/* * Copyright (C) 2001 Nikos Mavroyanopoulos * Copyright (C) 2004 Hans Leidekker * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ /* * This code implements the MD5 message-digest algorithm. * It is based on code in the public domain written by Colin * Plumb in 1993. The algorithm is due to Ron Rivest. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * md5_ctx structure, pass it to md5_init, call md5_update as * needed on buffers full of bytes, and then call md5_final, which * will fill a supplied 16-byte array with the digest. */ /* * DXBC uses a variation of the MD5 algorithm, which only changes the way * the message is padded in the final step. */ #include "vkd3d_shader_private.h" #define DXBC_CHECKSUM_BLOCK_SIZE 64 STATIC_ASSERT(sizeof(unsigned int) == 4); struct md5_ctx { unsigned int i[2]; unsigned int buf[4]; unsigned char in[DXBC_CHECKSUM_BLOCK_SIZE]; unsigned char digest[16]; }; /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. md5_update blocks * the data and converts bytes into longwords for this routine. */ static void md5_transform(unsigned int buf[4], const unsigned int in[16]) { unsigned int a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* * Note: this code is harmless on little-endian machines. */ static void byte_reverse(unsigned char *buf, unsigned longs) { unsigned int t; do { t = vkd3d_make_u32(vkd3d_make_u16(buf[0], buf[1]), vkd3d_make_u16(buf[2], buf[3])); *(unsigned int *)buf = t; buf += 4; } while (--longs); } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ static void md5_init(struct md5_ctx *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->i[0] = ctx->i[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void md5_update(struct md5_ctx *ctx, const unsigned char *buf, unsigned int len) { unsigned int t; /* Update bitcount */ t = ctx->i[0]; if ((ctx->i[0] = t + (len << 3)) < t) ctx->i[1]++; /* Carry from low to high */ ctx->i[1] += len >> 29; t = (t >> 3) & 0x3f; /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *)ctx->in + t; t = DXBC_CHECKSUM_BLOCK_SIZE - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byte_reverse(ctx->in, 16); md5_transform(ctx->buf, (unsigned int *)ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= DXBC_CHECKSUM_BLOCK_SIZE) { memcpy(ctx->in, buf, DXBC_CHECKSUM_BLOCK_SIZE); byte_reverse(ctx->in, 16); md5_transform(ctx->buf, (unsigned int *)ctx->in); buf += DXBC_CHECKSUM_BLOCK_SIZE; len -= DXBC_CHECKSUM_BLOCK_SIZE; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } static void md5_final(struct md5_ctx *ctx, enum vkd3d_md5_variant variant) { unsigned int padding; unsigned int count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->i[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; ++count; /* Bytes of padding needed to make 64 bytes */ padding = DXBC_CHECKSUM_BLOCK_SIZE - count; /* Pad out to 56 mod 64 */ if (padding < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, padding); byte_reverse(ctx->in, 16); md5_transform(ctx->buf, (unsigned int *)ctx->in); /* Now fill the next block */ memset(ctx->in, 0, DXBC_CHECKSUM_BLOCK_SIZE); } else if (variant == VKD3D_MD5_DXBC) { /* Make place for bitcount at the beginning of the block */ memmove(&ctx->in[4], ctx->in, count); /* Pad block to 60 bytes */ memset(p + 4, 0, padding - 4); } else { /* Pad block to 56 bytes */ memset(p, 0, padding - 8); } /* Append length in bits and transform */ if (variant == VKD3D_MD5_DXBC) { unsigned int length; length = ctx->i[0]; memcpy(&ctx->in[0], &length, sizeof(length)); byte_reverse(&ctx->in[4], 14); length = ctx->i[0] >> 2 | 0x1; memcpy(&ctx->in[DXBC_CHECKSUM_BLOCK_SIZE - 4], &length, sizeof(length)); } else { byte_reverse(ctx->in, 14); ((unsigned int *)ctx->in)[14] = ctx->i[0]; ((unsigned int *)ctx->in)[15] = ctx->i[1]; } md5_transform(ctx->buf, (unsigned int *)ctx->in); byte_reverse((unsigned char *)ctx->buf, 4); memcpy(ctx->digest, ctx->buf, 16); } void vkd3d_compute_md5(const void *data, size_t size, uint32_t checksum[4], enum vkd3d_md5_variant variant) { const uint8_t *ptr = data; struct md5_ctx ctx; md5_init(&ctx); md5_update(&ctx, ptr, size); md5_final(&ctx, variant); memcpy(checksum, ctx.digest, sizeof(ctx.digest)); }