/* * HLSL optimization and code generation * * Copyright 2019-2020 Zebediah Figura for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "hlsl.h" #include #include "vkd3d_d3dx9shader.h" /* Split uniforms into two variables representing the constant and temp * registers, and copy the former to the latter, so that writes to uniforms * work. */ static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp) { struct vkd3d_string_buffer *name; struct hlsl_ir_var *uniform; struct hlsl_ir_store *store; struct hlsl_ir_load *load; /* Use the synthetic name for the temp, rather than the uniform, so that we * can write the uniform name into the shader reflection data. */ if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type, temp->loc, NULL, 0, &temp->reg_reservation))) return; list_add_before(&temp->scope_entry, &uniform->scope_entry); list_add_tail(&ctx->extern_vars, &uniform->extern_entry); uniform->is_uniform = 1; uniform->is_param = temp->is_param; uniform->buffer = temp->buffer; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", temp->name); temp->name = hlsl_strdup(ctx, name->buffer); hlsl_release_string_buffer(ctx, name); if (!(load = hlsl_new_var_load(ctx, uniform, temp->loc))) return; list_add_head(instrs, &load->node.entry); if (!(store = hlsl_new_simple_store(ctx, temp, &load->node))) return; list_add_after(&load->node.entry, &store->node.entry); } static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset, const struct hlsl_semantic *semantic) { struct vkd3d_string_buffer *name; struct hlsl_semantic new_semantic; struct hlsl_ir_constant *offset; struct hlsl_ir_store *store; struct hlsl_ir_load *load; struct hlsl_ir_var *input; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", semantic->name, semantic->index); if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name))) { hlsl_release_string_buffer(ctx, name); return; } new_semantic.index = semantic->index; if (!(input = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, var->loc, &new_semantic, 0, NULL))) { hlsl_release_string_buffer(ctx, name); vkd3d_free((void *)new_semantic.name); return; } hlsl_release_string_buffer(ctx, name); input->is_input_semantic = 1; input->is_param = var->is_param; list_add_before(&var->scope_entry, &input->scope_entry); list_add_tail(&ctx->extern_vars, &input->extern_entry); if (!(load = hlsl_new_var_load(ctx, input, var->loc))) return; list_add_head(instrs, &load->node.entry); if (!(offset = hlsl_new_uint_constant(ctx, field_offset, var->loc))) return; list_add_after(&load->node.entry, &offset->node.entry); if (!(store = hlsl_new_store(ctx, var, &offset->node, &load->node, 0, var->loc))) return; list_add_after(&offset->node.entry, &store->node.entry); } static void prepend_input_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset) { struct hlsl_struct_field *field; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (field->type->type == HLSL_CLASS_STRUCT) prepend_input_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset); else if (field->semantic.name) prepend_input_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, &field->semantic); else hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); } } /* Split inputs into two variables representing the semantic and temp registers, * and copy the former to the latter, so that writes to input variables work. */ static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { if (var->data_type->type == HLSL_CLASS_STRUCT) prepend_input_struct_copy(ctx, instrs, var, var->data_type, 0); else if (var->semantic.name) prepend_input_copy(ctx, instrs, var, var->data_type, 0, &var->semantic); } static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset, const struct hlsl_semantic *semantic) { struct vkd3d_string_buffer *name; struct hlsl_semantic new_semantic; struct hlsl_ir_constant *offset; struct hlsl_ir_store *store; struct hlsl_ir_var *output; struct hlsl_ir_load *load; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", semantic->name, semantic->index); if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name))) { hlsl_release_string_buffer(ctx, name); return; } new_semantic.index = semantic->index; if (!(output = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, var->loc, &new_semantic, 0, NULL))) { vkd3d_free((void *)new_semantic.name); hlsl_release_string_buffer(ctx, name); return; } hlsl_release_string_buffer(ctx, name); output->is_output_semantic = 1; output->is_param = var->is_param; list_add_before(&var->scope_entry, &output->scope_entry); list_add_tail(&ctx->extern_vars, &output->extern_entry); if (!(offset = hlsl_new_uint_constant(ctx, field_offset, var->loc))) return; list_add_tail(instrs, &offset->node.entry); if (!(load = hlsl_new_load(ctx, var, &offset->node, type, var->loc))) return; list_add_after(&offset->node.entry, &load->node.entry); if (!(store = hlsl_new_store(ctx, output, NULL, &load->node, 0, var->loc))) return; list_add_after(&load->node.entry, &store->node.entry); } static void append_output_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset) { struct hlsl_struct_field *field; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (field->type->type == HLSL_CLASS_STRUCT) append_output_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset); else if (field->semantic.name) append_output_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, &field->semantic); else hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); } } /* Split outputs into two variables representing the temp and semantic * registers, and copy the former to the latter, so that reads from output * variables work. */ static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { if (var->data_type->type == HLSL_CLASS_STRUCT) append_output_struct_copy(ctx, instrs, var, var->data_type, 0); else if (var->semantic.name) append_output_copy(ctx, instrs, var, var->data_type, 0, &var->semantic); } static bool transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *), struct list *instrs, void *context) { struct hlsl_ir_node *instr, *next; bool progress = 0; LIST_FOR_EACH_ENTRY_SAFE(instr, next, instrs, struct hlsl_ir_node, entry) { if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); progress |= transform_ir(ctx, func, &iff->then_instrs, context); progress |= transform_ir(ctx, func, &iff->else_instrs, context); } else if (instr->type == HLSL_IR_LOOP) progress |= transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context); progress |= func(ctx, instr, context); } return progress; } static void replace_node(struct hlsl_ir_node *old, struct hlsl_ir_node *new) { struct hlsl_src *src, *next; LIST_FOR_EACH_ENTRY_SAFE(src, next, &old->uses, struct hlsl_src, entry) { hlsl_src_remove(src); hlsl_src_from_node(src, new); } list_remove(&old->entry); hlsl_free_instr(old); } static bool is_vec1(const struct hlsl_type *type) { return (type->type == HLSL_CLASS_SCALAR) || (type->type == HLSL_CLASS_VECTOR && type->dimx == 1); } static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { if (instr->type == HLSL_IR_EXPR) { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); const struct hlsl_type *src_type = expr->operands[0].node->data_type; const struct hlsl_type *dst_type = expr->node.data_type; if (expr->op != HLSL_IR_UNOP_CAST) return false; if (hlsl_types_are_equal(src_type, dst_type) || (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type))) { replace_node(&expr->node, expr->operands[0].node); return true; } } return false; } static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_struct_field *field; const struct hlsl_ir_load *rhs_load; const struct hlsl_ir_node *rhs; const struct hlsl_type *type; struct hlsl_ir_store *store; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->type != HLSL_CLASS_STRUCT) return false; rhs_load = hlsl_ir_load(rhs); LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { struct hlsl_ir_store *field_store; struct hlsl_ir_node *offset, *add; struct hlsl_ir_load *field_load; struct hlsl_ir_constant *c; if (!(c = hlsl_new_uint_constant(ctx, field->reg_offset, instr->loc))) return false; list_add_before(&instr->entry, &c->node.entry); offset = &c->node; if (rhs_load->src.offset.node) { if (!(add = hlsl_new_binary_expr(ctx, HLSL_IR_BINOP_ADD, rhs_load->src.offset.node, &c->node))) return false; list_add_before(&instr->entry, &add->entry); offset = add; } if (!(field_load = hlsl_new_load(ctx, rhs_load->src.var, offset, field->type, instr->loc))) return false; list_add_before(&instr->entry, &field_load->node.entry); offset = &c->node; if (store->lhs.offset.node) { if (!(add = hlsl_new_binary_expr(ctx, HLSL_IR_BINOP_ADD, store->lhs.offset.node, &c->node))) return false; list_add_before(&instr->entry, &add->entry); offset = add; } if (!(field_store = hlsl_new_store(ctx, store->lhs.var, offset, &field_load->node, 0, instr->loc))) return false; list_add_before(&instr->entry, &field_store->node.entry); } /* Remove the store instruction, so that we can split structs which contain * other structs. Although assignments produce a value, we don't allow * HLSL_IR_STORE to be used as a source. */ list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool fold_constants(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_constant *arg1, *arg2 = NULL, *res; struct hlsl_ir_expr *expr; unsigned int i, dimx; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); for (i = 0; i < ARRAY_SIZE(expr->operands); ++i) { if (expr->operands[i].node && expr->operands[i].node->type != HLSL_IR_CONSTANT) return false; } arg1 = hlsl_ir_constant(expr->operands[0].node); if (expr->operands[1].node) arg2 = hlsl_ir_constant(expr->operands[1].node); dimx = instr->data_type->dimx; if (!(res = hlsl_alloc(ctx, sizeof(*res)))) return false; init_node(&res->node, HLSL_IR_CONSTANT, instr->data_type, instr->loc); switch (instr->data_type->base_type) { case HLSL_TYPE_FLOAT: { switch (expr->op) { case HLSL_IR_UNOP_CAST: if (instr->data_type->dimx != arg1->node.data_type->dimx || instr->data_type->dimy != arg1->node.data_type->dimy) { FIXME("Cast from %s to %s.\n", debug_hlsl_type(ctx, arg1->node.data_type), debug_hlsl_type(ctx, instr->data_type)); vkd3d_free(res); return false; } switch (arg1->node.data_type->base_type) { case HLSL_TYPE_UINT: for (i = 0; i < dimx; ++i) res->value.f[i] = arg1->value.u[i]; break; default: FIXME("Cast from %s to %s.\n", debug_hlsl_type(ctx, arg1->node.data_type), debug_hlsl_type(ctx, instr->data_type)); vkd3d_free(res); return false; } break; default: FIXME("Fold float op %#x.\n", expr->op); vkd3d_free(res); return false; } break; } case HLSL_TYPE_UINT: { switch (expr->op) { case HLSL_IR_BINOP_ADD: for (i = 0; i < instr->data_type->dimx; ++i) res->value.u[i] = arg1->value.u[i] + arg2->value.u[i]; break; case HLSL_IR_BINOP_MUL: for (i = 0; i < instr->data_type->dimx; ++i) res->value.u[i] = arg1->value.u[i] * arg2->value.u[i]; break; default: FIXME("Fold uint op %#x.\n", expr->op); vkd3d_free(res); return false; } break; } default: FIXME("Fold type %#x op %#x.\n", instr->data_type->base_type, expr->op); vkd3d_free(res); return false; } list_add_before(&expr->node.entry, &res->node.entry); replace_node(&expr->node, &res->node); return true; } /* Lower DIV to RCP + MUL. */ static bool lower_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_expr *expr; struct hlsl_ir_node *rcp; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); if (expr->op != HLSL_IR_BINOP_DIV) return false; if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_IR_UNOP_RCP, expr->operands[1].node, instr->loc))) return false; list_add_before(&expr->node.entry, &rcp->entry); expr->op = HLSL_IR_BINOP_MUL; hlsl_src_remove(&expr->operands[1]); hlsl_src_from_node(&expr->operands[1], rcp); return true; } static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { switch (instr->type) { case HLSL_IR_CONSTANT: case HLSL_IR_EXPR: case HLSL_IR_LOAD: case HLSL_IR_SWIZZLE: if (list_empty(&instr->uses)) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); struct hlsl_ir_var *var = store->lhs.var; if (var->last_read < instr->index) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; } case HLSL_IR_IF: case HLSL_IR_JUMP: case HLSL_IR_LOOP: break; } return false; } /* Allocate a unique, ordered index to each instruction, which will be used for * computing liveness ranges. */ static unsigned int index_instructions(struct list *instrs, unsigned int index) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { instr->index = index++; if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); index = index_instructions(&iff->then_instrs, index); index = index_instructions(&iff->else_instrs, index); } else if (instr->type == HLSL_IR_LOOP) { index = index_instructions(&hlsl_ir_loop(instr)->body, index); hlsl_ir_loop(instr)->next_index = index; } } return index; } static void dump_function_decl(struct rb_entry *entry, void *context) { struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry); struct hlsl_ctx *ctx = context; if (func->body) hlsl_dump_function(ctx, func); } static void dump_function(struct rb_entry *entry, void *context) { struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry); struct hlsl_ctx *ctx = context; rb_for_each_entry(&func->overloads, dump_function_decl, ctx); } /* Compute the earliest and latest liveness for each variable. In the case that * a variable is accessed inside of a loop, we promote its liveness to extend * to at least the range of the entire loop. Note that we don't need to do this * for anonymous nodes, since there's currently no way to use a node which was * calculated in an earlier iteration of the loop. */ static void compute_liveness_recurse(struct list *instrs, unsigned int loop_first, unsigned int loop_last) { struct hlsl_ir_node *instr; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); var = store->lhs.var; if (!var->first_write) var->first_write = loop_first ? min(instr->index, loop_first) : instr->index; store->rhs.node->last_read = instr->index; if (store->lhs.offset.node) store->lhs.offset.node->last_read = instr->index; break; } case HLSL_IR_EXPR: { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); unsigned int i; for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i) expr->operands[i].node->last_read = instr->index; break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); compute_liveness_recurse(&iff->then_instrs, loop_first, loop_last); compute_liveness_recurse(&iff->else_instrs, loop_first, loop_last); iff->condition.node->last_read = instr->index; break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); var = load->src.var; var->last_read = max(var->last_read, loop_last ? max(instr->index, loop_last) : instr->index); if (load->src.offset.node) load->src.offset.node->last_read = instr->index; break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index, loop_last ? loop_last : loop->next_index); break; } case HLSL_IR_SWIZZLE: { struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr); swizzle->val.node->last_read = instr->index; break; } case HLSL_IR_CONSTANT: case HLSL_IR_JUMP: break; } } } static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct hlsl_scope *scope; struct hlsl_ir_var *var; /* Index 0 means unused; index 1 means function entry, so start at 2. */ index_instructions(entry_func->body, 2); LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry) { LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry) var->first_write = var->last_read = 0; } LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform || var->is_input_semantic) var->first_write = 1; else if (var->is_output_semantic) var->last_read = UINT_MAX; } if (entry_func->return_var) entry_func->return_var->last_read = UINT_MAX; compute_liveness_recurse(entry_func->body, 0, 0); } struct liveness { size_t size; struct { /* 0 if not live yet. */ unsigned int last_read; } *regs; }; static unsigned int get_available_writemask(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int component_count) { unsigned int i, writemask = 0, count = 0; for (i = 0; i < 4; ++i) { if (liveness->regs[component_idx + i].last_read <= first_write) { writemask |= 1u << i; if (++count == component_count) return writemask; } } return 0; } static bool resize_liveness(struct hlsl_ctx *ctx, struct liveness *liveness, size_t new_count) { size_t old_capacity = liveness->size; if (!hlsl_array_reserve(ctx, (void **)&liveness->regs, &liveness->size, new_count, sizeof(*liveness->regs))) return false; if (liveness->size > old_capacity) memset(liveness->regs + old_capacity, 0, (liveness->size - old_capacity) * sizeof(*liveness->regs)); return true; } static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int component_count) { unsigned int component_idx, writemask, i; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if ((writemask = get_available_writemask(liveness, first_write, component_idx, component_count))) break; } if (component_idx == liveness->size) { if (!resize_liveness(ctx, liveness, component_idx + 4)) return ret; writemask = (1u << component_count) - 1; } for (i = 0; i < 4; ++i) { if (writemask & (1u << i)) liveness->regs[component_idx + i].last_read = last_read; } ret.id = component_idx / 4; ret.writemask = writemask; ret.allocated = true; return ret; } static bool is_range_available(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int component_count) { unsigned int i; for (i = 0; i < component_count; i += 4) { if (!get_available_writemask(liveness, first_write, component_idx + i, 4)) return false; } return true; } static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int component_count) { unsigned int i, component_idx; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if (is_range_available(liveness, first_write, component_idx, min(component_count, liveness->size - component_idx))) break; } if (!resize_liveness(ctx, liveness, component_idx + component_count)) return ret; for (i = 0; i < component_count; ++i) liveness->regs[component_idx + i].last_read = last_read; ret.id = component_idx / 4; ret.allocated = true; return ret; } static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type) { static const char writemask_offset[] = {'w','x','y','z'}; if (type->reg_size > 4) { if (type->reg_size & 3) return vkd3d_dbg_sprintf("%c%u-%c%u.%c", class, reg.id, class, reg.id + (type->reg_size / 4), writemask_offset[type->reg_size & 3]); return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class, reg.id + (type->reg_size / 4) - 1); } return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask)); } static void allocate_variable_temp_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, struct liveness *liveness) { if (var->is_input_semantic || var->is_output_semantic || var->is_uniform) return; if (!var->reg.allocated && var->last_read) { if (var->data_type->reg_size > 4) var->reg = allocate_range(ctx, liveness, var->first_write, var->last_read, var->data_type->reg_size); else var->reg = allocate_register(ctx, liveness, var->first_write, var->last_read, var->data_type->dimx); TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name, debug_register('r', var->reg, var->data_type), var->first_write, var->last_read); } } static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct liveness *liveness) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { if (!instr->reg.allocated && instr->last_read) { if (instr->data_type->reg_size > 4) instr->reg = allocate_range(ctx, liveness, instr->index, instr->last_read, instr->data_type->reg_size); else instr->reg = allocate_register(ctx, liveness, instr->index, instr->last_read, instr->data_type->dimx); TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index, debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read); } switch (instr->type) { case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_temp_registers_recurse(ctx, &iff->then_instrs, liveness); allocate_temp_registers_recurse(ctx, &iff->else_instrs, liveness); break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); /* We need to at least allocate a variable for undefs. * FIXME: We should probably find a way to remove them instead. */ allocate_variable_temp_register(ctx, load->src.var, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_temp_registers_recurse(ctx, &loop->body, liveness); break; } case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); allocate_variable_temp_register(ctx, store->lhs.var, liveness); break; } default: break; } } } static void allocate_const_registers_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct liveness *liveness) { struct hlsl_constant_defs *defs = &ctx->constant_defs; struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_CONSTANT: { struct hlsl_ir_constant *constant = hlsl_ir_constant(instr); const struct hlsl_type *type = instr->data_type; unsigned int x, y, i, writemask, end_reg; unsigned int reg_size = type->reg_size; if (reg_size > 4) constant->reg = allocate_range(ctx, liveness, 1, UINT_MAX, reg_size); else constant->reg = allocate_register(ctx, liveness, 1, UINT_MAX, type->dimx); TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type)); if (!hlsl_array_reserve(ctx, (void **)&defs->values, &defs->size, constant->reg.id + reg_size / 4, sizeof(*defs->values))) return; end_reg = constant->reg.id + reg_size / 4; if (end_reg > defs->count) { memset(&defs->values[defs->count], 0, sizeof(*defs->values) * (end_reg - defs->count)); defs->count = end_reg; } assert(type->type <= HLSL_CLASS_LAST_NUMERIC); if (!(writemask = constant->reg.writemask)) writemask = (1u << type->dimx) - 1; for (y = 0; y < type->dimy; ++y) { for (x = 0, i = 0; x < 4; ++x) { float f; if (!(writemask & (1u << x))) continue; switch (type->base_type) { case HLSL_TYPE_BOOL: f = constant->value.b[i++]; break; case HLSL_TYPE_FLOAT: case HLSL_TYPE_HALF: f = constant->value.f[i++]; break; case HLSL_TYPE_INT: f = constant->value.i[i++]; break; case HLSL_TYPE_UINT: f = constant->value.u[i++]; break; case HLSL_TYPE_DOUBLE: FIXME("Double constant.\n"); return; default: assert(0); return; } defs->values[constant->reg.id + y].f[x] = f; } } break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_const_registers_recurse(ctx, &iff->then_instrs, liveness); allocate_const_registers_recurse(ctx, &iff->else_instrs, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_const_registers_recurse(ctx, &loop->body, liveness); break; } default: break; } } } static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; struct hlsl_ir_var *var; allocate_const_registers_recurse(ctx, entry_func->body, &liveness); LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform && var->last_read) { if (var->data_type->reg_size > 4) var->reg = allocate_range(ctx, &liveness, 1, UINT_MAX, var->data_type->reg_size); else { var->reg = allocate_register(ctx, &liveness, 1, UINT_MAX, 4); var->reg.writemask = (1u << var->data_type->dimx) - 1; } TRACE("Allocated %s to %s.\n", var->name, debug_register('c', var->reg, var->data_type)); } } } /* Simple greedy temporary register allocation pass that just assigns a unique * index to all (simultaneously live) variables or intermediate values. Agnostic * as to how many registers are actually available for the current backend, and * does not handle constants. */ static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; allocate_temp_registers_recurse(ctx, entry_func->body, &liveness); } static bool sm1_register_from_semantic(struct hlsl_ctx *ctx, const struct hlsl_semantic *semantic, bool output, D3DSHADER_PARAM_REGISTER_TYPE *type, unsigned int *reg) { unsigned int i; static const struct { const char *semantic; bool output; enum vkd3d_shader_type shader_type; unsigned int major_version; D3DSHADER_PARAM_REGISTER_TYPE type; DWORD offset; } register_table[] = { {"color", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_COLOROUT}, {"depth", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_DEPTHOUT}, {"sv_depth", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_DEPTHOUT}, {"sv_target", true, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_COLOROUT}, {"color", false, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_INPUT}, {"texcoord", false, VKD3D_SHADER_TYPE_PIXEL, 2, D3DSPR_TEXTURE}, {"color", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_COLOROUT}, {"depth", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_DEPTHOUT}, {"sv_depth", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_DEPTHOUT}, {"sv_target", true, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_COLOROUT}, {"sv_position", false, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_MISCTYPE, D3DSMO_POSITION}, {"vface", false, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_MISCTYPE, D3DSMO_FACE}, {"vpos", false, VKD3D_SHADER_TYPE_PIXEL, 3, D3DSPR_MISCTYPE, D3DSMO_POSITION}, {"color", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_ATTROUT}, {"fog", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_FOG}, {"position", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_POSITION}, {"psize", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_POINT_SIZE}, {"sv_position", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_RASTOUT, D3DSRO_POSITION}, {"texcoord", true, VKD3D_SHADER_TYPE_VERTEX, 1, D3DSPR_TEXCRDOUT}, {"color", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_ATTROUT}, {"fog", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_FOG}, {"position", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_POSITION}, {"psize", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_POINT_SIZE}, {"sv_position", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_RASTOUT, D3DSRO_POSITION}, {"texcoord", true, VKD3D_SHADER_TYPE_VERTEX, 2, D3DSPR_TEXCRDOUT}, }; for (i = 0; i < ARRAY_SIZE(register_table); ++i) { if (!ascii_strcasecmp(semantic->name, register_table[i].semantic) && output == register_table[i].output && ctx->profile->type == register_table[i].shader_type && ctx->profile->major_version == register_table[i].major_version) { *type = register_table[i].type; if (register_table[i].type == D3DSPR_MISCTYPE || register_table[i].type == D3DSPR_RASTOUT) *reg = register_table[i].offset; else *reg = semantic->index; return true; } } return false; } static bool sm1_usage_from_semantic(const struct hlsl_semantic *semantic, D3DDECLUSAGE *usage, uint32_t *usage_idx) { static const struct { const char *name; D3DDECLUSAGE usage; } semantics[] = { {"binormal", D3DDECLUSAGE_BINORMAL}, {"blendindices", D3DDECLUSAGE_BLENDINDICES}, {"blendweight", D3DDECLUSAGE_BLENDWEIGHT}, {"color", D3DDECLUSAGE_COLOR}, {"depth", D3DDECLUSAGE_DEPTH}, {"fog", D3DDECLUSAGE_FOG}, {"normal", D3DDECLUSAGE_NORMAL}, {"position", D3DDECLUSAGE_POSITION}, {"positiont", D3DDECLUSAGE_POSITIONT}, {"psize", D3DDECLUSAGE_PSIZE}, {"sample", D3DDECLUSAGE_SAMPLE}, {"sv_depth", D3DDECLUSAGE_DEPTH}, {"sv_position", D3DDECLUSAGE_POSITION}, {"sv_target", D3DDECLUSAGE_COLOR}, {"tangent", D3DDECLUSAGE_TANGENT}, {"tessfactor", D3DDECLUSAGE_TESSFACTOR}, {"texcoord", D3DDECLUSAGE_TEXCOORD}, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(semantics); ++i) { if (!ascii_strcasecmp(semantic->name, semantics[i].name)) { *usage = semantics[i].usage; *usage_idx = semantic->index; return true; } } return false; } static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output) { assert(var->semantic.name); if (ctx->profile->major_version < 4) { D3DSHADER_PARAM_REGISTER_TYPE type; uint32_t reg, usage_idx; D3DDECLUSAGE usage; if (!sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx)) { hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Invalid semantic '%s'.", var->semantic.name); return; } if (sm1_register_from_semantic(ctx, &var->semantic, output, &type, ®)) { TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n", ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL ? "Pixel" : "Vertex", output ? "output" : "input", var->semantic.name, var->semantic.index, type, reg); } else { var->reg.allocated = true; var->reg.id = (*counter)++; var->reg.writemask = (1 << var->data_type->dimx) - 1; TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v', var->reg, var->data_type)); } } } static void allocate_semantic_registers(struct hlsl_ctx *ctx) { unsigned int input_counter = 0, output_counter = 0; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_input_semantic && var->last_read) allocate_semantic_register(ctx, var, &input_counter, false); if (var->is_output_semantic && var->first_write) allocate_semantic_register(ctx, var, &output_counter, true); } } static const struct hlsl_buffer *get_reserved_buffer(struct hlsl_ctx *ctx, uint32_t index) { const struct hlsl_buffer *buffer; LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, const struct hlsl_buffer, entry) { if (buffer->used_size && buffer->reservation.type == 'b' && buffer->reservation.index == index) return buffer; } return NULL; } static void calculate_buffer_offset(struct hlsl_ir_var *var) { struct hlsl_buffer *buffer = var->buffer; buffer->size = hlsl_type_get_sm4_offset(var->data_type, buffer->size); var->buffer_offset = buffer->size; TRACE("Allocated buffer offset %u to %s.\n", var->buffer_offset, var->name); buffer->size += var->data_type->reg_size; if (var->last_read) buffer->used_size = buffer->size; } static void allocate_buffers(struct hlsl_ctx *ctx) { struct hlsl_buffer *buffer, *params_buffer; struct hlsl_ir_var *var; uint32_t index = 0; if (!(params_buffer = hlsl_new_buffer(ctx, HLSL_BUFFER_CONSTANT, hlsl_strdup(ctx, "$Params"), NULL, ctx->location))) return; /* The $Globals and $Params buffers should be allocated first, before all * explicit buffers. */ list_remove(¶ms_buffer->entry); list_add_head(&ctx->buffers, ¶ms_buffer->entry); list_remove(&ctx->globals_buffer->entry); list_add_head(&ctx->buffers, &ctx->globals_buffer->entry); LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform) { if (var->is_param) var->buffer = params_buffer; calculate_buffer_offset(var); } } LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, struct hlsl_buffer, entry) { if (!buffer->used_size) continue; if (buffer->type == HLSL_BUFFER_CONSTANT) { if (buffer->reservation.type == 'b') { const struct hlsl_buffer *reserved_buffer = get_reserved_buffer(ctx, buffer->reservation.index); if (reserved_buffer && reserved_buffer != buffer) { hlsl_error(ctx, buffer->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS, "Multiple buffers bound to cb%u.", buffer->reservation.index); hlsl_note(ctx, reserved_buffer->loc, VKD3D_SHADER_LOG_ERROR, "Buffer %s is already bound to cb%u.", reserved_buffer->name, buffer->reservation.index); } buffer->reg.id = buffer->reservation.index; buffer->reg.allocated = true; TRACE("Allocated reserved %s to cb%u.\n", buffer->name, index); } else if (!buffer->reservation.type) { while (get_reserved_buffer(ctx, index)) ++index; buffer->reg.id = index; buffer->reg.allocated = true; TRACE("Allocated %s to cb%u.\n", buffer->name, index); ++index; } else { hlsl_error(ctx, buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "Constant buffers must be allocated to register type 'b'."); } } else { FIXME("Allocate registers for texture buffers.\n"); } } } static unsigned int map_swizzle(unsigned int swizzle, unsigned int writemask) { unsigned int i, ret = 0; /* Leave replicate swizzles alone; some instructions need them. */ if (swizzle == HLSL_SWIZZLE(X, X, X, X) || swizzle == HLSL_SWIZZLE(Y, Y, Y, Y) || swizzle == HLSL_SWIZZLE(Z, Z, Z, Z) || swizzle == HLSL_SWIZZLE(W, W, W, W)) return swizzle; for (i = 0; i < 4; ++i) { if (writemask & (1 << i)) { ret |= (swizzle & 3) << (i * 2); swizzle >>= 2; } } return ret; } static unsigned int swizzle_from_writemask(unsigned int writemask) { static const unsigned int swizzles[16] = { 0, HLSL_SWIZZLE(X, X, X, X), HLSL_SWIZZLE(Y, Y, Y, Y), HLSL_SWIZZLE(X, Y, X, X), HLSL_SWIZZLE(Z, Z, Z, Z), HLSL_SWIZZLE(X, Z, X, X), HLSL_SWIZZLE(Y, Z, X, X), HLSL_SWIZZLE(X, Y, Z, X), HLSL_SWIZZLE(W, W, W, W), HLSL_SWIZZLE(X, W, X, X), HLSL_SWIZZLE(Y, W, X, X), HLSL_SWIZZLE(X, Y, W, X), HLSL_SWIZZLE(Z, W, X, X), HLSL_SWIZZLE(X, Z, W, X), HLSL_SWIZZLE(Y, Z, W, X), HLSL_SWIZZLE(X, Y, Z, W), }; return swizzles[writemask & 0xf]; } static unsigned int combine_writemasks(unsigned int first, unsigned int second) { unsigned int ret = 0, i, j = 0; for (i = 0; i < 4; ++i) { if (first & (1 << i)) { if (second & (1 << j++)) ret |= (1 << i); } } return ret; } static unsigned int combine_swizzles(unsigned int first, unsigned int second, unsigned int dim) { unsigned int ret = 0, i; for (i = 0; i < dim; ++i) { unsigned int s = (second >> (i * 2)) & 3; ret |= ((first >> (s * 2)) & 3) << (i * 2); } return ret; } static bool type_is_single_reg(const struct hlsl_type *type) { return type->type == HLSL_CLASS_SCALAR || type->type == HLSL_CLASS_VECTOR; } static struct hlsl_reg hlsl_reg_from_deref(const struct hlsl_deref *deref, const struct hlsl_type *type) { struct hlsl_ir_node *offset_node = deref->offset.node; const struct hlsl_ir_var *var = deref->var; struct hlsl_reg ret = {0}; unsigned int offset = 0; /* We should always have generated a cast to UINT. */ if (offset_node) assert(offset_node->data_type->type == HLSL_CLASS_SCALAR && offset_node->data_type->base_type == HLSL_TYPE_UINT); if (offset_node && offset_node->type != HLSL_IR_CONSTANT) { FIXME("Dereference with non-constant offset of type %s.\n", hlsl_node_type_to_string(offset_node->type)); return ret; } ret = var->reg; ret.allocated = var->reg.allocated; ret.id = var->reg.id; if (offset_node) offset = hlsl_ir_constant(offset_node)->value.u[0]; ret.id += offset / 4; if (type_is_single_reg(var->data_type)) { assert(!offset); ret.writemask = var->reg.writemask; } else { assert(type_is_single_reg(type)); ret.writemask = ((1 << type->dimx) - 1) << (offset & 3); } return ret; } struct bytecode_buffer { struct hlsl_ctx *ctx; uint32_t *data; size_t count, size; int status; }; /* Returns the token index. */ static unsigned int put_dword(struct bytecode_buffer *buffer, uint32_t value) { unsigned int index = buffer->count; if (buffer->status) return index; if (!hlsl_array_reserve(buffer->ctx, (void **)&buffer->data, &buffer->size, buffer->count + 1, sizeof(*buffer->data))) { buffer->status = VKD3D_ERROR_OUT_OF_MEMORY; return index; } buffer->data[buffer->count++] = value; return index; } /* Returns the token index. */ static unsigned int put_float(struct bytecode_buffer *buffer, float value) { union { float f; uint32_t u; } u; u.f = value; return put_dword(buffer, u.u); } static void set_dword(struct bytecode_buffer *buffer, unsigned int index, uint32_t value) { if (buffer->status) return; assert(index < buffer->count); buffer->data[index] = value; } /* Returns the token index. */ static unsigned int put_string(struct bytecode_buffer *buffer, const char *str) { unsigned int index = buffer->count; size_t len = strlen(str) + 1; unsigned int token_count = (len + 3) / sizeof(*buffer->data); if (buffer->status) return index; if (!hlsl_array_reserve(buffer->ctx, (void **)&buffer->data, &buffer->size, buffer->count + token_count, sizeof(*buffer->data))) { buffer->status = E_OUTOFMEMORY; return index; } buffer->data[buffer->count + token_count - 1] = 0xabababab; memcpy(buffer->data + buffer->count, str, len); buffer->count += token_count; return index; } static uint32_t sm1_version(enum vkd3d_shader_type type, unsigned int major, unsigned int minor) { if (type == VKD3D_SHADER_TYPE_VERTEX) return D3DVS_VERSION(major, minor); else return D3DPS_VERSION(major, minor); } static D3DXPARAMETER_CLASS sm1_class(const struct hlsl_type *type) { switch (type->type) { case HLSL_CLASS_ARRAY: return sm1_class(type->e.array.type); case HLSL_CLASS_MATRIX: assert(type->modifiers & HLSL_MODIFIERS_MAJORITY_MASK); if (type->modifiers & HLSL_MODIFIER_COLUMN_MAJOR) return D3DXPC_MATRIX_COLUMNS; else return D3DXPC_MATRIX_ROWS; case HLSL_CLASS_OBJECT: return D3DXPC_OBJECT; case HLSL_CLASS_SCALAR: return D3DXPC_SCALAR; case HLSL_CLASS_STRUCT: return D3DXPC_STRUCT; case HLSL_CLASS_VECTOR: return D3DXPC_VECTOR; default: ERR("Invalid class %#x.\n", type->type); assert(0); return 0; } } static D3DXPARAMETER_TYPE sm1_base_type(const struct hlsl_type *type) { switch (type->base_type) { case HLSL_TYPE_BOOL: return D3DXPT_BOOL; case HLSL_TYPE_FLOAT: case HLSL_TYPE_HALF: return D3DXPT_FLOAT; case HLSL_TYPE_INT: case HLSL_TYPE_UINT: return D3DXPT_INT; case HLSL_TYPE_PIXELSHADER: return D3DXPT_PIXELSHADER; case HLSL_TYPE_SAMPLER: switch (type->sampler_dim) { case HLSL_SAMPLER_DIM_1D: return D3DXPT_SAMPLER1D; case HLSL_SAMPLER_DIM_2D: return D3DXPT_SAMPLER2D; case HLSL_SAMPLER_DIM_3D: return D3DXPT_SAMPLER3D; case HLSL_SAMPLER_DIM_CUBE: return D3DXPT_SAMPLERCUBE; case HLSL_SAMPLER_DIM_GENERIC: return D3DXPT_SAMPLER; default: ERR("Invalid dimension %#x.\n", type->sampler_dim); } break; case HLSL_TYPE_STRING: return D3DXPT_STRING; case HLSL_TYPE_TEXTURE: switch (type->sampler_dim) { case HLSL_SAMPLER_DIM_1D: return D3DXPT_TEXTURE1D; case HLSL_SAMPLER_DIM_2D: return D3DXPT_TEXTURE2D; case HLSL_SAMPLER_DIM_3D: return D3DXPT_TEXTURE3D; case HLSL_SAMPLER_DIM_CUBE: return D3DXPT_TEXTURECUBE; case HLSL_SAMPLER_DIM_GENERIC: return D3DXPT_TEXTURE; default: ERR("Invalid dimension %#x.\n", type->sampler_dim); } break; case HLSL_TYPE_VERTEXSHADER: return D3DXPT_VERTEXSHADER; case HLSL_TYPE_VOID: return D3DXPT_VOID; default: assert(0); } assert(0); return 0; } static const struct hlsl_type *get_array_type(const struct hlsl_type *type) { if (type->type == HLSL_CLASS_ARRAY) return get_array_type(type->e.array.type); return type; } static unsigned int get_array_size(const struct hlsl_type *type) { if (type->type == HLSL_CLASS_ARRAY) return get_array_size(type->e.array.type) * type->e.array.elements_count; return 1; } static void write_sm1_type(struct bytecode_buffer *buffer, struct hlsl_type *type, unsigned int ctab_start) { const struct hlsl_type *array_type = get_array_type(type); unsigned int fields_offset = 0, field_count = 0; unsigned int array_size = get_array_size(type); struct hlsl_struct_field *field; if (type->bytecode_offset) return; if (array_type->type == HLSL_CLASS_STRUCT) { LIST_FOR_EACH_ENTRY(field, array_type->e.elements, struct hlsl_struct_field, entry) { field->name_bytecode_offset = put_string(buffer, field->name); write_sm1_type(buffer, field->type, ctab_start); } fields_offset = (buffer->count - ctab_start) * sizeof(*buffer->data); LIST_FOR_EACH_ENTRY(field, array_type->e.elements, struct hlsl_struct_field, entry) { put_dword(buffer, (field->name_bytecode_offset - ctab_start) * sizeof(*buffer->data)); put_dword(buffer, (field->type->bytecode_offset - ctab_start) * sizeof(*buffer->data)); ++field_count; } } type->bytecode_offset = put_dword(buffer, sm1_class(type) | (sm1_base_type(type) << 16)); put_dword(buffer, type->dimy | (type->dimx << 16)); put_dword(buffer, array_size | (field_count << 16)); put_dword(buffer, fields_offset); } static void sm1_sort_extern(struct list *sorted, struct hlsl_ir_var *to_sort) { struct hlsl_ir_var *var; list_remove(&to_sort->extern_entry); LIST_FOR_EACH_ENTRY(var, sorted, struct hlsl_ir_var, extern_entry) { if (strcmp(to_sort->name, var->name) < 0) { list_add_before(&var->extern_entry, &to_sort->extern_entry); return; } } list_add_tail(sorted, &to_sort->extern_entry); } static void sm1_sort_externs(struct hlsl_ctx *ctx) { struct list sorted = LIST_INIT(sorted); struct hlsl_ir_var *var, *next; LIST_FOR_EACH_ENTRY_SAFE(var, next, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) sm1_sort_extern(&sorted, var); list_move_tail(&ctx->extern_vars, &sorted); } static void write_sm1_uniforms(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, struct hlsl_ir_function_decl *entry_func) { unsigned int ctab_start, vars_start, size_offset, creator_offset, offset; unsigned int uniform_count = 0; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->semantic.name && var->reg.allocated) { ++uniform_count; if (var->is_param && var->is_uniform) { struct vkd3d_string_buffer *name; if (!(name = hlsl_get_string_buffer(ctx))) { buffer->status = VKD3D_ERROR_OUT_OF_MEMORY; return; } vkd3d_string_buffer_printf(name, "$%s", var->name); vkd3d_free((char *)var->name); var->name = hlsl_strdup(ctx, name->buffer); hlsl_release_string_buffer(ctx, name); } } } sm1_sort_externs(ctx); size_offset = put_dword(buffer, 0); put_dword(buffer, MAKEFOURCC('C','T','A','B')); ctab_start = put_dword(buffer, sizeof(D3DXSHADER_CONSTANTTABLE)); creator_offset = put_dword(buffer, 0); put_dword(buffer, sm1_version(ctx->profile->type, ctx->profile->major_version, ctx->profile->minor_version)); put_dword(buffer, uniform_count); put_dword(buffer, sizeof(D3DXSHADER_CONSTANTTABLE)); /* offset of constants */ put_dword(buffer, 0); /* FIXME: flags */ put_dword(buffer, 0); /* FIXME: target string */ vars_start = buffer->count; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->semantic.name && var->reg.allocated) { put_dword(buffer, 0); /* name */ put_dword(buffer, D3DXRS_FLOAT4 | (var->reg.id << 16)); put_dword(buffer, var->data_type->reg_size / 4); put_dword(buffer, 0); /* type */ put_dword(buffer, 0); /* FIXME: default value */ } } uniform_count = 0; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->semantic.name && var->reg.allocated) { set_dword(buffer, vars_start + (uniform_count * 5), (buffer->count - ctab_start) * sizeof(*buffer->data)); put_string(buffer, var->name); write_sm1_type(buffer, var->data_type, ctab_start); set_dword(buffer, vars_start + (uniform_count * 5) + 3, (var->data_type->bytecode_offset - ctab_start) * sizeof(*buffer->data)); ++uniform_count; } } offset = put_string(buffer, vkd3d_shader_get_version(NULL, NULL)); set_dword(buffer, creator_offset, (offset - ctab_start) * sizeof(*buffer->data)); set_dword(buffer, size_offset, D3DSIO_COMMENT | ((buffer->count - (ctab_start - 1)) << 16)); } static uint32_t sm1_encode_register_type(D3DSHADER_PARAM_REGISTER_TYPE type) { return ((type << D3DSP_REGTYPE_SHIFT) & D3DSP_REGTYPE_MASK) | ((type << D3DSP_REGTYPE_SHIFT2) & D3DSP_REGTYPE_MASK2); } struct sm1_instruction { D3DSHADER_INSTRUCTION_OPCODE_TYPE opcode; struct sm1_dst_register { D3DSHADER_PARAM_REGISTER_TYPE type; D3DSHADER_PARAM_DSTMOD_TYPE mod; unsigned int writemask; uint32_t reg; } dst; struct sm1_src_register { D3DSHADER_PARAM_REGISTER_TYPE type; D3DSHADER_PARAM_SRCMOD_TYPE mod; unsigned int swizzle; uint32_t reg; } srcs[2]; unsigned int src_count; unsigned int has_dst; }; static void write_sm1_dst_register(struct bytecode_buffer *buffer, const struct sm1_dst_register *reg) { assert(reg->writemask); put_dword(buffer, (1u << 31) | sm1_encode_register_type(reg->type) | reg->mod | (reg->writemask << 16) | reg->reg); } static void write_sm1_src_register(struct bytecode_buffer *buffer, const struct sm1_src_register *reg, unsigned int dst_writemask) { unsigned int swizzle = map_swizzle(reg->swizzle, dst_writemask); put_dword(buffer, (1u << 31) | sm1_encode_register_type(reg->type) | reg->mod | (swizzle << 16) | reg->reg); } static void write_sm1_instruction(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct sm1_instruction *instr) { uint32_t token = instr->opcode; unsigned int i; if (ctx->profile->major_version > 1) token |= (instr->has_dst + instr->src_count) << D3DSI_INSTLENGTH_SHIFT; put_dword(buffer, token); if (instr->has_dst) write_sm1_dst_register(buffer, &instr->dst); for (i = 0; i < instr->src_count; ++i) write_sm1_src_register(buffer, &instr->srcs[i], instr->dst.writemask); }; static void write_sm1_binary_op(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, D3DSHADER_INSTRUCTION_OPCODE_TYPE opcode, const struct hlsl_reg *dst, const struct hlsl_reg *src1, const struct hlsl_reg *src2) { const struct sm1_instruction instr = { .opcode = opcode, .dst.type = D3DSPR_TEMP, .dst.writemask = dst->writemask, .dst.reg = dst->id, .has_dst = 1, .srcs[0].type = D3DSPR_TEMP, .srcs[0].swizzle = swizzle_from_writemask(src1->writemask), .srcs[0].reg = src1->id, .srcs[1].type = D3DSPR_TEMP, .srcs[1].swizzle = swizzle_from_writemask(src2->writemask), .srcs[1].reg = src2->id, .src_count = 2, }; write_sm1_instruction(ctx, buffer, &instr); } static void write_sm1_unary_op(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, D3DSHADER_INSTRUCTION_OPCODE_TYPE opcode, const struct hlsl_reg *dst, const struct hlsl_reg *src, D3DSHADER_PARAM_SRCMOD_TYPE src_mod) { const struct sm1_instruction instr = { .opcode = opcode, .dst.type = D3DSPR_TEMP, .dst.writemask = dst->writemask, .dst.reg = dst->id, .has_dst = 1, .srcs[0].type = D3DSPR_TEMP, .srcs[0].swizzle = swizzle_from_writemask(src->writemask), .srcs[0].reg = src->id, .srcs[0].mod = src_mod, .src_count = 1, }; write_sm1_instruction(ctx, buffer, &instr); } static void write_sm1_constant_defs(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer) { unsigned int i, x; for (i = 0; i < ctx->constant_defs.count; ++i) { uint32_t token = D3DSIO_DEF; const struct sm1_dst_register reg = { .type = D3DSPR_CONST, .writemask = VKD3DSP_WRITEMASK_ALL, .reg = i, }; if (ctx->profile->major_version > 1) token |= 5 << D3DSI_INSTLENGTH_SHIFT; put_dword(buffer, token); write_sm1_dst_register(buffer, ®); for (x = 0; x < 4; ++x) put_float(buffer, ctx->constant_defs.values[i].f[x]); } } static void write_sm1_semantic_dcl(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_var *var, bool output) { struct sm1_dst_register reg = {0}; uint32_t token, usage_idx; D3DDECLUSAGE usage; bool ret; if (sm1_register_from_semantic(ctx, &var->semantic, output, ®.type, ®.reg)) { usage = 0; usage_idx = 0; } else { ret = sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx); assert(ret); reg.type = output ? D3DSPR_OUTPUT : D3DSPR_INPUT; reg.reg = var->reg.id; } token = D3DSIO_DCL; if (ctx->profile->major_version > 1) token |= 2 << D3DSI_INSTLENGTH_SHIFT; put_dword(buffer, token); token = (1u << 31); token |= usage << D3DSP_DCL_USAGE_SHIFT; token |= usage_idx << D3DSP_DCL_USAGEINDEX_SHIFT; put_dword(buffer, token); reg.writemask = (1 << var->data_type->dimx) - 1; write_sm1_dst_register(buffer, ®); } static void write_sm1_semantic_dcls(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer) { bool write_in = false, write_out = false; struct hlsl_ir_var *var; if (ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL) write_in = true; else if (ctx->profile->type == VKD3D_SHADER_TYPE_VERTEX && ctx->profile->major_version == 3) write_in = write_out = true; else if (ctx->profile->type == VKD3D_SHADER_TYPE_VERTEX && ctx->profile->major_version < 3) write_in = true; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (write_in && var->is_input_semantic) write_sm1_semantic_dcl(ctx, buffer, var, false); if (write_out && var->is_output_semantic) write_sm1_semantic_dcl(ctx, buffer, var, true); } } static void write_sm1_constant(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr) { const struct hlsl_ir_constant *constant = hlsl_ir_constant(instr); struct sm1_instruction sm1_instr = { .opcode = D3DSIO_MOV, .dst.type = D3DSPR_TEMP, .dst.reg = instr->reg.id, .dst.writemask = instr->reg.writemask, .has_dst = 1, .srcs[0].type = D3DSPR_CONST, .srcs[0].reg = constant->reg.id, .srcs[0].swizzle = swizzle_from_writemask(constant->reg.writemask), .src_count = 1, }; assert(instr->reg.allocated); assert(constant->reg.allocated); write_sm1_instruction(ctx, buffer, &sm1_instr); } static void write_sm1_expr(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr) { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); struct hlsl_ir_node *arg1 = expr->operands[0].node; struct hlsl_ir_node *arg2 = expr->operands[1].node; unsigned int i; assert(instr->reg.allocated); if (instr->data_type->base_type != HLSL_TYPE_FLOAT) { FIXME("Non-float operations need to be lowered.\n"); return; } switch (expr->op) { case HLSL_IR_BINOP_ADD: write_sm1_binary_op(ctx, buffer, D3DSIO_ADD, &instr->reg, &arg1->reg, &arg2->reg); break; case HLSL_IR_BINOP_MUL: write_sm1_binary_op(ctx, buffer, D3DSIO_MUL, &instr->reg, &arg1->reg, &arg2->reg); break; case HLSL_IR_BINOP_SUB: write_sm1_binary_op(ctx, buffer, D3DSIO_SUB, &instr->reg, &arg1->reg, &arg2->reg); break; case HLSL_IR_UNOP_NEG: write_sm1_unary_op(ctx, buffer, D3DSIO_MOV, &instr->reg, &arg1->reg, D3DSPSM_NEG); break; case HLSL_IR_UNOP_RCP: for (i = 0; i < instr->data_type->dimx; ++i) { struct hlsl_reg src = arg1->reg, dst = instr->reg; src.writemask = combine_writemasks(src.writemask, 1u << i); dst.writemask = combine_writemasks(dst.writemask, 1u << i); write_sm1_unary_op(ctx, buffer, D3DSIO_RCP, &dst, &src, 0); } break; default: FIXME("Unhandled op %u.\n", expr->op); break; } } static void write_sm1_load(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr) { const struct hlsl_ir_load *load = hlsl_ir_load(instr); const struct hlsl_reg reg = hlsl_reg_from_deref(&load->src, instr->data_type); struct sm1_instruction sm1_instr = { .opcode = D3DSIO_MOV, .dst.type = D3DSPR_TEMP, .dst.reg = instr->reg.id, .dst.writemask = instr->reg.writemask, .has_dst = 1, .srcs[0].type = D3DSPR_TEMP, .srcs[0].reg = reg.id, .srcs[0].swizzle = swizzle_from_writemask(reg.writemask), .src_count = 1, }; assert(instr->reg.allocated); if (load->src.var->is_uniform) { assert(reg.allocated); sm1_instr.srcs[0].type = D3DSPR_CONST; } else if (load->src.var->is_input_semantic) { if (!sm1_register_from_semantic(ctx, &load->src.var->semantic, false, &sm1_instr.srcs[0].type, &sm1_instr.srcs[0].reg)) { assert(reg.allocated); sm1_instr.srcs[0].type = D3DSPR_INPUT; sm1_instr.srcs[0].reg = reg.id; } else sm1_instr.srcs[0].swizzle = swizzle_from_writemask((1 << load->src.var->data_type->dimx) - 1); } write_sm1_instruction(ctx, buffer, &sm1_instr); } static void write_sm1_store(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr) { const struct hlsl_ir_store *store = hlsl_ir_store(instr); const struct hlsl_ir_node *rhs = store->rhs.node; const struct hlsl_reg reg = hlsl_reg_from_deref(&store->lhs, rhs->data_type); struct sm1_instruction sm1_instr = { .opcode = D3DSIO_MOV, .dst.type = D3DSPR_TEMP, .dst.reg = reg.id, .dst.writemask = combine_writemasks(reg.writemask, store->writemask), .has_dst = 1, .srcs[0].type = D3DSPR_TEMP, .srcs[0].reg = rhs->reg.id, .srcs[0].swizzle = swizzle_from_writemask(rhs->reg.writemask), .src_count = 1, }; if (store->lhs.var->data_type->type == HLSL_CLASS_MATRIX) { FIXME("Matrix writemasks need to be lowered.\n"); return; } if (store->lhs.var->is_output_semantic) { if (!sm1_register_from_semantic(ctx, &store->lhs.var->semantic, true, &sm1_instr.dst.type, &sm1_instr.dst.reg)) { assert(reg.allocated); sm1_instr.dst.type = D3DSPR_OUTPUT; sm1_instr.dst.reg = reg.id; } else sm1_instr.dst.writemask = (1u << store->lhs.var->data_type->dimx) - 1; } else assert(reg.allocated); write_sm1_instruction(ctx, buffer, &sm1_instr); } static void write_sm1_swizzle(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_node *instr) { const struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr); const struct hlsl_ir_node *val = swizzle->val.node; struct sm1_instruction sm1_instr = { .opcode = D3DSIO_MOV, .dst.type = D3DSPR_TEMP, .dst.reg = instr->reg.id, .dst.writemask = instr->reg.writemask, .has_dst = 1, .srcs[0].type = D3DSPR_TEMP, .srcs[0].reg = val->reg.id, .srcs[0].swizzle = combine_swizzles(swizzle_from_writemask(val->reg.writemask), swizzle->swizzle, instr->data_type->dimx), .src_count = 1, }; assert(instr->reg.allocated); assert(val->reg.allocated); write_sm1_instruction(ctx, buffer, &sm1_instr); } static void write_sm1_instructions(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, const struct hlsl_ir_function_decl *entry_func) { const struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, entry_func->body, struct hlsl_ir_node, entry) { if (instr->data_type) { if (instr->data_type->type == HLSL_CLASS_MATRIX) { FIXME("Matrix operations need to be lowered.\n"); break; } assert(instr->data_type->type == HLSL_CLASS_SCALAR || instr->data_type->type == HLSL_CLASS_VECTOR); } switch (instr->type) { case HLSL_IR_CONSTANT: write_sm1_constant(ctx, buffer, instr); break; case HLSL_IR_EXPR: write_sm1_expr(ctx, buffer, instr); break; case HLSL_IR_LOAD: write_sm1_load(ctx, buffer, instr); break; case HLSL_IR_STORE: write_sm1_store(ctx, buffer, instr); break; case HLSL_IR_SWIZZLE: write_sm1_swizzle(ctx, buffer, instr); break; default: FIXME("Unhandled instruction type %s.\n", hlsl_node_type_to_string(instr->type)); } } } static int write_sm1_shader(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, struct vkd3d_shader_code *out) { struct bytecode_buffer buffer = {.ctx = ctx}; int ret; put_dword(&buffer, sm1_version(ctx->profile->type, ctx->profile->major_version, ctx->profile->minor_version)); write_sm1_uniforms(ctx, &buffer, entry_func); write_sm1_constant_defs(ctx, &buffer); write_sm1_semantic_dcls(ctx, &buffer); write_sm1_instructions(ctx, &buffer, entry_func); put_dword(&buffer, D3DSIO_END); if (!(ret = buffer.status)) { out->code = buffer.data; out->size = buffer.count * sizeof(*buffer.data); } return ret; } int hlsl_emit_dxbc(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, struct vkd3d_shader_code *out) { struct hlsl_ir_var *var; list_move_head(entry_func->body, &ctx->static_initializers); LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry) { if (var->data_type->type == HLSL_CLASS_OBJECT) list_add_tail(&ctx->extern_vars, &var->extern_entry); else if (var->modifiers & HLSL_STORAGE_UNIFORM) prepend_uniform_copy(ctx, entry_func->body, var); } LIST_FOR_EACH_ENTRY(var, entry_func->parameters, struct hlsl_ir_var, param_entry) { if (var->data_type->type == HLSL_CLASS_OBJECT) { list_add_tail(&ctx->extern_vars, &var->extern_entry); } else { if (var->modifiers & HLSL_STORAGE_UNIFORM) { prepend_uniform_copy(ctx, entry_func->body, var); } else { if (var->data_type->type != HLSL_CLASS_STRUCT && !var->semantic.name) hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Parameter \"%s\" is missing a semantic.", var->name); if (var->modifiers & HLSL_STORAGE_IN) prepend_input_var_copy(ctx, entry_func->body, var); if (var->modifiers & HLSL_STORAGE_OUT) append_output_var_copy(ctx, entry_func->body, var); } } } if (entry_func->return_var) { if (entry_func->return_var->data_type->type != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name) hlsl_error(ctx, entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Entry point \"%s\" is missing a return value semantic.", entry_func->func->name); append_output_var_copy(ctx, entry_func->body, entry_func->return_var); } while (transform_ir(ctx, fold_redundant_casts, entry_func->body, NULL)); while (transform_ir(ctx, split_struct_copies, entry_func->body, NULL)); while (transform_ir(ctx, fold_constants, entry_func->body, NULL)); if (ctx->profile->major_version < 4) transform_ir(ctx, lower_division, entry_func->body, NULL); do compute_liveness(ctx, entry_func); while (transform_ir(ctx, dce, entry_func->body, NULL)); compute_liveness(ctx, entry_func); if (TRACE_ON()) rb_for_each_entry(&ctx->functions, dump_function, ctx); allocate_temp_registers(ctx, entry_func); if (ctx->profile->major_version < 4) allocate_const_registers(ctx, entry_func); else allocate_buffers(ctx); allocate_semantic_registers(ctx); if (ctx->result) return ctx->result; if (ctx->profile->major_version < 4) return write_sm1_shader(ctx, entry_func, out); else return VKD3D_ERROR_NOT_IMPLEMENTED; }