count++];
|
|
allocation->reg = reg_idx;
|
|
allocation->writemask = writemask;
|
|
allocation->first_write = first_write;
|
|
allocation->last_read = last_read;
|
|
|
|
allocator->reg_count = max(allocator->reg_count, reg_idx + 1);
|
|
}
|
|
|
|
/* reg_size is the number of register components to be reserved, while component_count is the number
|
|
* of components for the register's writemask. In SM1, floats and vectors allocate the whole
|
|
* register, even if they don't use it completely. */
|
|
static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct register_allocator *allocator,
|
|
unsigned int first_write, unsigned int last_read, unsigned int reg_size,
|
|
unsigned int component_count)
|
|
{
|
|
struct hlsl_reg ret = {0};
|
|
unsigned int writemask;
|
|
uint32_t reg_idx;
|
|
|
|
assert(component_count <= reg_size);
|
|
|
|
for (reg_idx = 0;; ++reg_idx)
|
|
{
|
|
writemask = get_available_writemask(allocator, first_write, last_read, reg_idx);
|
|
|
|
if (vkd3d_popcount(writemask) >= reg_size)
|
|
{
|
|
writemask = hlsl_combine_writemasks(writemask, (1u << reg_size) - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
record_allocation(ctx, allocator, reg_idx, writemask, first_write, last_read);
|
|
|
|
ret.id = reg_idx;
|
|
ret.allocation_size = 1;
|
|
ret.writemask = hlsl_combine_writemasks(writemask, (1u << component_count) - 1);
|
|
ret.allocated = true;
|
|
return ret;
|
|
}
|
|
|
|
static bool is_range_available(const struct register_allocator *allocator,
|
|
unsigned int first_write, unsigned int last_read, uint32_t reg_idx, unsigned int reg_size)
|
|
{
|
|
unsigned int last_reg_mask = (1u << (reg_size % 4)) - 1;
|
|
unsigned int writemask;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < (reg_size / 4); ++i)
|
|
{
|
|
writemask = get_available_writemask(allocator, first_write, last_read, reg_idx + i);
|
|
if (writemask != VKD3DSP_WRITEMASK_ALL)
|
|
return false;
|
|
}
|
|
writemask = get_available_writemask(allocator, first_write, last_read, reg_idx + (reg_size / 4));
|
|
if ((writemask & last_reg_mask) != last_reg_mask)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct register_allocator *allocator,
|
|
unsigned int first_write, unsigned int last_read, unsigned int reg_size)
|
|
{
|
|
struct hlsl_reg ret = {0};
|
|
uint32_t reg_idx;
|
|
unsigned int i;
|
|
|
|
for (reg_idx = 0;; ++reg_idx)
|
|
{
|
|
if (is_range_available(allocator, first_write, last_read, reg_idx, reg_size))
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < reg_size / 4; ++i)
|
|
record_allocation(ctx, allocator, reg_idx + i, VKD3DSP_WRITEMASK_ALL, first_write, last_read);
|
|
if (reg_size % 4)
|
|
record_allocation(ctx, allocator, reg_idx + (reg_size / 4), (1u << (reg_size % 4)) - 1, first_write, last_read);
|
|
|
|
ret.id = reg_idx;
|
|
ret.allocation_size = align(reg_size, 4) / 4;
|
|
ret.allocated = true;
|
|
return ret;
|
|
}
|
|
|
|
static struct hlsl_reg allocate_numeric_registers_for_type(struct hlsl_ctx *ctx, struct register_allocator *allocator,
|
|
unsigned int first_write, unsigned int last_read, const struct hlsl_type *type)
|
|
{
|
|
unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC];
|
|
|
|
/* FIXME: We could potentially pack structs or arrays more efficiently... */
|
|
|
|
if (type->class <= HLSL_CLASS_VECTOR)
|
|
return allocate_register(ctx, allocator, first_write, last_read, type->dimx, type->dimx);
|
|
else
|
|
return allocate_range(ctx, allocator, first_write, last_read, reg_size);
|
|
}
|
|
|
|
static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type)
|
|
{
|
|
static const char writemask_offset[] = {'w','x','y','z'};
|
|
unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC];
|
|
|
|
if (reg_size > 4)
|
|
{
|
|
if (reg_size & 3)
|
|
return vkd3d_dbg_sprintf("%c%u-%c%u.%c", class, reg.id, class, reg.id + (reg_size / 4),
|
|
writemask_offset[reg_size & 3]);
|
|
|
|
return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class, reg.id + (reg_size / 4) - 1);
|
|
}
|
|
return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask));
|
|
}
|
|
|
|
static bool track_object_components_sampler_dim(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
struct hlsl_ir_resource_load *load;
|
|
struct hlsl_ir_var *var;
|
|
enum hlsl_regset regset;
|
|
unsigned int index;
|
|
|
|
if (instr->type != HLSL_IR_RESOURCE_LOAD)
|
|
return false;
|
|
|
|
load = hlsl_ir_resource_load(instr);
|
|
var = load->resource.var;
|
|
|
|
regset = hlsl_deref_get_regset(ctx, &load->resource);
|
|
if (!hlsl_regset_index_from_deref(ctx, &load->resource, regset, &index))
|
|
return false;
|
|
|
|
if (regset == HLSL_REGSET_SAMPLERS)
|
|
{
|
|
enum hlsl_sampler_dim dim;
|
|
|
|
assert(!load->sampler.var);
|
|
|
|
dim = var->objects_usage[regset][index].sampler_dim;
|
|
if (dim != load->sampling_dim)
|
|
{
|
|
if (dim == HLSL_SAMPLER_DIM_GENERIC)
|
|
{
|
|
var->objects_usage[regset][index].first_sampler_dim_loc = instr->loc;
|
|
}
|
|
else
|
|
{
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INCONSISTENT_SAMPLER,
|
|
"Inconsistent generic sampler usage dimension.");
|
|
hlsl_note(ctx, &var->objects_usage[regset][index].first_sampler_dim_loc,
|
|
VKD3D_SHADER_LOG_ERROR, "First use is here.");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
var->objects_usage[regset][index].sampler_dim = load->sampling_dim;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void register_deref_usage(struct hlsl_ctx *ctx, struct hlsl_deref *deref)
|
|
{
|
|
struct hlsl_ir_var *var = deref->var;
|
|
enum hlsl_regset regset = hlsl_deref_get_regset(ctx, deref);
|
|
uint32_t required_bind_count;
|
|
struct hlsl_type *type;
|
|
unsigned int index;
|
|
|
|
if (!hlsl_regset_index_from_deref(ctx, deref, regset, &index))
|
|
return;
|
|
|
|
if (regset <= HLSL_REGSET_LAST_OBJECT)
|
|
{
|
|
var->objects_usage[regset][index].used = true;
|
|
var->bind_count[regset] = max(var->bind_count[regset], index + 1);
|
|
}
|
|
else if (regset == HLSL_REGSET_NUMERIC)
|
|
{
|
|
type = hlsl_deref_get_type(ctx, deref);
|
|
|
|
hlsl_regset_index_from_deref(ctx, deref, regset, &index);
|
|
required_bind_count = align(index + type->reg_size[regset], 4) / 4;
|
|
var->bind_count[regset] = max(var->bind_count[regset], required_bind_count);
|
|
}
|
|
else
|
|
{
|
|
vkd3d_unreachable();
|
|
}
|
|
}
|
|
|
|
static bool track_components_usage(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context)
|
|
{
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_LOAD:
|
|
{
|
|
struct hlsl_ir_load *load = hlsl_ir_load(instr);
|
|
|
|
if (!load->src.var->is_uniform)
|
|
return false;
|
|
|
|
/* These will are handled by validate_static_object_references(). */
|
|
if (hlsl_deref_get_regset(ctx, &load->src) != HLSL_REGSET_NUMERIC)
|
|
return false;
|
|
|
|
register_deref_usage(ctx, &load->src);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_RESOURCE_LOAD:
|
|
register_deref_usage(ctx, &hlsl_ir_resource_load(instr)->resource);
|
|
if (hlsl_ir_resource_load(instr)->sampler.var)
|
|
register_deref_usage(ctx, &hlsl_ir_resource_load(instr)->sampler);
|
|
break;
|
|
|
|
case HLSL_IR_RESOURCE_STORE:
|
|
register_deref_usage(ctx, &hlsl_ir_resource_store(instr)->resource);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void calculate_resource_register_counts(struct hlsl_ctx *ctx)
|
|
{
|
|
struct hlsl_ir_var *var;
|
|
struct hlsl_type *type;
|
|
unsigned int k;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
type = var->data_type;
|
|
|
|
for (k = 0; k <= HLSL_REGSET_LAST_OBJECT; ++k)
|
|
{
|
|
bool is_separated = var->is_separated_resource;
|
|
|
|
if (var->bind_count[k] > 0)
|
|
var->regs[k].allocation_size = (k == HLSL_REGSET_SAMPLERS || is_separated) ? var->bind_count[k] : type->reg_size[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void allocate_variable_temp_register(struct hlsl_ctx *ctx,
|
|
struct hlsl_ir_var *var, struct register_allocator *allocator)
|
|
{
|
|
if (var->is_input_semantic || var->is_output_semantic || var->is_uniform)
|
|
return;
|
|
|
|
if (!var->regs[HLSL_REGSET_NUMERIC].allocated && var->last_read)
|
|
{
|
|
if (var->indexable)
|
|
{
|
|
var->regs[HLSL_REGSET_NUMERIC].id = allocator->indexable_count++;
|
|
var->regs[HLSL_REGSET_NUMERIC].allocation_size = 1;
|
|
var->regs[HLSL_REGSET_NUMERIC].writemask = 0;
|
|
var->regs[HLSL_REGSET_NUMERIC].allocated = true;
|
|
|
|
TRACE("Allocated %s to x%u[].\n", var->name, var->regs[HLSL_REGSET_NUMERIC].id);
|
|
}
|
|
else
|
|
{
|
|
var->regs[HLSL_REGSET_NUMERIC] = allocate_numeric_registers_for_type(ctx, allocator,
|
|
var->first_write, var->last_read, var->data_type);
|
|
|
|
TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name, debug_register('r',
|
|
var->regs[HLSL_REGSET_NUMERIC], var->data_type), var->first_write, var->last_read);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx,
|
|
struct hlsl_block *block, struct register_allocator *allocator)
|
|
{
|
|
struct hlsl_ir_node *instr;
|
|
|
|
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
/* In SM4 all constants are inlined. */
|
|
if (ctx->profile->major_version >= 4 && instr->type == HLSL_IR_CONSTANT)
|
|
continue;
|
|
|
|
if (!instr->reg.allocated && instr->last_read)
|
|
{
|
|
instr->reg = allocate_numeric_registers_for_type(ctx, allocator, instr->index, instr->last_read,
|
|
instr->data_type);
|
|
TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index,
|
|
debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read);
|
|
}
|
|
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_IF:
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
allocate_temp_registers_recurse(ctx, &iff->then_block, allocator);
|
|
allocate_temp_registers_recurse(ctx, &iff->else_block, allocator);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_LOAD:
|
|
{
|
|
struct hlsl_ir_load *load = hlsl_ir_load(instr);
|
|
/* We need to at least allocate a variable for undefs.
|
|
* FIXME: We should probably find a way to remove them instead. */
|
|
allocate_variable_temp_register(ctx, load->src.var, allocator);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_LOOP:
|
|
{
|
|
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
|
|
allocate_temp_registers_recurse(ctx, &loop->body, allocator);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_STORE:
|
|
{
|
|
struct hlsl_ir_store *store = hlsl_ir_store(instr);
|
|
allocate_variable_temp_register(ctx, store->lhs.var, allocator);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_SWITCH:
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
allocate_temp_registers_recurse(ctx, &c->body, allocator);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void record_constant(struct hlsl_ctx *ctx, unsigned int component_index, float f)
|
|
{
|
|
struct hlsl_constant_defs *defs = &ctx->constant_defs;
|
|
struct hlsl_constant_register *reg;
|
|
size_t i;
|
|
|
|
for (i = 0; i < defs->count; ++i)
|
|
{
|
|
reg = &defs->regs[i];
|
|
if (reg->index == (component_index / 4))
|
|
{
|
|
reg->value.f[component_index % 4] = f;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!hlsl_array_reserve(ctx, (void **)&defs->regs, &defs->size, defs->count + 1, sizeof(*defs->regs)))
|
|
return;
|
|
reg = &defs->regs[defs->count++];
|
|
memset(reg, 0, sizeof(*reg));
|
|
reg->index = component_index / 4;
|
|
reg->value.f[component_index % 4] = f;
|
|
}
|
|
|
|
static void allocate_const_registers_recurse(struct hlsl_ctx *ctx,
|
|
struct hlsl_block *block, struct register_allocator *allocator)
|
|
{
|
|
struct hlsl_ir_node *instr;
|
|
|
|
LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
switch (instr->type)
|
|
{
|
|
case HLSL_IR_CONSTANT:
|
|
{
|
|
struct hlsl_ir_constant *constant = hlsl_ir_constant(instr);
|
|
const struct hlsl_type *type = instr->data_type;
|
|
unsigned int x, i;
|
|
|
|
constant->reg = allocate_numeric_registers_for_type(ctx, allocator, 1, UINT_MAX, type);
|
|
TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type));
|
|
|
|
assert(hlsl_is_numeric_type(type));
|
|
assert(type->dimy == 1);
|
|
assert(constant->reg.writemask);
|
|
|
|
for (x = 0, i = 0; x < 4; ++x)
|
|
{
|
|
const union hlsl_constant_value_component *value;
|
|
float f;
|
|
|
|
if (!(constant->reg.writemask & (1u << x)))
|
|
continue;
|
|
value = &constant->value.u[i++];
|
|
|
|
switch (type->e.numeric.type)
|
|
{
|
|
case HLSL_TYPE_BOOL:
|
|
f = !!value->u;
|
|
break;
|
|
|
|
case HLSL_TYPE_FLOAT:
|
|
case HLSL_TYPE_HALF:
|
|
f = value->f;
|
|
break;
|
|
|
|
case HLSL_TYPE_INT:
|
|
f = value->i;
|
|
break;
|
|
|
|
case HLSL_TYPE_UINT:
|
|
f = value->u;
|
|
break;
|
|
|
|
case HLSL_TYPE_DOUBLE:
|
|
FIXME("Double constant.\n");
|
|
return;
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
record_constant(ctx, constant->reg.id * 4 + x, f);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_IF:
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
allocate_const_registers_recurse(ctx, &iff->then_block, allocator);
|
|
allocate_const_registers_recurse(ctx, &iff->else_block, allocator);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_LOOP:
|
|
{
|
|
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
|
|
allocate_const_registers_recurse(ctx, &loop->body, allocator);
|
|
break;
|
|
}
|
|
|
|
case HLSL_IR_SWITCH:
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
allocate_const_registers_recurse(ctx, &c->body, allocator);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sort_uniform_by_numeric_bind_count(struct list *sorted, struct hlsl_ir_var *to_sort)
|
|
{
|
|
struct hlsl_ir_var *var;
|
|
|
|
list_remove(&to_sort->extern_entry);
|
|
|
|
LIST_FOR_EACH_ENTRY(var, sorted, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
uint32_t to_sort_size = to_sort->bind_count[HLSL_REGSET_NUMERIC];
|
|
uint32_t var_size = var->bind_count[HLSL_REGSET_NUMERIC];
|
|
|
|
if (to_sort_size > var_size)
|
|
{
|
|
list_add_before(&var->extern_entry, &to_sort->extern_entry);
|
|
return;
|
|
}
|
|
}
|
|
|
|
list_add_tail(sorted, &to_sort->extern_entry);
|
|
}
|
|
|
|
static void sort_uniforms_by_numeric_bind_count(struct hlsl_ctx *ctx)
|
|
{
|
|
struct list sorted = LIST_INIT(sorted);
|
|
struct hlsl_ir_var *var, *next;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(var, next, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->is_uniform)
|
|
sort_uniform_by_numeric_bind_count(&sorted, var);
|
|
}
|
|
list_move_tail(&ctx->extern_vars, &sorted);
|
|
}
|
|
|
|
static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
|
|
{
|
|
struct register_allocator allocator_used = {0};
|
|
struct register_allocator allocator = {0};
|
|
struct hlsl_ir_var *var;
|
|
|
|
sort_uniforms_by_numeric_bind_count(ctx);
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
unsigned int reg_size = var->data_type->reg_size[HLSL_REGSET_NUMERIC];
|
|
unsigned int bind_count = var->bind_count[HLSL_REGSET_NUMERIC];
|
|
|
|
if (!var->is_uniform || reg_size == 0)
|
|
continue;
|
|
|
|
if (var->reg_reservation.reg_type == 'c')
|
|
{
|
|
unsigned int reg_idx = var->reg_reservation.reg_index;
|
|
unsigned int i;
|
|
|
|
assert(reg_size % 4 == 0);
|
|
for (i = 0; i < reg_size / 4; ++i)
|
|
{
|
|
if (i < bind_count)
|
|
{
|
|
if (get_available_writemask(&allocator_used, 1, UINT_MAX, reg_idx + i) != VKD3DSP_WRITEMASK_ALL)
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"Overlapping register() reservations on 'c%u'.", reg_idx + i);
|
|
}
|
|
record_allocation(ctx, &allocator_used, reg_idx + i, VKD3DSP_WRITEMASK_ALL, 1, UINT_MAX);
|
|
}
|
|
record_allocation(ctx, &allocator, reg_idx + i, VKD3DSP_WRITEMASK_ALL, 1, UINT_MAX);
|
|
}
|
|
|
|
var->regs[HLSL_REGSET_NUMERIC].id = reg_idx;
|
|
var->regs[HLSL_REGSET_NUMERIC].allocation_size = reg_size / 4;
|
|
var->regs[HLSL_REGSET_NUMERIC].writemask = VKD3DSP_WRITEMASK_ALL;
|
|
var->regs[HLSL_REGSET_NUMERIC].allocated = true;
|
|
TRACE("Allocated reserved %s to %s.\n", var->name,
|
|
debug_register('c', var->regs[HLSL_REGSET_NUMERIC], var->data_type));
|
|
}
|
|
}
|
|
|
|
vkd3d_free(allocator_used.allocations);
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
unsigned int alloc_size = 4 * var->bind_count[HLSL_REGSET_NUMERIC];
|
|
|
|
if (!var->is_uniform || alloc_size == 0)
|
|
continue;
|
|
|
|
if (!var->regs[HLSL_REGSET_NUMERIC].allocated)
|
|
{
|
|
var->regs[HLSL_REGSET_NUMERIC] = allocate_range(ctx, &allocator, 1, UINT_MAX, alloc_size);
|
|
TRACE("Allocated %s to %s.\n", var->name,
|
|
debug_register('c', var->regs[HLSL_REGSET_NUMERIC], var->data_type));
|
|
}
|
|
}
|
|
|
|
allocate_const_registers_recurse(ctx, &entry_func->body, &allocator);
|
|
|
|
vkd3d_free(allocator.allocations);
|
|
}
|
|
|
|
/* Simple greedy temporary register allocation pass that just assigns a unique
|
|
* index to all (simultaneously live) variables or intermediate values. Agnostic
|
|
* as to how many registers are actually available for the current backend, and
|
|
* does not handle constants. */
|
|
static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func)
|
|
{
|
|
struct register_allocator allocator = {0};
|
|
|
|
/* ps_1_* outputs are special and go in temp register 0. */
|
|
if (ctx->profile->major_version == 1 && ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < entry_func->parameters.count; ++i)
|
|
{
|
|
const struct hlsl_ir_var *var = entry_func->parameters.vars[i];
|
|
|
|
if (var->is_output_semantic)
|
|
{
|
|
record_allocation(ctx, &allocator, 0, VKD3DSP_WRITEMASK_ALL, var->first_write, var->last_read);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
allocate_temp_registers_recurse(ctx, &entry_func->body, &allocator);
|
|
ctx->temp_count = allocator.reg_count;
|
|
vkd3d_free(allocator.allocations);
|
|
}
|
|
|
|
static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output)
|
|
{
|
|
static const char *const shader_names[] =
|
|
{
|
|
[VKD3D_SHADER_TYPE_PIXEL] = "Pixel",
|
|
[VKD3D_SHADER_TYPE_VERTEX] = "Vertex",
|
|
[VKD3D_SHADER_TYPE_GEOMETRY] = "Geometry",
|
|
[VKD3D_SHADER_TYPE_HULL] = "Hull",
|
|
[VKD3D_SHADER_TYPE_DOMAIN] = "Domain",
|
|
[VKD3D_SHADER_TYPE_COMPUTE] = "Compute",
|
|
};
|
|
|
|
enum vkd3d_shader_register_type type;
|
|
uint32_t reg;
|
|
bool builtin;
|
|
|
|
assert(var->semantic.name);
|
|
|
|
if (ctx->profile->major_version < 4)
|
|
{
|
|
struct vkd3d_shader_version version;
|
|
D3DDECLUSAGE usage;
|
|
uint32_t usage_idx;
|
|
|
|
/* ps_1_* outputs are special and go in temp register 0. */
|
|
if (ctx->profile->major_version == 1 && output && ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
|
|
return;
|
|
|
|
version.major = ctx->profile->major_version;
|
|
version.minor = ctx->profile->minor_version;
|
|
version.type = ctx->profile->type;
|
|
builtin = hlsl_sm1_register_from_semantic(&version,
|
|
var->semantic.name, var->semantic.index, output, &type, ®);
|
|
if (!builtin && !hlsl_sm1_usage_from_semantic(var->semantic.name, var->semantic.index, &usage, &usage_idx))
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
|
|
"Invalid semantic '%s'.", var->semantic.name);
|
|
return;
|
|
}
|
|
|
|
if ((!output && !var->last_read) || (output && !var->first_write))
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
D3D_NAME usage;
|
|
bool has_idx;
|
|
|
|
if (!hlsl_sm4_usage_from_semantic(ctx, &var->semantic, output, &usage))
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC,
|
|
"Invalid semantic '%s'.", var->semantic.name);
|
|
return;
|
|
}
|
|
if ((builtin = hlsl_sm4_register_from_semantic(ctx, &var->semantic, output, &type, &has_idx)))
|
|
reg = has_idx ? var->semantic.index : 0;
|
|
}
|
|
|
|
if (builtin)
|
|
{
|
|
TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n", shader_names[ctx->profile->type],
|
|
output ? "output" : "input", var->semantic.name, var->semantic.index, type, reg);
|
|
}
|
|
else
|
|
{
|
|
var->regs[HLSL_REGSET_NUMERIC].allocated = true;
|
|
var->regs[HLSL_REGSET_NUMERIC].id = (*counter)++;
|
|
var->regs[HLSL_REGSET_NUMERIC].allocation_size = 1;
|
|
var->regs[HLSL_REGSET_NUMERIC].writemask = (1 << var->data_type->dimx) - 1;
|
|
TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v',
|
|
var->regs[HLSL_REGSET_NUMERIC], var->data_type));
|
|
}
|
|
}
|
|
|
|
static void allocate_semantic_registers(struct hlsl_ctx *ctx)
|
|
{
|
|
unsigned int input_counter = 0, output_counter = 0;
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->is_input_semantic)
|
|
allocate_semantic_register(ctx, var, &input_counter, false);
|
|
if (var->is_output_semantic)
|
|
allocate_semantic_register(ctx, var, &output_counter, true);
|
|
}
|
|
}
|
|
|
|
static const struct hlsl_buffer *get_reserved_buffer(struct hlsl_ctx *ctx, uint32_t space, uint32_t index)
|
|
{
|
|
const struct hlsl_buffer *buffer;
|
|
|
|
LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, const struct hlsl_buffer, entry)
|
|
{
|
|
if (buffer->reservation.reg_type == 'b'
|
|
&& buffer->reservation.reg_space == space && buffer->reservation.reg_index == index)
|
|
return buffer;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void hlsl_calculate_buffer_offset(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, bool register_reservation)
|
|
{
|
|
unsigned int var_reg_size = var->data_type->reg_size[HLSL_REGSET_NUMERIC];
|
|
enum hlsl_type_class var_class = var->data_type->class;
|
|
struct hlsl_buffer *buffer = var->buffer;
|
|
|
|
if (register_reservation)
|
|
{
|
|
var->buffer_offset = 4 * var->reg_reservation.reg_index;
|
|
var->has_explicit_bind_point = 1;
|
|
}
|
|
else
|
|
{
|
|
if (var->reg_reservation.offset_type == 'c')
|
|
{
|
|
if (var->reg_reservation.offset_index % 4)
|
|
{
|
|
if (var_class == HLSL_CLASS_MATRIX)
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"packoffset() reservations with matrix types must be aligned with the beginning of a register.");
|
|
}
|
|
else if (var_class == HLSL_CLASS_ARRAY)
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"packoffset() reservations with array types must be aligned with the beginning of a register.");
|
|
}
|
|
else if (var_class == HLSL_CLASS_STRUCT)
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"packoffset() reservations with struct types must be aligned with the beginning of a register.");
|
|
}
|
|
else if (var_class == HLSL_CLASS_VECTOR)
|
|
{
|
|
unsigned int aligned_offset = hlsl_type_get_sm4_offset(var->data_type, var->reg_reservation.offset_index);
|
|
|
|
if (var->reg_reservation.offset_index != aligned_offset)
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"packoffset() reservations with vector types cannot span multiple registers.");
|
|
}
|
|
}
|
|
var->buffer_offset = var->reg_reservation.offset_index;
|
|
var->has_explicit_bind_point = 1;
|
|
}
|
|
else
|
|
{
|
|
var->buffer_offset = hlsl_type_get_sm4_offset(var->data_type, buffer->size);
|
|
}
|
|
}
|
|
|
|
TRACE("Allocated buffer offset %u to %s.\n", var->buffer_offset, var->name);
|
|
buffer->size = max(buffer->size, var->buffer_offset + var_reg_size);
|
|
if (var->last_read)
|
|
buffer->used_size = max(buffer->used_size, var->buffer_offset + var_reg_size);
|
|
}
|
|
|
|
static void validate_buffer_offsets(struct hlsl_ctx *ctx)
|
|
{
|
|
struct hlsl_ir_var *var1, *var2;
|
|
struct hlsl_buffer *buffer;
|
|
|
|
LIST_FOR_EACH_ENTRY(var1, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (!var1->is_uniform || hlsl_type_is_resource(var1->data_type))
|
|
continue;
|
|
|
|
buffer = var1->buffer;
|
|
if (!buffer->used_size)
|
|
continue;
|
|
|
|
LIST_FOR_EACH_ENTRY(var2, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
unsigned int var1_reg_size, var2_reg_size;
|
|
|
|
if (!var2->is_uniform || hlsl_type_is_resource(var2->data_type))
|
|
continue;
|
|
|
|
if (var1 == var2 || var1->buffer != var2->buffer)
|
|
continue;
|
|
|
|
/* This is to avoid reporting the error twice for the same pair of overlapping variables. */
|
|
if (strcmp(var1->name, var2->name) >= 0)
|
|
continue;
|
|
|
|
var1_reg_size = var1->data_type->reg_size[HLSL_REGSET_NUMERIC];
|
|
var2_reg_size = var2->data_type->reg_size[HLSL_REGSET_NUMERIC];
|
|
|
|
if (var1->buffer_offset < var2->buffer_offset + var2_reg_size
|
|
&& var2->buffer_offset < var1->buffer_offset + var1_reg_size)
|
|
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"Invalid packoffset() reservation: Variables %s and %s overlap.",
|
|
var1->name, var2->name);
|
|
}
|
|
}
|
|
|
|
LIST_FOR_EACH_ENTRY(var1, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
buffer = var1->buffer;
|
|
if (!buffer || buffer == ctx->globals_buffer)
|
|
continue;
|
|
|
|
if (var1->reg_reservation.offset_type
|
|
|| var1->reg_reservation.reg_type == 's'
|
|
|| var1->reg_reservation.reg_type == 't'
|
|
|| var1->reg_reservation.reg_type == 'u')
|
|
buffer->manually_packed_elements = true;
|
|
else
|
|
buffer->automatically_packed_elements = true;
|
|
|
|
if (buffer->manually_packed_elements && buffer->automatically_packed_elements)
|
|
{
|
|
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"packoffset() must be specified for all the buffer elements, or none of them.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void hlsl_calculate_buffer_offsets(struct hlsl_ctx *ctx)
|
|
{
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (!var->is_uniform || hlsl_type_is_resource(var->data_type))
|
|
continue;
|
|
|
|
if (hlsl_var_has_buffer_offset_register_reservation(ctx, var))
|
|
hlsl_calculate_buffer_offset(ctx, var, true);
|
|
}
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (!var->is_uniform || hlsl_type_is_resource(var->data_type))
|
|
continue;
|
|
|
|
if (!hlsl_var_has_buffer_offset_register_reservation(ctx, var))
|
|
hlsl_calculate_buffer_offset(ctx, var, false);
|
|
}
|
|
}
|
|
|
|
static unsigned int get_max_cbuffer_reg_index(struct hlsl_ctx *ctx)
|
|
{
|
|
if (hlsl_version_ge(ctx, 5, 1))
|
|
return UINT_MAX;
|
|
|
|
return 13;
|
|
}
|
|
|
|
static void allocate_buffers(struct hlsl_ctx *ctx)
|
|
{
|
|
struct hlsl_buffer *buffer;
|
|
uint32_t index = 0, id = 0;
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (!var->is_uniform || hlsl_type_is_resource(var->data_type))
|
|
continue;
|
|
|
|
if (var->is_param)
|
|
var->buffer = ctx->params_buffer;
|
|
}
|
|
|
|
hlsl_calculate_buffer_offsets(ctx);
|
|
validate_buffer_offsets(ctx);
|
|
|
|
LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, struct hlsl_buffer, entry)
|
|
{
|
|
if (!buffer->used_size)
|
|
continue;
|
|
|
|
if (buffer->type == HLSL_BUFFER_CONSTANT)
|
|
{
|
|
const struct hlsl_reg_reservation *reservation = &buffer->reservation;
|
|
|
|
if (reservation->reg_type == 'b')
|
|
{
|
|
const struct hlsl_buffer *reserved_buffer = get_reserved_buffer(ctx,
|
|
reservation->reg_space, reservation->reg_index);
|
|
unsigned int max_index = get_max_cbuffer_reg_index(ctx);
|
|
|
|
if (buffer->reservation.reg_index > max_index)
|
|
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"Buffer reservation cb%u exceeds target's maximum (cb%u).",
|
|
buffer->reservation.reg_index, max_index);
|
|
|
|
if (reserved_buffer && reserved_buffer != buffer)
|
|
{
|
|
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
|
|
"Multiple buffers bound to space %u, index %u.",
|
|
reservation->reg_space, reservation->reg_index);
|
|
hlsl_note(ctx, &reserved_buffer->loc, VKD3D_SHADER_LOG_ERROR,
|
|
"Buffer %s is already bound to space %u, index %u.",
|
|
reserved_buffer->name, reservation->reg_space, reservation->reg_index);
|
|
}
|
|
|
|
buffer->reg.space = reservation->reg_space;
|
|
buffer->reg.index = reservation->reg_index;
|
|
if (hlsl_version_ge(ctx, 5, 1))
|
|
buffer->reg.id = id++;
|
|
else
|
|
buffer->reg.id = buffer->reg.index;
|
|
buffer->reg.allocation_size = 1;
|
|
buffer->reg.allocated = true;
|
|
TRACE("Allocated reserved %s to space %u, index %u, id %u.\n",
|
|
buffer->name, buffer->reg.space, buffer->reg.index, buffer->reg.id);
|
|
}
|
|
else if (!reservation->reg_type)
|
|
{
|
|
unsigned int max_index = get_max_cbuffer_reg_index(ctx);
|
|
while (get_reserved_buffer(ctx, 0, index))
|
|
++index;
|
|
|
|
if (index > max_index)
|
|
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"Too many buffers allocated, target's maximum is %u.", max_index);
|
|
|
|
buffer->reg.space = 0;
|
|
buffer->reg.index = index;
|
|
if (hlsl_version_ge(ctx, 5, 1))
|
|
buffer->reg.id = id++;
|
|
else
|
|
buffer->reg.id = buffer->reg.index;
|
|
buffer->reg.allocation_size = 1;
|
|
buffer->reg.allocated = true;
|
|
TRACE("Allocated %s to space 0, index %u, id %u.\n", buffer->name, buffer->reg.index, buffer->reg.id);
|
|
++index;
|
|
}
|
|
else
|
|
{
|
|
hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION,
|
|
"Constant buffers must be allocated to register type 'b'.");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FIXME("Allocate registers for texture buffers.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static const struct hlsl_ir_var *get_allocated_object(struct hlsl_ctx *ctx, enum hlsl_regset regset,
|
|
uint32_t space, uint32_t index, bool allocated_only)
|
|
{
|
|
const struct hlsl_ir_var *var;
|
|
unsigned int start, count;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, const struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->reg_reservation.reg_type == get_regset_name(regset)
|
|
&& var->data_type->reg_size[regset])
|
|
{
|
|
/* Vars with a reservation prevent non-reserved vars from being
|
|
* bound there even if the reserved vars aren't used. */
|
|
start = var->reg_reservation.reg_index;
|
|
count = var->data_type->reg_size[regset];
|
|
|
|
if (var->reg_reservation.reg_space != space)
|
|
continue;
|
|
|
|
if (!var->regs[regset].allocated && allocated_only)
|
|
continue;
|
|
}
|
|
else if (var->regs[regset].allocated)
|
|
{
|
|
if (var->regs[regset].space != space)
|
|
continue;
|
|
|
|
start = var->regs[regset].index;
|
|
count = var->regs[regset].allocation_size;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (start <= index && index < start + count)
|
|
return var;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void allocate_objects(struct hlsl_ctx *ctx, enum hlsl_regset regset)
|
|
{
|
|
char regset_name = get_regset_name(regset);
|
|
uint32_t min_index = 0, id = 0;
|
|
struct hlsl_ir_var *var;
|
|
|
|
if (regset == HLSL_REGSET_UAVS)
|
|
{
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->semantic.name && (!ascii_strcasecmp(var->semantic.name, "color")
|
|
|| !ascii_strcasecmp(var->semantic.name, "sv_target")))
|
|
min_index = max(min_index, var->semantic.index + 1);
|
|
}
|
|
}
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
unsigned int count = var->regs[regset].allocation_size;
|
|
|
|
if (count == 0)
|
|
continue;
|
|
|
|
/* The variable was already allocated if it has a reservation. */
|
|
if (var->regs[regset].allocated)
|
|
{
|
|
const struct hlsl_ir_var *reserved_object, *last_reported = NULL;
|
|
unsigned int i;
|
|
|
|
if (var->regs[regset].index < min_index)
|
|
{
|
|
assert(regset == HLSL_REGSET_UAVS);
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
|
|
"UAV index (%u) must be higher than the maximum render target index (%u).",
|
|
var->regs[regset].index, min_index - 1);
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
unsigned int space = var->regs[regset].space;
|
|
unsigned int index = var->regs[regset].index + i;
|
|
|
|
/* get_allocated_object() may return "var" itself, but we
|
|
* actually want that, otherwise we'll end up reporting the
|
|
* same conflict between the same two variables twice. */
|
|
reserved_object = get_allocated_object(ctx, regset, space, index, true);
|
|
if (reserved_object && reserved_object != var && reserved_object != last_reported)
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS,
|
|
"Multiple variables bound to space %u, %c%u.", regset_name, space, index);
|
|
hlsl_note(ctx, &reserved_object->loc, VKD3D_SHADER_LOG_ERROR,
|
|
"Variable '%s' is already bound to space %u, %c%u.",
|
|
reserved_object->name, regset_name, space, index);
|
|
last_reported = reserved_object;
|
|
}
|
|
}
|
|
|
|
if (hlsl_version_ge(ctx, 5, 1))
|
|
var->regs[regset].id = id++;
|
|
else
|
|
var->regs[regset].id = var->regs[regset].index;
|
|
TRACE("Allocated reserved variable %s to space %u, indices %c%u-%c%u, id %u.\n",
|
|
var->name, var->regs[regset].space, regset_name, var->regs[regset].index,
|
|
regset_name, var->regs[regset].index + count, var->regs[regset].id);
|
|
}
|
|
else
|
|
{
|
|
unsigned int index = min_index;
|
|
unsigned int available = 0;
|
|
|
|
while (available < count)
|
|
{
|
|
if (get_allocated_object(ctx, regset, 0, index, false))
|
|
available = 0;
|
|
else
|
|
++available;
|
|
++index;
|
|
}
|
|
index -= count;
|
|
|
|
var->regs[regset].space = 0;
|
|
var->regs[regset].index = index;
|
|
if (hlsl_version_ge(ctx, 5, 1))
|
|
var->regs[regset].id = id++;
|
|
else
|
|
var->regs[regset].id = var->regs[regset].index;
|
|
var->regs[regset].allocated = true;
|
|
TRACE("Allocated variable %s to space 0, indices %c%u-%c%u, id %u.\n", var->name,
|
|
regset_name, index, regset_name, index + count, var->regs[regset].id);
|
|
++index;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool hlsl_component_index_range_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref,
|
|
unsigned int *start, unsigned int *count)
|
|
{
|
|
struct hlsl_type *type = deref->var->data_type;
|
|
unsigned int i, k;
|
|
|
|
*start = 0;
|
|
*count = 0;
|
|
|
|
for (i = 0; i < deref->path_len; ++i)
|
|
{
|
|
struct hlsl_ir_node *path_node = deref->path[i].node;
|
|
unsigned int idx = 0;
|
|
|
|
assert(path_node);
|
|
if (path_node->type != HLSL_IR_CONSTANT)
|
|
return false;
|
|
|
|
/* We should always have generated a cast to UINT. */
|
|
assert(path_node->data_type->class == HLSL_CLASS_SCALAR
|
|
&& path_node->data_type->e.numeric.type == HLSL_TYPE_UINT);
|
|
|
|
idx = hlsl_ir_constant(path_node)->value.u[0].u;
|
|
|
|
switch (type->class)
|
|
{
|
|
case HLSL_CLASS_VECTOR:
|
|
if (idx >= type->dimx)
|
|
return false;
|
|
*start += idx;
|
|
break;
|
|
|
|
case HLSL_CLASS_MATRIX:
|
|
if (idx >= hlsl_type_major_size(type))
|
|
return false;
|
|
if (hlsl_type_is_row_major(type))
|
|
*start += idx * type->dimx;
|
|
else
|
|
*start += idx * type->dimy;
|
|
break;
|
|
|
|
case HLSL_CLASS_ARRAY:
|
|
if (idx >= type->e.array.elements_count)
|
|
return false;
|
|
*start += idx * hlsl_type_component_count(type->e.array.type);
|
|
break;
|
|
|
|
case HLSL_CLASS_STRUCT:
|
|
for (k = 0; k < idx; ++k)
|
|
*start += hlsl_type_component_count(type->e.record.fields[k].type);
|
|
break;
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
|
|
type = hlsl_get_element_type_from_path_index(ctx, type, path_node);
|
|
}
|
|
|
|
*count = hlsl_type_component_count(type);
|
|
return true;
|
|
}
|
|
|
|
/* Retrieves true if the index is constant, and false otherwise. In the latter case, the maximum
|
|
* possible index is retrieved, assuming there is not out-of-bounds access. */
|
|
bool hlsl_regset_index_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref,
|
|
enum hlsl_regset regset, unsigned int *index)
|
|
{
|
|
struct hlsl_type *type = deref->var->data_type;
|
|
bool index_is_constant = true;
|
|
unsigned int i;
|
|
|
|
*index = 0;
|
|
|
|
for (i = 0; i < deref->path_len; ++i)
|
|
{
|
|
struct hlsl_ir_node *path_node = deref->path[i].node;
|
|
unsigned int idx = 0;
|
|
|
|
assert(path_node);
|
|
if (path_node->type == HLSL_IR_CONSTANT)
|
|
{
|
|
/* We should always have generated a cast to UINT. */
|
|
assert(path_node->data_type->class == HLSL_CLASS_SCALAR
|
|
&& path_node->data_type->e.numeric.type == HLSL_TYPE_UINT);
|
|
|
|
idx = hlsl_ir_constant(path_node)->value.u[0].u;
|
|
|
|
switch (type->class)
|
|
{
|
|
case HLSL_CLASS_ARRAY:
|
|
if (idx >= type->e.array.elements_count)
|
|
return false;
|
|
|
|
*index += idx * type->e.array.type->reg_size[regset];
|
|
break;
|
|
|
|
case HLSL_CLASS_STRUCT:
|
|
*index += type->e.record.fields[idx].reg_offset[regset];
|
|
break;
|
|
|
|
case HLSL_CLASS_MATRIX:
|
|
*index += 4 * idx;
|
|
break;
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
index_is_constant = false;
|
|
|
|
switch (type->class)
|
|
{
|
|
case HLSL_CLASS_ARRAY:
|
|
idx = type->e.array.elements_count - 1;
|
|
*index += idx * type->e.array.type->reg_size[regset];
|
|
break;
|
|
|
|
case HLSL_CLASS_MATRIX:
|
|
idx = hlsl_type_major_size(type) - 1;
|
|
*index += idx * 4;
|
|
break;
|
|
|
|
default:
|
|
vkd3d_unreachable();
|
|
}
|
|
}
|
|
|
|
type = hlsl_get_element_type_from_path_index(ctx, type, path_node);
|
|
}
|
|
|
|
assert(!(regset <= HLSL_REGSET_LAST_OBJECT) || (type->reg_size[regset] == 1));
|
|
assert(!(regset == HLSL_REGSET_NUMERIC) || type->reg_size[regset] <= 4);
|
|
return index_is_constant;
|
|
}
|
|
|
|
bool hlsl_offset_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref, unsigned int *offset)
|
|
{
|
|
enum hlsl_regset regset = hlsl_deref_get_regset(ctx, deref);
|
|
struct hlsl_ir_node *offset_node = deref->rel_offset.node;
|
|
unsigned int size;
|
|
|
|
*offset = deref->const_offset;
|
|
|
|
if (offset_node)
|
|
{
|
|
/* We should always have generated a cast to UINT. */
|
|
assert(offset_node->data_type->class == HLSL_CLASS_SCALAR
|
|
&& offset_node->data_type->e.numeric.type == HLSL_TYPE_UINT);
|
|
assert(offset_node->type != HLSL_IR_CONSTANT);
|
|
return false;
|
|
}
|
|
|
|
size = deref->var->data_type->reg_size[regset];
|
|
if (*offset >= size)
|
|
{
|
|
hlsl_error(ctx, &offset_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS,
|
|
"Dereference is out of bounds. %u/%u", *offset, size);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned int hlsl_offset_from_deref_safe(struct hlsl_ctx *ctx, const struct hlsl_deref *deref)
|
|
{
|
|
unsigned int offset;
|
|
|
|
if (hlsl_offset_from_deref(ctx, deref, &offset))
|
|
return offset;
|
|
|
|
hlsl_fixme(ctx, &deref->rel_offset.node->loc, "Dereference with non-constant offset of type %s.",
|
|
hlsl_node_type_to_string(deref->rel_offset.node->type));
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct hlsl_reg hlsl_reg_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref)
|
|
{
|
|
const struct hlsl_ir_var *var = deref->var;
|
|
struct hlsl_reg ret = var->regs[HLSL_REGSET_NUMERIC];
|
|
unsigned int offset = hlsl_offset_from_deref_safe(ctx, deref);
|
|
|
|
assert(deref->data_type);
|
|
assert(hlsl_is_numeric_type(deref->data_type));
|
|
|
|
ret.index += offset / 4;
|
|
ret.id += offset / 4;
|
|
|
|
ret.writemask = 0xf & (0xf << (offset % 4));
|
|
if (var->regs[HLSL_REGSET_NUMERIC].writemask)
|
|
ret.writemask = hlsl_combine_writemasks(var->regs[HLSL_REGSET_NUMERIC].writemask, ret.writemask);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void parse_numthreads_attribute(struct hlsl_ctx *ctx, const struct hlsl_attribute *attr)
|
|
{
|
|
unsigned int i;
|
|
|
|
ctx->found_numthreads = 1;
|
|
|
|
if (attr->args_count != 3)
|
|
{
|
|
hlsl_error(ctx, &attr->loc, VKD3D_SHADER_ERROR_HLSL_WRONG_PARAMETER_COUNT,
|
|
"Expected 3 parameters for [numthreads] attribute, but got %u.", attr->args_count);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < attr->args_count; ++i)
|
|
{
|
|
const struct hlsl_ir_node *instr = attr->args[i].node;
|
|
const struct hlsl_type *type = instr->data_type;
|
|
const struct hlsl_ir_constant *constant;
|
|
|
|
if (type->class != HLSL_CLASS_SCALAR
|
|
|| (type->e.numeric.type != HLSL_TYPE_INT && type->e.numeric.type != HLSL_TYPE_UINT))
|
|
{
|
|
struct vkd3d_string_buffer *string;
|
|
|
|
if ((string = hlsl_type_to_string(ctx, type)))
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_TYPE,
|
|
"Wrong type for argument %u of [numthreads]: expected int or uint, but got %s.",
|
|
i, string->buffer);
|
|
hlsl_release_string_buffer(ctx, string);
|
|
break;
|
|
}
|
|
|
|
if (instr->type != HLSL_IR_CONSTANT)
|
|
{
|
|
hlsl_fixme(ctx, &instr->loc, "Non-constant expression in [numthreads] initializer.");
|
|
break;
|
|
}
|
|
constant = hlsl_ir_constant(instr);
|
|
|
|
if ((type->e.numeric.type == HLSL_TYPE_INT && constant->value.u[0].i <= 0)
|
|
|| (type->e.numeric.type == HLSL_TYPE_UINT && !constant->value.u[0].u))
|
|
hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_THREAD_COUNT,
|
|
"Thread count must be a positive integer.");
|
|
|
|
ctx->thread_count[i] = constant->value.u[0].u;
|
|
}
|
|
}
|
|
|
|
static void remove_unreachable_code(struct hlsl_ctx *ctx, struct hlsl_block *body)
|
|
{
|
|
struct hlsl_ir_node *instr, *next;
|
|
struct hlsl_block block;
|
|
struct list *start;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(instr, next, &body->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
if (instr->type == HLSL_IR_IF)
|
|
{
|
|
struct hlsl_ir_if *iff = hlsl_ir_if(instr);
|
|
|
|
remove_unreachable_code(ctx, &iff->then_block);
|
|
remove_unreachable_code(ctx, &iff->else_block);
|
|
}
|
|
else if (instr->type == HLSL_IR_LOOP)
|
|
{
|
|
struct hlsl_ir_loop *loop = hlsl_ir_loop(instr);
|
|
|
|
remove_unreachable_code(ctx, &loop->body);
|
|
}
|
|
else if (instr->type == HLSL_IR_SWITCH)
|
|
{
|
|
struct hlsl_ir_switch *s = hlsl_ir_switch(instr);
|
|
struct hlsl_ir_switch_case *c;
|
|
|
|
LIST_FOR_EACH_ENTRY(c, &s->cases, struct hlsl_ir_switch_case, entry)
|
|
{
|
|
remove_unreachable_code(ctx, &c->body);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove instructions past unconditional jumps. */
|
|
LIST_FOR_EACH_ENTRY(instr, &body->instrs, struct hlsl_ir_node, entry)
|
|
{
|
|
struct hlsl_ir_jump *jump;
|
|
|
|
if (instr->type != HLSL_IR_JUMP)
|
|
continue;
|
|
|
|
jump = hlsl_ir_jump(instr);
|
|
if (jump->type != HLSL_IR_JUMP_BREAK && jump->type != HLSL_IR_JUMP_CONTINUE)
|
|
continue;
|
|
|
|
if (!(start = list_next(&body->instrs, &instr->entry)))
|
|
break;
|
|
|
|
hlsl_block_init(&block);
|
|
list_move_slice_tail(&block.instrs, start, list_tail(&body->instrs));
|
|
hlsl_block_cleanup(&block);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
void hlsl_run_const_passes(struct hlsl_ctx *ctx, struct hlsl_block *body)
|
|
{
|
|
bool progress;
|
|
|
|
lower_ir(ctx, lower_matrix_swizzles, body);
|
|
lower_ir(ctx, lower_index_loads, body);
|
|
|
|
lower_ir(ctx, lower_broadcasts, body);
|
|
while (hlsl_transform_ir(ctx, fold_redundant_casts, body, NULL));
|
|
do
|
|
{
|
|
progress = hlsl_transform_ir(ctx, split_array_copies, body, NULL);
|
|
progress |= hlsl_transform_ir(ctx, split_struct_copies, body, NULL);
|
|
}
|
|
while (progress);
|
|
hlsl_transform_ir(ctx, split_matrix_copies, body, NULL);
|
|
|
|
lower_ir(ctx, lower_narrowing_casts, body);
|
|
lower_ir(ctx, lower_int_dot, body);
|
|
lower_ir(ctx, lower_int_division, body);
|
|
lower_ir(ctx, lower_int_modulus, body);
|
|
lower_ir(ctx, lower_int_abs, body);
|
|
lower_ir(ctx, lower_casts_to_bool, body);
|
|
lower_ir(ctx, lower_float_modulus, body);
|
|
hlsl_transform_ir(ctx, fold_redundant_casts, body, NULL);
|
|
|
|
do
|
|
{
|
|
progress = hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL);
|
|
progress |= hlsl_transform_ir(ctx, hlsl_fold_constant_identities, body, NULL);
|
|
progress |= hlsl_transform_ir(ctx, hlsl_fold_constant_swizzles, body, NULL);
|
|
progress |= hlsl_copy_propagation_execute(ctx, body);
|
|
progress |= hlsl_transform_ir(ctx, fold_swizzle_chains, body, NULL);
|
|
progress |= hlsl_transform_ir(ctx, remove_trivial_swizzles, body, NULL);
|
|
progress |= hlsl_transform_ir(ctx, remove_trivial_conditional_branches, body, NULL);
|
|
} while (progress);
|
|
}
|
|
|
|
static void sm1_generate_vsir_signature_entry(struct hlsl_ctx *ctx,
|
|
struct vsir_program *program, bool output, struct hlsl_ir_var *var)
|
|
{
|
|
enum vkd3d_shader_sysval_semantic sysval = VKD3D_SHADER_SV_NONE;
|
|
enum vkd3d_shader_register_type type;
|
|
struct shader_signature *signature;
|
|
struct signature_element *element;
|
|
unsigned int register_index, mask;
|
|
|
|
if ((!output && !var->last_read) || (output && !var->first_write))
|
|
return;
|
|
|
|
if (output)
|
|
signature = &program->output_signature;
|
|
else
|
|
signature = &program->input_signature;
|
|
|
|
if (!vkd3d_array_reserve((void **)&signature->elements, &signature->elements_capacity,
|
|
signature->element_count + 1, sizeof(*signature->elements)))
|
|
{
|
|
ctx->result = VKD3D_ERROR_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
element = &signature->elements[signature->element_count++];
|
|
|
|
if (!hlsl_sm1_register_from_semantic(&program->shader_version,
|
|
var->semantic.name, var->semantic.index, output, &type, ®ister_index))
|
|
{
|
|
unsigned int usage, usage_idx;
|
|
bool ret;
|
|
|
|
register_index = var->regs[HLSL_REGSET_NUMERIC].id;
|
|
|
|
ret = hlsl_sm1_usage_from_semantic(var->semantic.name, var->semantic.index, &usage, &usage_idx);
|
|
assert(ret);
|
|
/* With the exception of vertex POSITION output, none of these are
|
|
* system values. Pixel POSITION input is not equivalent to
|
|
* SV_Position; the closer equivalent is VPOS, which is not declared
|
|
* as a semantic. */
|
|
if (program->shader_version.type == VKD3D_SHADER_TYPE_VERTEX
|
|
&& output && usage == VKD3D_DECL_USAGE_POSITION)
|
|
sysval = VKD3D_SHADER_SV_POSITION;
|
|
}
|
|
mask = (1 << var->data_type->dimx) - 1;
|
|
|
|
memset(element, 0, sizeof(*element));
|
|
if (!(element->semantic_name = vkd3d_strdup(var->semantic.name)))
|
|
{
|
|
--signature->element_count;
|
|
ctx->result = VKD3D_ERROR_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
element->semantic_index = var->semantic.index;
|
|
element->sysval_semantic = sysval;
|
|
element->component_type = VKD3D_SHADER_COMPONENT_FLOAT;
|
|
element->register_index = register_index;
|
|
element->target_location = register_index;
|
|
element->register_count = 1;
|
|
element->mask = mask;
|
|
element->used_mask = mask;
|
|
if (program->shader_version.type == VKD3D_SHADER_TYPE_PIXEL && !output)
|
|
element->interpolation_mode = VKD3DSIM_LINEAR;
|
|
}
|
|
|
|
static void sm1_generate_vsir_signature(struct hlsl_ctx *ctx, struct vsir_program *program)
|
|
{
|
|
struct hlsl_ir_var *var;
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry)
|
|
{
|
|
if (var->is_input_semantic)
|
|
sm1_generate_vsir_signature_entry(ctx, program, false, var);
|
|
if (var->is_output_semantic)
|
|
sm1_generate_vsir_signature_entry(ctx, program, true, var);
|
|
}
|
|
}
|
|
|
|
/* OBJECTIVE: Translate all the information from ctx and entry_func to the
|
|
* vsir_program and ctab blob, so they can be used as input to d3dbc_compile()
|
|
* without relying on ctx and entry_func. */
|
|
static void sm1_generate_vsir(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func,
|
|
uint64_t config_flags, struct vsir_program *program, struct vkd3d_shader_code *ctab)
|
|
{
|
|
struct vkd3d_shader_version version = {0};
|
|
struct vkd3d_bytecode_buffer buffer = {0};
|
|
|
|
version.major = ctx->profile->major_version;
|
|
version.minor = ctx->profile->minor_version;
|
|
version.type = ctx->profile->type;
|
|
if (!vsir_program_init(program, &version, 0))
|
|
{
|
|
ctx->result = VKD3D_ERROR_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
|
|
write_sm1_uniforms(ctx, &buffer);
|
|
if (buffer.status)
|
|
{
|
|
vkd3d_free(buffer.data);
|
|
ctx->result = buffer.status;
|
|
return;
|
|
}
|
|
ctab->code = buffer.data;
|
|
ctab->size = buffer.size;
|
|
|
|
sm1_generate_vsir_signature(ctx, program);
|
|
}
|
|
|
|
int hlsl_emit_bytecode(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func,
|
|
enum vkd3d_shader_target_type target_type, struct vkd3d_shader_code *out)
|
|
{
|
|
const struct hlsl_profile_info *profile = ctx->profile;
|
|
struct hlsl_block *const body = &entry_func->body;
|
|
struct recursive_call_ctx recursive_call_ctx;
|
|
struct hlsl_ir_var *var;
|
|
unsigned int i;
|
|
|
|
list_move_head(&body->instrs, &ctx->static_initializers.instrs);
|
|
|
|
memset(&recursive_call_ctx, 0, sizeof(recursive_call_ctx));
|
|
hlsl_transform_ir(ctx, find_recursive_calls, body, &recursive_call_ctx);
|
|
vkd3d_free(recursive_call_ctx.backtrace);
|
|
|
|
/* Avoid going into an infinite loop when processing call instructions.
|
|
* lower_return() recurses into inferior calls. */
|
|
if (ctx->result)
|
|
return ctx->result;
|
|
|
|
lower_return(ctx, entry_func, body, false);
|
|
|
|
while (hlsl_transform_ir(ctx, lower_calls, body, NULL));
|
|
|
|
lower_ir(ctx, lower_matrix_swizzles, body);
|
|
lower_ir(ctx, lower_index_loads, body);
|
|
|
|
LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry)
|
|
{
|
|
if (var->storage_modifiers & HLSL_STORAGE_UNIFORM)
|
|
prepend_uniform_copy(ctx, body, var);
|
|
}
|
|
|
|
for (i = 0; i < entry_func->parameters.count; ++i)
|
|
{
|
|
var = entry_func->parameters.vars[i];
|
|
|
|
if (hlsl_type_is_resource(var->data_type) || (var->storage_modifiers & HLSL_STORAGE_UNIFORM))
|
|
{
|
|
prepend_uniform_copy(ctx, body, var);
|
|
}
|
|
else
|
|
{
|
|
if (hlsl_get_multiarray_element_type(var->data_type)->class != HLSL_CLASS_STRUCT
|
|
&& !var->semantic.name)
|
|
{
|
|
hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
|
|
"Parameter \"%s\" is missing a semantic.", var->name);
|
|
var->semantic.reported_missing = true;
|
|
}
|
|
|
|
if (var->storage_modifiers & HLSL_STORAGE_IN)
|
|
prepend_input_var_copy(ctx, body, var);
|
|
if (var->storage_modifiers & HLSL_STORAGE_OUT)
|
|
append_output_var_copy(ctx, body, var);
|
|
}
|
|
}
|
|
if (entry_func->return_var)
|
|
{
|
|
if (entry_func->return_var->data_type->class != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name)
|
|
hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC,
|
|
"Entry point \"%s\" is missing a return value semantic.", entry_func->func->name);
|
|
|
|
append_output_var_copy(ctx, body, entry_func->return_var);
|
|
}
|
|
|
|
for (i = 0; i < entry_func->attr_count; ++i)
|
|
{
|
|
const struct hlsl_attribute *attr = entry_func->attrs[i];
|
|
|
|
if (!strcmp(attr->name, "numthreads") && profile->type == VKD3D_SHADER_TYPE_COMPUTE)
|
|
parse_numthreads_attribute(ctx, attr);
|
|
else
|
|
hlsl_warning(ctx, &entry_func->attrs[i]->loc, VKD3D_SHADER_WARNING_HLSL_UNKNOWN_ATTRIBUTE,
|
|
"Ignoring unknown attribute \"%s\".", entry_func->attrs[i]->name);
|
|
}
|
|
|
|
if (profile->type == VKD3D_SHADER_TYPE_COMPUTE && !ctx->found_numthreads)
|
|
hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_ATTRIBUTE,
|
|
"Entry point \"%s\" is missing a [numthreads] attribute.", entry_func->func->name);
|
|
|
|
if (profile->major_version >= 4)
|
|
{
|
|
hlsl_transform_ir(ctx, lower_discard_neg, body, NULL);
|
|
}
|
|
|
|
hlsl_run_const_passes(ctx, body);
|
|
|
|
remove_unreachable_code(ctx, body);
|
|
hlsl_transform_ir(ctx, normalize_switch_cases, body, NULL);
|
|
|
|
lower_ir(ctx, lower_nonconstant_vector_derefs, body);
|
|
lower_ir(ctx, lower_casts_to_bool, body);
|
|
lower_ir(ctx, lower_int_dot, body);
|
|
|
|
hlsl_transform_ir(ctx, validate_dereferences, body, NULL);
|
|
hlsl_transform_ir(ctx, track_object_components_sampler_dim, body, NULL);
|
|
if (profile->major_version >= 4)
|
|
hlsl_transform_ir(ctx, lower_combined_samples, body, NULL);
|
|
|
|
do
|
|
compute_liveness(ctx, entry_func);
|
|
while (hlsl_transform_ir(ctx, dce, body, NULL));
|
|
|
|
hlsl_transform_ir(ctx, track_components_usage, body, NULL);
|
|
sort_synthetic_separated_samplers_first(ctx);
|
|
|
|
if (profile->major_version < 4)
|
|
{
|
|
lower_ir(ctx, lower_ternary, body);
|
|
|
|
lower_ir(ctx, lower_nonfloat_exprs, body);
|
|
/* Constants casted to float must be folded, and new casts to bool also need to be lowered. */
|
|
hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL);
|
|
lower_ir(ctx, lower_casts_to_bool, body);
|
|
|
|
lower_ir(ctx, lower_casts_to_int, body);
|
|
lower_ir(ctx, lower_division, body);
|
|
lower_ir(ctx, lower_sqrt, body);
|
|
lower_ir(ctx, lower_dot, body);
|
|
lower_ir(ctx, lower_round, body);
|
|
lower_ir(ctx, lower_ceil, body);
|
|
lower_ir(ctx, lower_floor, body);
|
|
lower_ir(ctx, lower_comparison_operators, body);
|
|
lower_ir(ctx, lower_logic_not, body);
|
|
if (ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL)
|
|
lower_ir(ctx, lower_slt, body);
|
|
else
|
|
lower_ir(ctx, lower_cmp, body);
|
|
}
|
|
|
|
if (profile->major_version < 2)
|
|
{
|
|
lower_ir(ctx, lower_abs, body);
|
|
}
|
|
|
|
lower_ir(ctx, validate_nonconstant_vector_store_derefs, body);
|
|
|
|
do
|
|
compute_liveness(ctx, entry_func);
|
|
while (hlsl_transform_ir(ctx, dce, body, NULL));
|
|
|
|
/* TODO: move forward, remove when no longer needed */
|
|
transform_derefs(ctx, replace_deref_path_with_offset, body);
|
|
while (hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL));
|
|
transform_derefs(ctx, clean_constant_deref_offset_srcs, body);
|
|
|
|
do
|
|
compute_liveness(ctx, entry_func);
|
|
while (hlsl_transform_ir(ctx, dce, body, NULL));
|
|
|
|
compute_liveness(ctx, entry_func);
|
|
|
|
if (TRACE_ON())
|
|
rb_for_each_entry(&ctx->functions, dump_function, ctx);
|
|
|
|
transform_derefs(ctx, mark_indexable_vars, body);
|
|
|
|
calculate_resource_register_counts(ctx);
|
|
|
|
allocate_register_reservations(ctx);
|
|
|
|
allocate_temp_registers(ctx, entry_func);
|
|
if (profile->major_version < 4)
|
|
{
|
|
allocate_const_registers(ctx, entry_func);
|
|
}
|
|
else
|
|
{
|
|
allocate_buffers(ctx);
|
|
allocate_objects(ctx, HLSL_REGSET_TEXTURES);
|
|
allocate_objects(ctx, HLSL_REGSET_UAVS);
|
|
}
|
|
allocate_semantic_registers(ctx);
|
|
allocate_objects(ctx, HLSL_REGSET_SAMPLERS);
|
|
|
|
if (ctx->result)
|
|
return ctx->result;
|
|
|
|
switch (target_type)
|
|
{
|
|
case VKD3D_SHADER_TARGET_D3D_BYTECODE:
|
|
{
|
|
uint32_t config_flags = vkd3d_shader_init_config_flags();
|
|
struct vkd3d_shader_code ctab = {0};
|
|
struct vsir_program program;
|
|
int result;
|
|
|
|
sm1_generate_vsir(ctx, entry_func, config_flags, &program, &ctab);
|
|
if (ctx->result)
|
|
{
|
|
vsir_program_cleanup(&program);
|
|
vkd3d_shader_free_shader_code(&ctab);
|
|
return ctx->result;
|
|
}
|
|
|
|
result = d3dbc_compile(&program, config_flags, NULL, &ctab, out, ctx->message_context, ctx, entry_func);
|
|
vsir_program_cleanup(&program);
|
|
vkd3d_shader_free_shader_code(&ctab);
|
|
return result;
|
|
}
|
|
|
|
case VKD3D_SHADER_TARGET_DXBC_TPF:
|
|
return hlsl_sm4_write(ctx, entry_func, out);
|
|
|
|
default:
|
|
ERR("Unsupported shader target type %#x.\n", target_type);
|
|
return VKD3D_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
}
|