[pixel shader fail]
/* The same function signature cannot be defined twice. */

float func(int arg)
{
    return 0.1;
}

float func(int arg)
{
    return 0.1;
}

float4 main() : sv_target
{
    return 0;
}


[pixel shader todo]
/* Test a basic overload. */
float func(int arg)
{
    return 0.1;
}

float func(uint arg)
{
    return 0.2;
}

float4 main() : sv_target
{
    int i = 1;
    uint u = 1;
    return float4(func(i), func(u), func(int2(1, 1)), func(uint2(1, 1)));
}

[test]
todo(sm<6) draw quad
probe (0, 0) rgba (0.1, 0.2, 0.1, 0.2)


[pixel shader fail]
float func(int arg)
{
    return 1.0;
}

float func(uint arg)
{
    return 2.0;
}

float4 main() : sv_target
{
    return func(3); // whether 3 is signed or unsigned is unspecified.
}


[pixel shader todo]
float func(int arg)
{
    return 1.0;
}

float func(uint arg)
{
    return 2.0;
}

float4 main() : sv_target
{
    int a = 3;
    uint b = 3l;

    return float4(func(a), func(b), func(3u), func(3lu));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0,0) rgba (1.0, 2.0, 2.0, 2.0)


% float and float1 can be defined separately...

[pixel shader]
void func(float arg) {}
void func(float1 arg) {}

float4 main() : sv_target
{
    return 1.0;
}


% ...but invoking them is considered ambiguous and fails.

[pixel shader fail]

void func(float arg) {}
void func(float1 arg) {}

float4 main() : sv_target
{
    float x = 1.0;
    func(x);
    return 1.0;
}

[pixel shader fail]

void func(float arg) {}
void func(float1 arg) {}

float4 main() : sv_target
{
    float1 x = {1.0};
    func(x);
    return 1.0;
}


% This holds true even if one variant isn't actually defined.

[pixel shader fail]

void func(float arg);
void func(float1 arg) {}

float4 main() : sv_target
{
    float1 x = {1.0};
    func(x);
    return 1.0;
}

% Narrows have the same priority, regardless of how much narrowing is done.
[pixel shader fail]

float4 func(float3 x)
{
    return 0.0;
}

float4 func(float2 x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(float4(0.0, 0.0, 0.0, 0.0));
}

% Even if one axis has less narrowing.
[pixel shader fail]

float4 func(float4x3 x)
{
    return float4(x[0][0], x[0][0], x[0][0], x[0][0]);
}

float4 func(float2x2 x)
{
    return float4(x[0][0], x[0][0], x[0][0], x[0][0]);
}

float4 main() : sv_target
{
    float4x4 mtx = 0;

    return func(mtx);
}

% Let C be the common type that would be produced in an arithmetic expression
% between the parameter and argument types. If C is the same as the parameter, the
% overload is preferred to the case where C is the same base type as the argument but
% narrower. E.g. in the following example, C is "float4" for the first function
% (same as the parameter) and "int2" for the second function (same base type as
% the argument, but narrower), so the first function is preferred.

[pixel shader todo]

float4 func(float4 x)
{
    return 0.0;
}

float4 func(int2 x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(int4(0, 0, 0, 0));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0, 0) rgba(0.0, 0.0, 0.0, 0.0)

% Let C be the common type that would be produced in an arithmetic expression
% between the parameter and argument types. If C is the same as the argument,
% the overload is preferred to the case where C is the same as the parameter
% but different to the argument. E.g. in the following example, C is "int" for
% the first function (same as the argument) and "float" for the second function
% (same as the parameter), so the first function is preferred.

[require]
% No minimum precision types prior to SM4.
shader model >= 4.0

[pixel shader todo(sm<6)]

float4 func(min16int x)
{
    return 2.0;
}

float4 func(float x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(int(0));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0, 0) rgba(2.0, 2.0, 2.0, 2.0)

% Let C be the common type that would be produced in an arithmetic expression
% between the parameter and argument types. If C is "int" and the parameter is "uint", the
% overload is preferred to the case where C is the same as the argument.
% E.g. in the following example, C is "int" in both cases, but "int" <-> "uint"
% casts are preferred.

[pixel shader todo]

float4 func(uint x)
{
    return 2.0;
}

float4 func(min16int x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(int(0));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0, 0) rgba(2.0, 2.0, 2.0, 2.0)

% Same as above.

[pixel shader todo]

float4 func(int x)
{
    return 2.0;
}

float4 func(min16uint x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(uint(0));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0, 0) rgba(2.0, 2.0, 2.0, 2.0)

[require]
% Need SM5 for doubles.
shader model >= 5.0

% Let C be the common type that would be produced in an arithmetic expression
% between the parameter and argument types. If C is a promoted type of the argument
% (e.g: float and double for halfs; double for floats;), it is preferred over the case
% where C is equal to the argument.
% E.g. in the following example, C is "double" for the first function (a promoted
% type of the "float" argument) and "float" for the second function.

[pixel shader todo]

float4 func(double x)
{
    return 2.0;
}

float4 func(int x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(float(0));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0, 0) rgba(2.0, 2.0, 2.0, 2.0)

% Let C be the common type that would be produced in an arithmetic expression
% between the parameter and argument types. If C has the same base type as the argument,
% but with more components, it is preferred over all other cases.
% E.g in the following example, "C" is "float2" (same base type as the "float"
% argument, but with more components) for the first function and "double" for the
% second function.

[require]
% Reset

[pixel shader todo]

float4 func(float2 x)
{
    return 2.0;
}

float4 func(double x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(float(0));
}

[test]
todo(sm<6) draw quad
todo(sm<6) probe (0, 0) rgba(2.0, 2.0, 2.0, 2.0)

% Some matrices are implicitly compatible with vectors and will ambiguate with them.

[pixel shader fail]

float4 func(float2x2 x)
{
    return 2.0;
}

float4 func(float4 x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(float4(0, 0, 0, 0));
}

[pixel shader fail]

float4 func(float1x3 x)
{
    return 2.0;
}

float4 func(float3 x)
{
    return 1.0;
}

float4 main() : sv_target
{
    return func(float4(0, 0, 0, 0));
}

% Structs are evaluated on a per-component basis.

[pixel shader fail]
struct a
{
    float4 a;
};

struct b
{
    float a[4];
};

struct c
{
    float a;
    float b;
    float c;
    float d;
};

float4 func(a x)
{
    return 1.0;
}

float4 func(b x)
{
    return 2.0;
}

float4 main() : sv_target
{
    c x = {0.0, 0.0, 0.0, 0.0};
    return func(x);
}

% Arrays are evaluated on a per component basis.

[pixel shader fail]

float4 func(float4 x[1])
{
    return 1.0;
}

float4 func(float2 x[2])
{
    return 2.0;
}

float4 main() : sv_target
{
    float x[4] = {0, 0, 0, 0};
    return func(x);
}

% Arrays do not implicitly convert from vectors, so they won't ambiguate.

[pixel shader]

float4 func(float4 x[1])
{
    return 1.0;
}

float4 func(float2 x[2])
{
    return 2.0;
}

float4 func(float4 x)
{
    return 42.0;
}

float4 main() : sv_target
{
    float4 x = float4(0, 0, 0, 0);
    return func(x);
}

[test]
draw quad
probe (0, 0) rgba(42.0, 42.0, 42.0, 42.0)