/* * HLSL optimization and code generation * * Copyright 2019-2020 Zebediah Figura for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "hlsl.h" #include /* TODO: remove when no longer needed, only used for new_offset_instr_from_deref() */ static struct hlsl_ir_node *new_offset_from_path_index(struct hlsl_ctx *ctx, struct hlsl_block *block, struct hlsl_type *type, struct hlsl_ir_node *offset, struct hlsl_ir_node *idx, enum hlsl_regset regset, const struct vkd3d_shader_location *loc) { struct hlsl_ir_node *idx_offset = NULL; struct hlsl_ir_constant *c; hlsl_block_init(block); switch (type->class) { case HLSL_CLASS_VECTOR: idx_offset = idx; break; case HLSL_CLASS_MATRIX: { if (!(c = hlsl_new_uint_constant(ctx, 4, loc))) return NULL; hlsl_block_add_instr(block, &c->node); if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, &c->node, idx))) return NULL; hlsl_block_add_instr(block, idx_offset); break; } case HLSL_CLASS_ARRAY: { unsigned int size = hlsl_type_get_array_element_reg_size(type->e.array.type, regset); if (!(c = hlsl_new_uint_constant(ctx, size, loc))) return NULL; hlsl_block_add_instr(block, &c->node); if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, &c->node, idx))) return NULL; hlsl_block_add_instr(block, idx_offset); break; } case HLSL_CLASS_STRUCT: { unsigned int field_idx = hlsl_ir_constant(idx)->value.u[0].u; struct hlsl_struct_field *field = &type->e.record.fields[field_idx]; if (!(c = hlsl_new_uint_constant(ctx, field->reg_offset[regset], loc))) return NULL; hlsl_block_add_instr(block, &c->node); idx_offset = &c->node; break; } default: vkd3d_unreachable(); } if (offset) { if (!(idx_offset = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, offset, idx_offset))) return NULL; hlsl_block_add_instr(block, idx_offset); } return idx_offset; } /* TODO: remove when no longer needed, only used for replace_deref_path_with_offset() */ static struct hlsl_ir_node *new_offset_instr_from_deref(struct hlsl_ctx *ctx, struct hlsl_block *block, const struct hlsl_deref *deref, const struct vkd3d_shader_location *loc) { struct hlsl_ir_node *offset = NULL; struct hlsl_type *type; unsigned int i; hlsl_block_init(block); assert(deref->var); type = deref->var->data_type; for (i = 0; i < deref->path_len; ++i) { struct hlsl_block idx_block; if (!(offset = new_offset_from_path_index(ctx, &idx_block, type, offset, deref->path[i].node, deref->offset_regset, loc))) return NULL; hlsl_block_add_block(block, &idx_block); type = hlsl_get_element_type_from_path_index(ctx, type, deref->path[i].node); } return offset; } /* TODO: remove when no longer needed, only used for transform_deref_paths_into_offsets() */ static void replace_deref_path_with_offset(struct hlsl_ctx *ctx, struct hlsl_deref *deref, struct hlsl_ir_node *instr) { const struct hlsl_type *type; struct hlsl_ir_node *offset; struct hlsl_block block; if (!deref->var) return; /* register offsets shouldn't be used before this point is reached. */ assert(!deref->offset.node); type = hlsl_deref_get_type(ctx, deref); /* Instructions that directly refer to structs or arrays (instead of single-register components) * are removed later by dce. So it is not a problem to just cleanup their derefs. */ if (type->class == HLSL_CLASS_STRUCT || type->class == HLSL_CLASS_ARRAY) { hlsl_cleanup_deref(deref); return; } deref->offset_regset = hlsl_type_get_regset(type); if (!(offset = new_offset_instr_from_deref(ctx, &block, deref, &instr->loc))) return; list_move_before(&instr->entry, &block.instrs); hlsl_cleanup_deref(deref); hlsl_src_from_node(&deref->offset, offset); } /* TODO: remove when no longer needed. */ static bool transform_deref_paths_into_offsets(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { switch(instr->type) { case HLSL_IR_LOAD: replace_deref_path_with_offset(ctx, &hlsl_ir_load(instr)->src, instr); return true; case HLSL_IR_STORE: replace_deref_path_with_offset(ctx, &hlsl_ir_store(instr)->lhs, instr); return true; case HLSL_IR_RESOURCE_LOAD: replace_deref_path_with_offset(ctx, &hlsl_ir_resource_load(instr)->resource, instr); replace_deref_path_with_offset(ctx, &hlsl_ir_resource_load(instr)->sampler, instr); return true; case HLSL_IR_RESOURCE_STORE: replace_deref_path_with_offset(ctx, &hlsl_ir_resource_store(instr)->resource, instr); return true; default: return false; } return false; } /* Split uniforms into two variables representing the constant and temp * registers, and copy the former to the latter, so that writes to uniforms * work. */ static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp) { struct vkd3d_string_buffer *name; struct hlsl_ir_var *uniform; struct hlsl_ir_store *store; struct hlsl_ir_load *load; /* Use the synthetic name for the temp, rather than the uniform, so that we * can write the uniform name into the shader reflection data. */ if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type, &temp->loc, NULL, temp->storage_modifiers, &temp->reg_reservation))) return; list_add_before(&temp->scope_entry, &uniform->scope_entry); list_add_tail(&ctx->extern_vars, &uniform->extern_entry); uniform->is_uniform = 1; uniform->is_param = temp->is_param; uniform->buffer = temp->buffer; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", temp->name); temp->name = hlsl_strdup(ctx, name->buffer); hlsl_release_string_buffer(ctx, name); if (!(load = hlsl_new_var_load(ctx, uniform, &temp->loc))) return; list_add_head(instrs, &load->node.entry); if (!(store = hlsl_new_simple_store(ctx, temp, &load->node))) return; list_add_after(&load->node.entry, &store->node.entry); } static void validate_field_semantic(struct hlsl_ctx *ctx, struct hlsl_struct_field *field) { if (!field->semantic.name && hlsl_get_multiarray_element_type(field->type)->class <= HLSL_CLASS_LAST_NUMERIC && !field->semantic.reported_missing) { hlsl_error(ctx, &field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); field->semantic.reported_missing = true; } } static enum hlsl_base_type base_type_get_semantic_equivalent(enum hlsl_base_type base) { if (base == HLSL_TYPE_BOOL) return HLSL_TYPE_UINT; if (base == HLSL_TYPE_INT) return HLSL_TYPE_UINT; if (base == HLSL_TYPE_HALF) return HLSL_TYPE_FLOAT; return base; } static bool types_are_semantic_equivalent(struct hlsl_ctx *ctx, const struct hlsl_type *type1, const struct hlsl_type *type2) { if (ctx->profile->major_version < 4) return true; if (type1->dimx != type2->dimx) return false; return base_type_get_semantic_equivalent(type1->base_type) == base_type_get_semantic_equivalent(type2->base_type); } static struct hlsl_ir_var *add_semantic_var(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t index, bool output, const struct vkd3d_shader_location *loc) { struct hlsl_semantic new_semantic; struct vkd3d_string_buffer *name; struct hlsl_ir_var *ext_var; if (!(name = hlsl_get_string_buffer(ctx))) return NULL; vkd3d_string_buffer_printf(name, "<%s-%s%u>", output ? "output" : "input", semantic->name, index); LIST_FOR_EACH_ENTRY(ext_var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!ascii_strcasecmp(ext_var->name, name->buffer)) { if (output) { if (index >= semantic->reported_duplicated_output_next_index) { hlsl_error(ctx, loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Output semantic \"%s%u\" is used multiple times.", semantic->name, index); hlsl_note(ctx, &ext_var->loc, HLSL_LEVEL_ERROR, "First use of \"%s%u\" is here.", semantic->name, index); semantic->reported_duplicated_output_next_index = index + 1; } } else { if (index >= semantic->reported_duplicated_input_incompatible_next_index && !types_are_semantic_equivalent(ctx, ext_var->data_type, type)) { hlsl_error(ctx, loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Input semantic \"%s%u\" is used multiple times with incompatible types.", semantic->name, index); hlsl_note(ctx, &ext_var->loc, HLSL_LEVEL_ERROR, "First declaration of \"%s%u\" is here.", semantic->name, index); semantic->reported_duplicated_input_incompatible_next_index = index + 1; } } hlsl_release_string_buffer(ctx, name); return ext_var; } } if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name))) { hlsl_release_string_buffer(ctx, name); return NULL; } new_semantic.index = index; if (!(ext_var = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, loc, &new_semantic, modifiers, NULL))) { hlsl_release_string_buffer(ctx, name); hlsl_cleanup_semantic(&new_semantic); return NULL; } hlsl_release_string_buffer(ctx, name); if (output) ext_var->is_output_semantic = 1; else ext_var->is_input_semantic = 1; ext_var->is_param = var->is_param; list_add_before(&var->scope_entry, &ext_var->scope_entry); list_add_tail(&ctx->extern_vars, &ext_var->extern_entry); return ext_var; } static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *lhs, unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index) { struct hlsl_type *type = lhs->node.data_type, *vector_type_src, *vector_type_dst; struct vkd3d_shader_location *loc = &lhs->node.loc; struct hlsl_ir_var *var = lhs->src.var; struct hlsl_ir_constant *c; unsigned int i; if (type->class > HLSL_CLASS_LAST_NUMERIC) { struct vkd3d_string_buffer *string; if (!(string = hlsl_type_to_string(ctx, type))) return; hlsl_fixme(ctx, &var->loc, "Input semantics for type %s.", string->buffer); hlsl_release_string_buffer(ctx, string); } if (!semantic->name) return; vector_type_src = hlsl_get_vector_type(ctx, type->base_type, (ctx->profile->major_version < 4) ? 4 : hlsl_type_minor_size(type)); vector_type_dst = hlsl_get_vector_type(ctx, type->base_type, hlsl_type_minor_size(type)); for (i = 0; i < hlsl_type_major_size(type); ++i) { struct hlsl_ir_store *store; struct hlsl_ir_var *input; struct hlsl_ir_load *load; struct hlsl_ir_node *cast; if (!(input = add_semantic_var(ctx, var, vector_type_src, modifiers, semantic, semantic_index + i, false, loc))) return; if (!(load = hlsl_new_var_load(ctx, input, &var->loc))) return; list_add_after(&lhs->node.entry, &load->node.entry); if (!(cast = hlsl_new_cast(ctx, &load->node, vector_type_dst, &var->loc))) return; list_add_after(&load->node.entry, &cast->entry); if (type->class == HLSL_CLASS_MATRIX) { if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc))) return; list_add_after(&cast->entry, &c->node.entry); if (!(store = hlsl_new_store_index(ctx, &lhs->src, &c->node, cast, 0, &var->loc))) return; list_add_after(&c->node.entry, &store->node.entry); } else { assert(i == 0); if (!(store = hlsl_new_store_index(ctx, &lhs->src, NULL, cast, 0, &var->loc))) return; list_add_after(&cast->entry, &store->node.entry); } } } static void prepend_input_copy_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *lhs, unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index) { struct vkd3d_shader_location *loc = &lhs->node.loc; struct hlsl_type *type = lhs->node.data_type; struct hlsl_ir_var *var = lhs->src.var; struct hlsl_ir_constant *c; unsigned int i; if (type->class == HLSL_CLASS_ARRAY || type->class == HLSL_CLASS_STRUCT) { struct hlsl_ir_load *element_load; struct hlsl_struct_field *field; uint32_t elem_semantic_index; for (i = 0; i < hlsl_type_element_count(type); ++i) { if (type->class == HLSL_CLASS_ARRAY) { elem_semantic_index = semantic_index + i * hlsl_type_get_array_element_reg_size(type->e.array.type, HLSL_REGSET_NUMERIC) / 4; } else { field = &type->e.record.fields[i]; validate_field_semantic(ctx, field); semantic = &field->semantic; elem_semantic_index = semantic->index; loc = &field->loc; } if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc))) return; list_add_after(&lhs->node.entry, &c->node.entry); /* This redundant load is expected to be deleted later by DCE. */ if (!(element_load = hlsl_new_load_index(ctx, &lhs->src, &c->node, loc))) return; list_add_after(&c->node.entry, &element_load->node.entry); prepend_input_copy_recurse(ctx, instrs, element_load, modifiers, semantic, elem_semantic_index); } } else { prepend_input_copy(ctx, instrs, lhs, modifiers, semantic, semantic_index); } } /* Split inputs into two variables representing the semantic and temp registers, * and copy the former to the latter, so that writes to input variables work. */ static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { struct hlsl_ir_load *load; /* This redundant load is expected to be deleted later by DCE. */ if (!(load = hlsl_new_var_load(ctx, var, &var->loc))) return; list_add_head(instrs, &load->node.entry); prepend_input_copy_recurse(ctx, instrs, load, var->storage_modifiers, &var->semantic, var->semantic.index); } static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *rhs, unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index) { struct hlsl_type *type = rhs->node.data_type, *vector_type; struct vkd3d_shader_location *loc = &rhs->node.loc; struct hlsl_ir_var *var = rhs->src.var; struct hlsl_ir_constant *c; unsigned int i; if (type->class > HLSL_CLASS_LAST_NUMERIC) { struct vkd3d_string_buffer *string; if (!(string = hlsl_type_to_string(ctx, type))) return; hlsl_fixme(ctx, &var->loc, "Output semantics for type %s.", string->buffer); hlsl_release_string_buffer(ctx, string); } if (!semantic->name) return; vector_type = hlsl_get_vector_type(ctx, type->base_type, hlsl_type_minor_size(type)); for (i = 0; i < hlsl_type_major_size(type); ++i) { struct hlsl_ir_store *store; struct hlsl_ir_var *output; struct hlsl_ir_load *load; if (!(output = add_semantic_var(ctx, var, vector_type, modifiers, semantic, semantic_index + i, true, loc))) return; if (type->class == HLSL_CLASS_MATRIX) { if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc))) return; list_add_tail(instrs, &c->node.entry); if (!(load = hlsl_new_load_index(ctx, &rhs->src, &c->node, &var->loc))) return; list_add_tail(instrs, &load->node.entry); } else { assert(i == 0); if (!(load = hlsl_new_load_index(ctx, &rhs->src, NULL, &var->loc))) return; list_add_tail(instrs, &load->node.entry); } if (!(store = hlsl_new_simple_store(ctx, output, &load->node))) return; list_add_tail(instrs, &store->node.entry); } } static void append_output_copy_recurse(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_load *rhs, unsigned int modifiers, struct hlsl_semantic *semantic, uint32_t semantic_index) { struct vkd3d_shader_location *loc = &rhs->node.loc; struct hlsl_type *type = rhs->node.data_type; struct hlsl_ir_var *var = rhs->src.var; struct hlsl_ir_constant *c; unsigned int i; if (type->class == HLSL_CLASS_ARRAY || type->class == HLSL_CLASS_STRUCT) { struct hlsl_ir_load *element_load; struct hlsl_struct_field *field; uint32_t elem_semantic_index; for (i = 0; i < hlsl_type_element_count(type); ++i) { if (type->class == HLSL_CLASS_ARRAY) { elem_semantic_index = semantic_index + i * hlsl_type_get_array_element_reg_size(type->e.array.type, HLSL_REGSET_NUMERIC) / 4; } else { field = &type->e.record.fields[i]; validate_field_semantic(ctx, field); semantic = &field->semantic; elem_semantic_index = semantic->index; loc = &field->loc; } if (!(c = hlsl_new_uint_constant(ctx, i, &var->loc))) return; list_add_tail(instrs, &c->node.entry); if (!(element_load = hlsl_new_load_index(ctx, &rhs->src, &c->node, loc))) return; list_add_tail(instrs, &element_load->node.entry); append_output_copy_recurse(ctx, instrs, element_load, modifiers, semantic, elem_semantic_index); } } else { append_output_copy(ctx, instrs, rhs, modifiers, semantic, semantic_index); } } /* Split outputs into two variables representing the temp and semantic * registers, and copy the former to the latter, so that reads from output * variables work. */ static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { struct hlsl_ir_load *load; /* This redundant load is expected to be deleted later by DCE. */ if (!(load = hlsl_new_var_load(ctx, var, &var->loc))) return; list_add_tail(instrs, &load->node.entry); append_output_copy_recurse(ctx, instrs, load, var->storage_modifiers, &var->semantic, var->semantic.index); } bool hlsl_transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *), struct hlsl_block *block, void *context) { struct hlsl_ir_node *instr, *next; bool progress = false; LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry) { if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); progress |= hlsl_transform_ir(ctx, func, &iff->then_block, context); progress |= hlsl_transform_ir(ctx, func, &iff->else_block, context); } else if (instr->type == HLSL_IR_LOOP) progress |= hlsl_transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context); progress |= func(ctx, instr, context); } return progress; } struct recursive_call_ctx { const struct hlsl_ir_function_decl **backtrace; size_t count, capacity; }; static bool find_recursive_calls(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct recursive_call_ctx *call_ctx = context; struct hlsl_ir_function_decl *decl; const struct hlsl_ir_call *call; size_t i; if (instr->type != HLSL_IR_CALL) return false; call = hlsl_ir_call(instr); decl = call->decl; for (i = 0; i < call_ctx->count; ++i) { if (call_ctx->backtrace[i] == decl) { hlsl_error(ctx, &call->node.loc, VKD3D_SHADER_ERROR_HLSL_RECURSIVE_CALL, "Recursive call to \"%s\".", decl->func->name); /* Native returns E_NOTIMPL instead of E_FAIL here. */ ctx->result = VKD3D_ERROR_NOT_IMPLEMENTED; return false; } } if (!hlsl_array_reserve(ctx, (void **)&call_ctx->backtrace, &call_ctx->capacity, call_ctx->count + 1, sizeof(*call_ctx->backtrace))) return false; call_ctx->backtrace[call_ctx->count++] = decl; hlsl_transform_ir(ctx, find_recursive_calls, &decl->body, call_ctx); --call_ctx->count; return false; } static void insert_early_return_break(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *func, struct hlsl_ir_node *cf_instr) { struct hlsl_ir_node *iff, *jump; struct hlsl_block then_block; struct hlsl_ir_load *load; hlsl_block_init(&then_block); if (!(load = hlsl_new_var_load(ctx, func->early_return_var, &cf_instr->loc))) return; list_add_after(&cf_instr->entry, &load->node.entry); if (!(jump = hlsl_new_jump(ctx, HLSL_IR_JUMP_BREAK, &cf_instr->loc))) return; hlsl_block_add_instr(&then_block, jump); if (!(iff = hlsl_new_if(ctx, &load->node, &then_block, NULL, &cf_instr->loc))) return; list_add_after(&load->node.entry, &iff->entry); } /* Remove HLSL_IR_JUMP_RETURN calls by altering subsequent control flow. */ static bool lower_return(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *func, struct hlsl_block *block, bool in_loop) { struct hlsl_ir_node *return_instr = NULL, *cf_instr = NULL; struct hlsl_ir_node *instr, *next; bool has_early_return = false; /* SM1 has no function calls. SM4 does, but native d3dcompiler inlines * everything anyway. We are safest following suit. * * The basic idea is to keep track of whether the function has executed an * early return in a synthesized boolean variable (func->early_return_var) * and guard all code after the return on that variable being false. In the * case of loops we also replace the return with a break. * * The following algorithm loops over instructions in a block, recursing * into inferior CF blocks, until it hits one of the following two things: * * - A return statement. In this case, we remove everything after the return * statement in this block. We have to stop and do this in a separate * loop, because instructions must be deleted in reverse order (due to * def-use chains.) * * If we're inside of a loop CF block, we can instead just turn the * return into a break, which offers the right semantics—except that it * won't break out of nested loops. * * - A CF block which contains a return statement. After calling * lower_return() on the CF block body, we stop, pull out everything after * the CF instruction, shove it into an if block, and then lower that if * block. * * (We could return a "did we make progress" boolean like hlsl_transform_ir() * and run this pass multiple times, but we already know the only block * that still needs to be addressed, so there's not much point.) * * If we're inside of a loop CF block, we again do things differently. We * already turned any returns into breaks. If the block we just processed * was conditional, then "break" did our work for us. If it was a loop, * we need to propagate that break to the outer loop. * * We return true if there was an early return anywhere in the block we just * processed (including CF contained inside that block). */ LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry) { if (instr->type == HLSL_IR_CALL) { struct hlsl_ir_call *call = hlsl_ir_call(instr); lower_return(ctx, call->decl, &call->decl->body, false); } else if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); has_early_return |= lower_return(ctx, func, &iff->then_block, in_loop); has_early_return |= lower_return(ctx, func, &iff->else_block, in_loop); if (has_early_return) { /* If we're in a loop, we don't need to do anything here. We * turned the return into a break, and that will already skip * anything that comes after this "if" block. */ if (!in_loop) { cf_instr = instr; break; } } } else if (instr->type == HLSL_IR_LOOP) { has_early_return |= lower_return(ctx, func, &hlsl_ir_loop(instr)->body, true); if (has_early_return) { if (in_loop) { /* "instr" is a nested loop. "return" breaks out of all * loops, so break out of this one too now. */ insert_early_return_break(ctx, func, instr); } else { cf_instr = instr; break; } } } else if (instr->type == HLSL_IR_JUMP) { struct hlsl_ir_jump *jump = hlsl_ir_jump(instr); struct hlsl_ir_node *constant; struct hlsl_ir_store *store; if (jump->type == HLSL_IR_JUMP_RETURN) { if (!(constant = hlsl_new_bool_constant(ctx, true, &jump->node.loc))) return false; list_add_before(&jump->node.entry, &constant->entry); if (!(store = hlsl_new_simple_store(ctx, func->early_return_var, constant))) return false; list_add_after(&constant->entry, &store->node.entry); has_early_return = true; if (in_loop) { jump->type = HLSL_IR_JUMP_BREAK; } else { return_instr = instr; break; } } } } if (return_instr) { /* If we're in a loop, we should have used "break" instead. */ assert(!in_loop); /* Iterate in reverse, to avoid use-after-free when unlinking sources from * the "uses" list. */ LIST_FOR_EACH_ENTRY_SAFE_REV(instr, next, &block->instrs, struct hlsl_ir_node, entry) { list_remove(&instr->entry); hlsl_free_instr(instr); /* Yes, we just freed it, but we're comparing pointers. */ if (instr == return_instr) break; } } else if (cf_instr) { struct list *tail = list_tail(&block->instrs); struct hlsl_ir_node *not, *iff; struct hlsl_block then_block; struct hlsl_ir_load *load; /* If we're in a loop, we should have used "break" instead. */ assert(!in_loop); if (tail == &cf_instr->entry) return has_early_return; hlsl_block_init(&then_block); list_move_slice_tail(&then_block.instrs, list_next(&block->instrs, &cf_instr->entry), tail); lower_return(ctx, func, &then_block, in_loop); if (!(load = hlsl_new_var_load(ctx, func->early_return_var, &cf_instr->loc))) return false; hlsl_block_add_instr(block, &load->node); if (!(not = hlsl_new_unary_expr(ctx, HLSL_OP1_LOGIC_NOT, &load->node, &cf_instr->loc))) return false; hlsl_block_add_instr(block, not); if (!(iff = hlsl_new_if(ctx, not, &then_block, NULL, &cf_instr->loc))) return false; list_add_tail(&block->instrs, &iff->entry); } return has_early_return; } /* Remove HLSL_IR_CALL instructions by inlining them. */ static bool lower_calls(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_ir_function_decl *decl; struct hlsl_ir_call *call; struct hlsl_block block; if (instr->type != HLSL_IR_CALL) return false; call = hlsl_ir_call(instr); decl = call->decl; if (!decl->has_body) hlsl_error(ctx, &call->node.loc, VKD3D_SHADER_ERROR_HLSL_NOT_DEFINED, "Function \"%s\" is not defined.", decl->func->name); if (!hlsl_clone_block(ctx, &block, &decl->body)) return false; list_move_before(&call->node.entry, &block.instrs); list_remove(&call->node.entry); hlsl_free_instr(&call->node); return true; } static struct hlsl_ir_node *add_zero_mipmap_level(struct hlsl_ctx *ctx, struct hlsl_ir_node *index, const struct vkd3d_shader_location *loc) { unsigned int dim_count = index->data_type->dimx; struct hlsl_ir_load *coords_load; struct hlsl_deref coords_deref; struct hlsl_ir_constant *zero; struct hlsl_ir_store *store; struct hlsl_ir_var *coords; assert(dim_count < 4); if (!(coords = hlsl_new_synthetic_var(ctx, "coords", hlsl_get_vector_type(ctx, HLSL_TYPE_UINT, dim_count + 1), loc))) return NULL; hlsl_init_simple_deref_from_var(&coords_deref, coords); if (!(store = hlsl_new_store_index(ctx, &coords_deref, NULL, index, (1u << dim_count) - 1, loc))) return NULL; list_add_after(&index->entry, &store->node.entry); if (!(zero = hlsl_new_uint_constant(ctx, 0, loc))) return NULL; list_add_after(&store->node.entry, &zero->node.entry); if (!(store = hlsl_new_store_index(ctx, &coords_deref, NULL, &zero->node, 1u << dim_count, loc))) return NULL; list_add_after(&zero->node.entry, &store->node.entry); if (!(coords_load = hlsl_new_var_load(ctx, coords, loc))) return NULL; list_add_after(&store->node.entry, &coords_load->node.entry); return &coords_load->node; } /* hlsl_ir_index nodes are a parse-time construct used to represent array indexing and struct * record access before knowing if they will be used in the lhs of an assignment --in which case * they are lowered into a deref-- or as the load of an element within a larger value. * For the latter case, this pass takes care of lowering hlsl_ir_indexes into individual * hlsl_ir_loads, or individual hlsl_ir_resource_loads, in case the indexing is a * resource access. */ static bool lower_index_loads(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_deref var_deref; struct hlsl_ir_index *index; struct hlsl_ir_store *store; struct hlsl_ir_load *load; struct hlsl_ir_node *val; struct hlsl_ir_var *var; if (instr->type != HLSL_IR_INDEX) return false; index = hlsl_ir_index(instr); val = index->val.node; if (hlsl_index_is_resource_access(index)) { unsigned int dim_count = hlsl_sampler_dim_count(val->data_type->sampler_dim); struct hlsl_ir_node *coords = index->idx.node; struct hlsl_resource_load_params params = {0}; struct hlsl_ir_node *load; assert(coords->data_type->class == HLSL_CLASS_VECTOR); assert(coords->data_type->base_type == HLSL_TYPE_UINT); assert(coords->data_type->dimx == dim_count); if (!(coords = add_zero_mipmap_level(ctx, coords, &instr->loc))) return false; params.type = HLSL_RESOURCE_LOAD; params.resource = val; params.coords = coords; params.format = val->data_type->e.resource_format; if (!(load = hlsl_new_resource_load(ctx, ¶ms, &instr->loc))) return false; list_add_before(&instr->entry, &load->entry); hlsl_replace_node(instr, load); return true; } if (!(var = hlsl_new_synthetic_var(ctx, "index-val", val->data_type, &instr->loc))) return false; hlsl_init_simple_deref_from_var(&var_deref, var); if (!(store = hlsl_new_simple_store(ctx, var, val))) return false; list_add_before(&instr->entry, &store->node.entry); if (hlsl_index_is_noncontiguous(index)) { struct hlsl_ir_node *mat = index->val.node; struct hlsl_deref row_deref; unsigned int i; assert(!hlsl_type_is_row_major(mat->data_type)); if (!(var = hlsl_new_synthetic_var(ctx, "row", instr->data_type, &instr->loc))) return false; hlsl_init_simple_deref_from_var(&row_deref, var); for (i = 0; i < mat->data_type->dimx; ++i) { struct hlsl_ir_constant *c; if (!(c = hlsl_new_uint_constant(ctx, i, &instr->loc))) return false; list_add_before(&instr->entry, &c->node.entry); if (!(load = hlsl_new_load_index(ctx, &var_deref, &c->node, &instr->loc))) return false; list_add_before(&instr->entry, &load->node.entry); if (!(load = hlsl_new_load_index(ctx, &load->src, index->idx.node, &instr->loc))) return false; list_add_before(&instr->entry, &load->node.entry); if (!(store = hlsl_new_store_index(ctx, &row_deref, &c->node, &load->node, 0, &instr->loc))) return false; list_add_before(&instr->entry, &store->node.entry); } if (!(load = hlsl_new_var_load(ctx, var, &instr->loc))) return false; list_add_before(&instr->entry, &load->node.entry); hlsl_replace_node(instr, &load->node); } else { if (!(load = hlsl_new_load_index(ctx, &var_deref, index->idx.node, &instr->loc))) return false; list_add_before(&instr->entry, &load->node.entry); hlsl_replace_node(instr, &load->node); } return true; } /* Lower casts from vec1 to vecN to swizzles. */ static bool lower_broadcasts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_type *src_type, *dst_type; struct hlsl_type *dst_scalar_type; struct hlsl_ir_expr *cast; if (instr->type != HLSL_IR_EXPR) return false; cast = hlsl_ir_expr(instr); if (cast->op != HLSL_OP1_CAST) return false; src_type = cast->operands[0].node->data_type; dst_type = cast->node.data_type; if (src_type->class <= HLSL_CLASS_VECTOR && dst_type->class <= HLSL_CLASS_VECTOR && src_type->dimx == 1) { struct hlsl_ir_node *replacement, *new_cast; struct hlsl_ir_swizzle *swizzle; dst_scalar_type = hlsl_get_scalar_type(ctx, dst_type->base_type); /* We need to preserve the cast since it might be doing more than just * turning the scalar into a vector. */ if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_scalar_type, &cast->node.loc))) return false; list_add_after(&cast->node.entry, &new_cast->entry); replacement = new_cast; if (dst_type->dimx != 1) { if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), dst_type->dimx, replacement, &cast->node.loc))) return false; list_add_after(&new_cast->entry, &swizzle->node.entry); replacement = &swizzle->node; } hlsl_replace_node(&cast->node, replacement); return true; } return false; } /* * Copy propagation. The basic idea is to recognize instruction sequences of the * form: * * 2: * 3: v = @2 * 4: load(v) * * and replace the load (@4) with the original instruction (@2). * This works for multiple components, even if they're written using separate * store instructions, as long as the rhs is the same in every case. This basic * detection is implemented by copy_propagation_replace_with_single_instr(). * * In some cases, the load itself might not have a single source, but a * subsequent swizzle might; hence we also try to replace swizzles of loads. * * We use the same infrastructure to implement a more specialized * transformation. We recognize sequences of the form: * * 2: 123 * 3: var.x = @2 * 4: 345 * 5: var.y = @4 * 6: load(var.xy) * * where the load (@6) originates from different sources but that are constant, * and transform it into a single constant vector. This latter pass is done * by copy_propagation_replace_with_constant_vector(). * * This is a specialized form of vectorization, and begs the question: why does * the load need to be involved? Can we just vectorize the stores into a single * instruction, and then use "normal" copy-prop to convert that into a single * vector? * * In general, the answer is yes, but there is a special case which necessitates * the use of this transformation: non-uniform control flow. Copy-prop can act * across some control flow, and in cases like the following: * * 2: 123 * 3: var.x = @2 * 4: if (...) * 5: 456 * 6: var.y = @5 * 7: load(var.xy) * * we can copy-prop the load (@7) into a constant vector {123, 456}, but we * cannot easily vectorize the stores @3 and @6. */ enum copy_propagation_value_state { VALUE_STATE_NOT_WRITTEN = 0, VALUE_STATE_STATICALLY_WRITTEN, VALUE_STATE_DYNAMICALLY_WRITTEN, }; struct copy_propagation_value { enum copy_propagation_value_state state; struct hlsl_ir_node *node; unsigned int component; }; struct copy_propagation_var_def { struct rb_entry entry; struct hlsl_ir_var *var; struct copy_propagation_value values[]; }; struct copy_propagation_state { struct rb_tree var_defs; struct copy_propagation_state *parent; }; static int copy_propagation_var_def_compare(const void *key, const struct rb_entry *entry) { struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry); uintptr_t key_int = (uintptr_t)key, entry_int = (uintptr_t)var_def->var; return (key_int > entry_int) - (key_int < entry_int); } static void copy_propagation_var_def_destroy(struct rb_entry *entry, void *context) { struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry); vkd3d_free(var_def); } static struct copy_propagation_value *copy_propagation_get_value(const struct copy_propagation_state *state, const struct hlsl_ir_var *var, unsigned int component) { for (; state; state = state->parent) { struct rb_entry *entry = rb_get(&state->var_defs, var); if (entry) { struct copy_propagation_var_def *var_def = RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry); unsigned int component_count = hlsl_type_component_count(var->data_type); enum copy_propagation_value_state state; assert(component < component_count); state = var_def->values[component].state; switch (state) { case VALUE_STATE_STATICALLY_WRITTEN: return &var_def->values[component]; case VALUE_STATE_DYNAMICALLY_WRITTEN: return NULL; case VALUE_STATE_NOT_WRITTEN: break; } } } return NULL; } static struct copy_propagation_var_def *copy_propagation_create_var_def(struct hlsl_ctx *ctx, struct copy_propagation_state *state, struct hlsl_ir_var *var) { struct rb_entry *entry = rb_get(&state->var_defs, var); struct copy_propagation_var_def *var_def; unsigned int component_count = hlsl_type_component_count(var->data_type); int res; if (entry) return RB_ENTRY_VALUE(entry, struct copy_propagation_var_def, entry); if (!(var_def = hlsl_alloc(ctx, offsetof(struct copy_propagation_var_def, values[component_count])))) return NULL; var_def->var = var; res = rb_put(&state->var_defs, var, &var_def->entry); assert(!res); return var_def; } static void copy_propagation_invalidate_variable(struct copy_propagation_var_def *var_def, unsigned int comp, unsigned char writemask) { unsigned i; TRACE("Invalidate variable %s[%u]%s.\n", var_def->var->name, comp, debug_hlsl_writemask(writemask)); for (i = 0; i < 4; ++i) { if (writemask & (1u << i)) var_def->values[comp + i].state = VALUE_STATE_DYNAMICALLY_WRITTEN; } } static void copy_propagation_invalidate_variable_from_deref_recurse(struct hlsl_ctx *ctx, struct copy_propagation_var_def *var_def, const struct hlsl_deref *deref, struct hlsl_type *type, unsigned int depth, unsigned int comp_start, unsigned char writemask) { unsigned int i, subtype_comp_count; struct hlsl_ir_node *path_node; struct hlsl_type *subtype; if (depth == deref->path_len) { copy_propagation_invalidate_variable(var_def, comp_start, writemask); return; } path_node = deref->path[depth].node; subtype = hlsl_get_element_type_from_path_index(ctx, type, path_node); if (type->class == HLSL_CLASS_STRUCT) { unsigned int idx = hlsl_ir_constant(path_node)->value.u[0].u; for (i = 0; i < idx; ++i) comp_start += hlsl_type_component_count(type->e.record.fields[i].type); copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype, depth + 1, comp_start, writemask); } else { subtype_comp_count = hlsl_type_component_count(subtype); if (path_node->type == HLSL_IR_CONSTANT) { copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype, depth + 1, hlsl_ir_constant(path_node)->value.u[0].u * subtype_comp_count, writemask); } else { for (i = 0; i < hlsl_type_element_count(type); ++i) { copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, subtype, depth + 1, i * subtype_comp_count, writemask); } } } } static void copy_propagation_invalidate_variable_from_deref(struct hlsl_ctx *ctx, struct copy_propagation_var_def *var_def, const struct hlsl_deref *deref, unsigned char writemask) { copy_propagation_invalidate_variable_from_deref_recurse(ctx, var_def, deref, deref->var->data_type, 0, 0, writemask); } static void copy_propagation_set_value(struct copy_propagation_var_def *var_def, unsigned int comp, unsigned char writemask, struct hlsl_ir_node *instr) { unsigned int i, j = 0; for (i = 0; i < 4; ++i) { if (writemask & (1u << i)) { TRACE("Variable %s[%u] is written by instruction %p%s.\n", var_def->var->name, comp + i, instr, debug_hlsl_writemask(1u << i)); var_def->values[comp + i].state = VALUE_STATE_STATICALLY_WRITTEN; var_def->values[comp + i].node = instr; var_def->values[comp + i].component = j++; } } } static bool copy_propagation_replace_with_single_instr(struct hlsl_ctx *ctx, const struct copy_propagation_state *state, const struct hlsl_deref *deref, unsigned int swizzle, struct hlsl_ir_node *instr) { const unsigned int instr_component_count = hlsl_type_component_count(instr->data_type); const struct hlsl_ir_var *var = deref->var; struct hlsl_ir_node *new_instr = NULL; unsigned int start, count, i; unsigned int ret_swizzle = 0; if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count)) return false; for (i = 0; i < instr_component_count; ++i) { struct copy_propagation_value *value; if (!(value = copy_propagation_get_value(state, var, start + hlsl_swizzle_get_component(swizzle, i)))) return false; if (!new_instr) { new_instr = value->node; } else if (new_instr != value->node) { TRACE("No single source for propagating load from %s[%u-%u]%s\n", var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count)); return false; } ret_swizzle |= value->component << HLSL_SWIZZLE_SHIFT(i); } TRACE("Load from %s[%u-%u]%s propagated as instruction %p%s.\n", var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count), new_instr, debug_hlsl_swizzle(ret_swizzle, instr_component_count)); if (instr->data_type->class != HLSL_CLASS_OBJECT) { struct hlsl_ir_swizzle *swizzle_node; if (!(swizzle_node = hlsl_new_swizzle(ctx, ret_swizzle, instr_component_count, new_instr, &instr->loc))) return false; list_add_before(&instr->entry, &swizzle_node->node.entry); new_instr = &swizzle_node->node; } hlsl_replace_node(instr, new_instr); return true; } static bool copy_propagation_replace_with_constant_vector(struct hlsl_ctx *ctx, const struct copy_propagation_state *state, const struct hlsl_deref *deref, unsigned int swizzle, struct hlsl_ir_node *instr) { const unsigned int instr_component_count = hlsl_type_component_count(instr->data_type); const struct hlsl_ir_var *var = deref->var; struct hlsl_constant_value values = {0}; struct hlsl_ir_constant *cons; unsigned int start, count, i; if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count)) return false; for (i = 0; i < instr_component_count; ++i) { struct copy_propagation_value *value; if (!(value = copy_propagation_get_value(state, var, start + hlsl_swizzle_get_component(swizzle, i))) || value->node->type != HLSL_IR_CONSTANT) return false; values.u[i] = hlsl_ir_constant(value->node)->value.u[value->component]; } if (!(cons = hlsl_new_constant(ctx, instr->data_type, &instr->loc))) return false; cons->value = values; list_add_before(&instr->entry, &cons->node.entry); TRACE("Load from %s[%u-%u]%s turned into a constant %p.\n", var->name, start, start + count, debug_hlsl_swizzle(swizzle, instr_component_count), cons); hlsl_replace_node(instr, &cons->node); return true; } static bool copy_propagation_transform_load(struct hlsl_ctx *ctx, struct hlsl_ir_load *load, struct copy_propagation_state *state) { struct hlsl_type *type = load->node.data_type; switch (type->class) { case HLSL_CLASS_SCALAR: case HLSL_CLASS_VECTOR: case HLSL_CLASS_OBJECT: break; case HLSL_CLASS_MATRIX: case HLSL_CLASS_ARRAY: case HLSL_CLASS_STRUCT: /* FIXME: Actually we shouldn't even get here, but we don't split * matrices yet. */ return false; } if (copy_propagation_replace_with_constant_vector(ctx, state, &load->src, HLSL_SWIZZLE(X, Y, Z, W), &load->node)) return true; if (copy_propagation_replace_with_single_instr(ctx, state, &load->src, HLSL_SWIZZLE(X, Y, Z, W), &load->node)) return true; return false; } static bool copy_propagation_transform_swizzle(struct hlsl_ctx *ctx, struct hlsl_ir_swizzle *swizzle, struct copy_propagation_state *state) { struct hlsl_ir_load *load; if (swizzle->val.node->type != HLSL_IR_LOAD) return false; load = hlsl_ir_load(swizzle->val.node); if (copy_propagation_replace_with_constant_vector(ctx, state, &load->src, swizzle->swizzle, &swizzle->node)) return true; if (copy_propagation_replace_with_single_instr(ctx, state, &load->src, swizzle->swizzle, &swizzle->node)) return true; return false; } static bool copy_propagation_transform_object_load(struct hlsl_ctx *ctx, struct hlsl_deref *deref, struct copy_propagation_state *state) { struct copy_propagation_value *value; struct hlsl_ir_load *load; unsigned int start, count; if (!hlsl_component_index_range_from_deref(ctx, deref, &start, &count)) return false; assert(count == 1); if (!(value = copy_propagation_get_value(state, deref->var, start))) return false; assert(value->component == 0); /* Only HLSL_IR_LOAD can produce an object. */ load = hlsl_ir_load(value->node); /* As we are replacing the instruction's deref (with the one in the hlsl_ir_load) and not the * instruction itself, we won't be able to rely on the value retrieved by * copy_propagation_get_value() for the new deref in subsequent iterations of copy propagation. * This is because another value may be written to that deref between the hlsl_ir_load and * this instruction. * * For this reason, we only replace the new deref when it corresponds to a uniform variable, * which cannot be written to. * * In a valid shader, all object references must resolve statically to a single uniform object. * If this is the case, we can expect copy propagation on regular store/loads and the other * compilation passes to replace all hlsl_ir_loads with loads to uniform objects, so this * implementation is complete, even with this restriction. */ if (!load->src.var->is_uniform) { TRACE("Ignoring load from non-uniform object variable %s\n", load->src.var->name); return false; } hlsl_cleanup_deref(deref); hlsl_copy_deref(ctx, deref, &load->src); return true; } static bool copy_propagation_transform_resource_load(struct hlsl_ctx *ctx, struct hlsl_ir_resource_load *load, struct copy_propagation_state *state) { bool progress = false; progress |= copy_propagation_transform_object_load(ctx, &load->resource, state); if (load->sampler.var) progress |= copy_propagation_transform_object_load(ctx, &load->sampler, state); return progress; } static bool copy_propagation_transform_resource_store(struct hlsl_ctx *ctx, struct hlsl_ir_resource_store *store, struct copy_propagation_state *state) { bool progress = false; progress |= copy_propagation_transform_object_load(ctx, &store->resource, state); return progress; } static void copy_propagation_record_store(struct hlsl_ctx *ctx, struct hlsl_ir_store *store, struct copy_propagation_state *state) { struct copy_propagation_var_def *var_def; struct hlsl_deref *lhs = &store->lhs; struct hlsl_ir_var *var = lhs->var; unsigned int start, count; if (!(var_def = copy_propagation_create_var_def(ctx, state, var))) return; if (hlsl_component_index_range_from_deref(ctx, lhs, &start, &count)) { unsigned int writemask = store->writemask; if (store->rhs.node->data_type->class == HLSL_CLASS_OBJECT) writemask = VKD3DSP_WRITEMASK_0; copy_propagation_set_value(var_def, start, writemask, store->rhs.node); } else { copy_propagation_invalidate_variable_from_deref(ctx, var_def, lhs, store->writemask); } } static void copy_propagation_state_init(struct hlsl_ctx *ctx, struct copy_propagation_state *state, struct copy_propagation_state *parent) { rb_init(&state->var_defs, copy_propagation_var_def_compare); state->parent = parent; } static void copy_propagation_state_destroy(struct copy_propagation_state *state) { rb_destroy(&state->var_defs, copy_propagation_var_def_destroy, NULL); } static void copy_propagation_invalidate_from_block(struct hlsl_ctx *ctx, struct copy_propagation_state *state, struct hlsl_block *block) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); struct copy_propagation_var_def *var_def; struct hlsl_deref *lhs = &store->lhs; struct hlsl_ir_var *var = lhs->var; if (!(var_def = copy_propagation_create_var_def(ctx, state, var))) continue; copy_propagation_invalidate_variable_from_deref(ctx, var_def, lhs, store->writemask); break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); copy_propagation_invalidate_from_block(ctx, state, &iff->then_block); copy_propagation_invalidate_from_block(ctx, state, &iff->else_block); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); copy_propagation_invalidate_from_block(ctx, state, &loop->body); break; } default: break; } } } static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block, struct copy_propagation_state *state); static bool copy_propagation_process_if(struct hlsl_ctx *ctx, struct hlsl_ir_if *iff, struct copy_propagation_state *state) { struct copy_propagation_state inner_state; bool progress = false; copy_propagation_state_init(ctx, &inner_state, state); progress |= copy_propagation_transform_block(ctx, &iff->then_block, &inner_state); copy_propagation_state_destroy(&inner_state); copy_propagation_state_init(ctx, &inner_state, state); progress |= copy_propagation_transform_block(ctx, &iff->else_block, &inner_state); copy_propagation_state_destroy(&inner_state); /* Ideally we'd invalidate the outer state looking at what was * touched in the two inner states, but this doesn't work for * loops (because we need to know what is invalidated in advance), * so we need copy_propagation_invalidate_from_block() anyway. */ copy_propagation_invalidate_from_block(ctx, state, &iff->then_block); copy_propagation_invalidate_from_block(ctx, state, &iff->else_block); return progress; } static bool copy_propagation_process_loop(struct hlsl_ctx *ctx, struct hlsl_ir_loop *loop, struct copy_propagation_state *state) { struct copy_propagation_state inner_state; bool progress = false; copy_propagation_invalidate_from_block(ctx, state, &loop->body); copy_propagation_state_init(ctx, &inner_state, state); progress |= copy_propagation_transform_block(ctx, &loop->body, &inner_state); copy_propagation_state_destroy(&inner_state); return progress; } static bool copy_propagation_transform_block(struct hlsl_ctx *ctx, struct hlsl_block *block, struct copy_propagation_state *state) { struct hlsl_ir_node *instr, *next; bool progress = false; LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_LOAD: progress |= copy_propagation_transform_load(ctx, hlsl_ir_load(instr), state); break; case HLSL_IR_RESOURCE_LOAD: progress |= copy_propagation_transform_resource_load(ctx, hlsl_ir_resource_load(instr), state); break; case HLSL_IR_RESOURCE_STORE: progress |= copy_propagation_transform_resource_store(ctx, hlsl_ir_resource_store(instr), state); break; case HLSL_IR_STORE: copy_propagation_record_store(ctx, hlsl_ir_store(instr), state); break; case HLSL_IR_SWIZZLE: progress |= copy_propagation_transform_swizzle(ctx, hlsl_ir_swizzle(instr), state); break; case HLSL_IR_IF: progress |= copy_propagation_process_if(ctx, hlsl_ir_if(instr), state); break; case HLSL_IR_LOOP: progress |= copy_propagation_process_loop(ctx, hlsl_ir_loop(instr), state); break; default: break; } } return progress; } static bool copy_propagation_execute(struct hlsl_ctx *ctx, struct hlsl_block *block) { struct copy_propagation_state state; bool progress; copy_propagation_state_init(ctx, &state, NULL); progress = copy_propagation_transform_block(ctx, block, &state); copy_propagation_state_destroy(&state); return progress; } static void note_non_static_deref_expressions(struct hlsl_ctx *ctx, const struct hlsl_deref *deref, const char *usage) { unsigned int i; for (i = 0; i < deref->path_len; ++i) { struct hlsl_ir_node *path_node = deref->path[i].node; assert(path_node); if (path_node->type != HLSL_IR_CONSTANT) hlsl_note(ctx, &path_node->loc, VKD3D_SHADER_LOG_ERROR, "Expression for %s within \"%s\" cannot be resolved statically.", usage, deref->var->name); } } static bool validate_static_object_references(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { unsigned int start, count; if (instr->type == HLSL_IR_RESOURCE_LOAD) { struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr); if (!(load->resource.var->storage_modifiers & HLSL_STORAGE_UNIFORM)) { hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF, "Loaded resource must have a single uniform source."); } else if (!hlsl_component_index_range_from_deref(ctx, &load->resource, &start, &count)) { hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF, "Loaded resource from \"%s\" must be determinable at compile time.", load->resource.var->name); note_non_static_deref_expressions(ctx, &load->resource, "loaded resource"); } if (load->sampler.var) { if (!(load->sampler.var->storage_modifiers & HLSL_STORAGE_UNIFORM)) { hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF, "Resource load sampler must have a single uniform source."); } else if (!hlsl_component_index_range_from_deref(ctx, &load->sampler, &start, &count)) { hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF, "Resource load sampler from \"%s\" must be determinable at compile time.", load->sampler.var->name); note_non_static_deref_expressions(ctx, &load->sampler, "resource load sampler"); } } } else if (instr->type == HLSL_IR_RESOURCE_STORE) { struct hlsl_ir_resource_store *store = hlsl_ir_resource_store(instr); if (!(store->resource.var->storage_modifiers & HLSL_STORAGE_UNIFORM)) { hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF, "Accessed resource must have a single uniform source."); } else if (!hlsl_component_index_range_from_deref(ctx, &store->resource, &start, &count)) { hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_NON_STATIC_OBJECT_REF, "Accessed resource from \"%s\" must be determinable at compile time.", store->resource.var->name); note_non_static_deref_expressions(ctx, &store->resource, "accessed resource"); } } return false; } static bool is_vec1(const struct hlsl_type *type) { return (type->class == HLSL_CLASS_SCALAR) || (type->class == HLSL_CLASS_VECTOR && type->dimx == 1); } static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { if (instr->type == HLSL_IR_EXPR) { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); const struct hlsl_type *dst_type = expr->node.data_type; const struct hlsl_type *src_type; if (expr->op != HLSL_OP1_CAST) return false; src_type = expr->operands[0].node->data_type; if (hlsl_types_are_equal(src_type, dst_type) || (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type))) { hlsl_replace_node(&expr->node, expr->operands[0].node); return true; } } return false; } /* Copy an element of a complex variable. Helper for * split_array_copies(), split_struct_copies() and * split_matrix_copies(). Inserts new instructions right before * "store". */ static bool split_copy(struct hlsl_ctx *ctx, struct hlsl_ir_store *store, const struct hlsl_ir_load *load, const unsigned int idx, struct hlsl_type *type) { struct hlsl_ir_store *split_store; struct hlsl_ir_load *split_load; struct hlsl_ir_constant *c; if (!(c = hlsl_new_uint_constant(ctx, idx, &store->node.loc))) return false; list_add_before(&store->node.entry, &c->node.entry); if (!(split_load = hlsl_new_load_index(ctx, &load->src, &c->node, &store->node.loc))) return false; list_add_before(&store->node.entry, &split_load->node.entry); if (!(split_store = hlsl_new_store_index(ctx, &store->lhs, &c->node, &split_load->node, 0, &store->node.loc))) return false; list_add_before(&store->node.entry, &split_store->node.entry); return true; } static bool split_array_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_ir_node *rhs; struct hlsl_type *element_type; const struct hlsl_type *type; struct hlsl_ir_store *store; unsigned int i; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->class != HLSL_CLASS_ARRAY) return false; element_type = type->e.array.type; if (rhs->type != HLSL_IR_LOAD) { hlsl_fixme(ctx, &instr->loc, "Array store rhs is not HLSL_IR_LOAD. Broadcast may be missing."); return false; } for (i = 0; i < type->e.array.elements_count; ++i) { if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, element_type)) return false; } /* Remove the store instruction, so that we can split structs which contain * other structs. Although assignments produce a value, we don't allow * HLSL_IR_STORE to be used as a source. */ list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_ir_node *rhs; const struct hlsl_type *type; struct hlsl_ir_store *store; size_t i; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->class != HLSL_CLASS_STRUCT) return false; if (rhs->type != HLSL_IR_LOAD) { hlsl_fixme(ctx, &instr->loc, "Struct store rhs is not HLSL_IR_LOAD. Broadcast may be missing."); return false; } for (i = 0; i < type->e.record.field_count; ++i) { const struct hlsl_struct_field *field = &type->e.record.fields[i]; if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, field->type)) return false; } /* Remove the store instruction, so that we can split structs which contain * other structs. Although assignments produce a value, we don't allow * HLSL_IR_STORE to be used as a source. */ list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool split_matrix_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_ir_node *rhs; struct hlsl_type *element_type; const struct hlsl_type *type; unsigned int i; struct hlsl_ir_store *store; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->class != HLSL_CLASS_MATRIX) return false; element_type = hlsl_get_vector_type(ctx, type->base_type, hlsl_type_minor_size(type)); if (rhs->type != HLSL_IR_LOAD) { hlsl_fixme(ctx, &instr->loc, "Copying from unsupported node type.\n"); return false; } for (i = 0; i < hlsl_type_major_size(type); ++i) { if (!split_copy(ctx, store, hlsl_ir_load(rhs), i, element_type)) return false; } list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool lower_narrowing_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_type *src_type, *dst_type; struct hlsl_type *dst_vector_type; struct hlsl_ir_expr *cast; if (instr->type != HLSL_IR_EXPR) return false; cast = hlsl_ir_expr(instr); if (cast->op != HLSL_OP1_CAST) return false; src_type = cast->operands[0].node->data_type; dst_type = cast->node.data_type; if (src_type->class <= HLSL_CLASS_VECTOR && dst_type->class <= HLSL_CLASS_VECTOR && dst_type->dimx < src_type->dimx) { struct hlsl_ir_swizzle *swizzle; struct hlsl_ir_node *new_cast; dst_vector_type = hlsl_get_vector_type(ctx, dst_type->base_type, src_type->dimx); /* We need to preserve the cast since it might be doing more than just * narrowing the vector. */ if (!(new_cast = hlsl_new_cast(ctx, cast->operands[0].node, dst_vector_type, &cast->node.loc))) return false; list_add_after(&cast->node.entry, &new_cast->entry); if (!(swizzle = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, Y, Z, W), dst_type->dimx, new_cast, &cast->node.loc))) return false; list_add_after(&new_cast->entry, &swizzle->node.entry); hlsl_replace_node(&cast->node, &swizzle->node); return true; } return false; } static bool fold_swizzle_chains(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_swizzle *swizzle; struct hlsl_ir_node *next_instr; if (instr->type != HLSL_IR_SWIZZLE) return false; swizzle = hlsl_ir_swizzle(instr); next_instr = swizzle->val.node; if (next_instr->type == HLSL_IR_SWIZZLE) { struct hlsl_ir_swizzle *new_swizzle; struct hlsl_ir_node *new_instr; unsigned int combined_swizzle; combined_swizzle = hlsl_combine_swizzles(hlsl_ir_swizzle(next_instr)->swizzle, swizzle->swizzle, instr->data_type->dimx); next_instr = hlsl_ir_swizzle(next_instr)->val.node; if (!(new_swizzle = hlsl_new_swizzle(ctx, combined_swizzle, instr->data_type->dimx, next_instr, &instr->loc))) return false; new_instr = &new_swizzle->node; list_add_before(&instr->entry, &new_instr->entry); hlsl_replace_node(instr, new_instr); return true; } return false; } static bool remove_trivial_swizzles(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_swizzle *swizzle; unsigned int i; if (instr->type != HLSL_IR_SWIZZLE) return false; swizzle = hlsl_ir_swizzle(instr); if (instr->data_type->dimx != swizzle->val.node->data_type->dimx) return false; for (i = 0; i < instr->data_type->dimx; ++i) if (hlsl_swizzle_get_component(swizzle->swizzle, i) != i) return false; hlsl_replace_node(instr, swizzle->val.node); return true; } /* Lower DIV to RCP + MUL. */ static bool lower_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_expr *expr; struct hlsl_ir_node *rcp; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); if (expr->op != HLSL_OP2_DIV) return false; if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_OP1_RCP, expr->operands[1].node, &instr->loc))) return false; list_add_before(&expr->node.entry, &rcp->entry); expr->op = HLSL_OP2_MUL; hlsl_src_remove(&expr->operands[1]); hlsl_src_from_node(&expr->operands[1], rcp); return true; } /* Lower SQRT to RSQ + RCP. */ static bool lower_sqrt(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_expr *expr; struct hlsl_ir_node *rsq; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); if (expr->op != HLSL_OP1_SQRT) return false; if (!(rsq = hlsl_new_unary_expr(ctx, HLSL_OP1_RSQ, expr->operands[0].node, &instr->loc))) return false; list_add_before(&expr->node.entry, &rsq->entry); expr->op = HLSL_OP1_RCP; hlsl_src_remove(&expr->operands[0]); hlsl_src_from_node(&expr->operands[0], rsq); return true; } /* Lower DP2 to MUL + ADD */ static bool lower_dot(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_node *arg1, *arg2, *mul, *replacement, *zero; struct hlsl_ir_swizzle *add_x, *add_y; struct hlsl_ir_expr *expr; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); arg1 = expr->operands[0].node; arg2 = expr->operands[1].node; if (expr->op != HLSL_OP2_DOT) return false; if (arg1->data_type->dimx != 2) return false; if (ctx->profile->type == VKD3D_SHADER_TYPE_PIXEL) { struct hlsl_ir_node *operands[HLSL_MAX_OPERANDS] = { 0 }; if (!(zero = hlsl_new_float_constant(ctx, 0.0f, &expr->node.loc))) return false; list_add_before(&instr->entry, &zero->entry); operands[0] = arg1; operands[1] = arg2; operands[2] = zero; if (!(replacement = hlsl_new_expr(ctx, HLSL_OP3_DP2ADD, operands, instr->data_type, &expr->node.loc))) return false; } else { if (!(mul = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, expr->operands[0].node, expr->operands[1].node))) return false; list_add_before(&instr->entry, &mul->entry); if (!(add_x = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(X, X, X, X), instr->data_type->dimx, mul, &expr->node.loc))) return false; list_add_before(&instr->entry, &add_x->node.entry); if (!(add_y = hlsl_new_swizzle(ctx, HLSL_SWIZZLE(Y, Y, Y, Y), instr->data_type->dimx, mul, &expr->node.loc))) return false; list_add_before(&instr->entry, &add_y->node.entry); if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, &add_x->node, &add_y->node))) return false; } list_add_before(&instr->entry, &replacement->entry); hlsl_replace_node(instr, replacement); return true; } /* Lower ABS to MAX */ static bool lower_abs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_node *arg, *neg, *replacement; struct hlsl_ir_expr *expr; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); arg = expr->operands[0].node; if (expr->op != HLSL_OP1_ABS) return false; if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc))) return false; list_add_before(&instr->entry, &neg->entry); if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_MAX, neg, arg))) return false; list_add_before(&instr->entry, &replacement->entry); hlsl_replace_node(instr, replacement); return true; } /* Lower ROUND using FRC, ROUND(x) -> ((x + 0.5) - FRC(x + 0.5)). */ static bool lower_round(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_node *arg, *neg, *sum, *frc, *replacement; struct hlsl_type *type = instr->data_type; unsigned int i, component_count; struct hlsl_ir_constant *half; struct hlsl_ir_expr *expr; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); arg = expr->operands[0].node; if (expr->op != HLSL_OP1_ROUND) return false; if (!(half = hlsl_new_constant(ctx, type, &expr->node.loc))) return false; component_count = hlsl_type_component_count(type); for (i = 0; i < component_count; ++i) half->value.u[i].f = 0.5f; list_add_before(&instr->entry, &half->node.entry); if (!(sum = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, arg, &half->node))) return false; list_add_before(&instr->entry, &sum->entry); if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, sum, &instr->loc))) return false; list_add_before(&instr->entry, &frc->entry); if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, frc, &instr->loc))) return false; list_add_before(&instr->entry, &neg->entry); if (!(replacement = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, sum, neg))) return false; list_add_before(&instr->entry, &replacement->entry); hlsl_replace_node(instr, replacement); return true; } static bool lower_casts_to_bool(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_type *type = instr->data_type, *arg_type; struct hlsl_ir_constant *zero; struct hlsl_ir_expr *expr; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); if (expr->op != HLSL_OP1_CAST) return false; arg_type = expr->operands[0].node->data_type; if (type->class > HLSL_CLASS_VECTOR || arg_type->class > HLSL_CLASS_VECTOR) return false; if (type->base_type != HLSL_TYPE_BOOL) return false; /* Narrowing casts should have already been lowered. */ assert(type->dimx == arg_type->dimx); zero = hlsl_new_constant(ctx, arg_type, &instr->loc); if (!zero) return false; list_add_before(&instr->entry, &zero->node.entry); expr->op = HLSL_OP2_NEQUAL; hlsl_src_from_node(&expr->operands[1], &zero->node); return true; } struct hlsl_ir_load *hlsl_add_conditional(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_node *condition, struct hlsl_ir_node *if_true, struct hlsl_ir_node *if_false) { struct hlsl_block then_block, else_block; struct hlsl_ir_store *store; struct hlsl_ir_load *load; struct hlsl_ir_node *iff; struct hlsl_ir_var *var; assert(hlsl_types_are_equal(if_true->data_type, if_false->data_type)); if (!(var = hlsl_new_synthetic_var(ctx, "conditional", if_true->data_type, &condition->loc))) return NULL; hlsl_block_init(&then_block); hlsl_block_init(&else_block); if (!(store = hlsl_new_simple_store(ctx, var, if_true))) return NULL; hlsl_block_add_instr(&then_block, &store->node); if (!(store = hlsl_new_simple_store(ctx, var, if_false))) return NULL; hlsl_block_add_instr(&else_block, &store->node); if (!(iff = hlsl_new_if(ctx, condition, &then_block, &else_block, &condition->loc))) return NULL; list_add_tail(instrs, &iff->entry); if (!(load = hlsl_new_var_load(ctx, var, &condition->loc))) return NULL; list_add_tail(instrs, &load->node.entry); return load; } static bool lower_int_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_node *arg1, *arg2, *xor, *and, *abs1, *abs2, *div, *neg, *cast1, *cast2, *cast3; struct hlsl_type *type = instr->data_type, *utype; struct hlsl_ir_constant *high_bit; struct hlsl_ir_expr *expr; struct hlsl_ir_load *cond; unsigned int i; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); arg1 = expr->operands[0].node; arg2 = expr->operands[1].node; if (expr->op != HLSL_OP2_DIV) return false; if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR) return false; if (type->base_type != HLSL_TYPE_INT) return false; utype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_UINT, type->dimx, type->dimy); if (!(xor = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_XOR, arg1, arg2))) return false; list_add_before(&instr->entry, &xor->entry); if (!(high_bit = hlsl_new_constant(ctx, type, &instr->loc))) return false; for (i = 0; i < type->dimx; ++i) high_bit->value.u[i].u = 0x80000000; list_add_before(&instr->entry, &high_bit->node.entry); if (!(and = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_AND, xor, &high_bit->node))) return false; list_add_before(&instr->entry, &and->entry); if (!(abs1 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg1, &instr->loc))) return false; list_add_before(&instr->entry, &abs1->entry); if (!(cast1 = hlsl_new_cast(ctx, abs1, utype, &instr->loc))) return false; list_add_before(&instr->entry, &cast1->entry); if (!(abs2 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg2, &instr->loc))) return false; list_add_before(&instr->entry, &abs2->entry); if (!(cast2 = hlsl_new_cast(ctx, abs2, utype, &instr->loc))) return false; list_add_before(&instr->entry, &cast2->entry); if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_DIV, cast1, cast2))) return false; list_add_before(&instr->entry, &div->entry); if (!(cast3 = hlsl_new_cast(ctx, div, type, &instr->loc))) return false; list_add_before(&instr->entry, &cast3->entry); if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, cast3, &instr->loc))) return false; list_add_before(&instr->entry, &neg->entry); if (!(cond = hlsl_add_conditional(ctx, &instr->entry, and, neg, cast3))) return false; hlsl_replace_node(instr, &cond->node); return true; } static bool lower_int_modulus(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_node *arg1, *arg2, *and, *abs1, *abs2, *div, *neg, *cast1, *cast2, *cast3; struct hlsl_type *type = instr->data_type, *utype; struct hlsl_ir_constant *high_bit; struct hlsl_ir_expr *expr; struct hlsl_ir_load *cond; unsigned int i; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); arg1 = expr->operands[0].node; arg2 = expr->operands[1].node; if (expr->op != HLSL_OP2_MOD) return false; if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR) return false; if (type->base_type != HLSL_TYPE_INT) return false; utype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_UINT, type->dimx, type->dimy); if (!(high_bit = hlsl_new_constant(ctx, type, &instr->loc))) return false; for (i = 0; i < type->dimx; ++i) high_bit->value.u[i].u = 0x80000000; list_add_before(&instr->entry, &high_bit->node.entry); if (!(and = hlsl_new_binary_expr(ctx, HLSL_OP2_BIT_AND, arg1, &high_bit->node))) return false; list_add_before(&instr->entry, &and->entry); if (!(abs1 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg1, &instr->loc))) return false; list_add_before(&instr->entry, &abs1->entry); if (!(cast1 = hlsl_new_cast(ctx, abs1, utype, &instr->loc))) return false; list_add_before(&instr->entry, &cast1->entry); if (!(abs2 = hlsl_new_unary_expr(ctx, HLSL_OP1_ABS, arg2, &instr->loc))) return false; list_add_before(&instr->entry, &abs2->entry); if (!(cast2 = hlsl_new_cast(ctx, abs2, utype, &instr->loc))) return false; list_add_before(&instr->entry, &cast2->entry); if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_MOD, cast1, cast2))) return false; list_add_before(&instr->entry, &div->entry); if (!(cast3 = hlsl_new_cast(ctx, div, type, &instr->loc))) return false; list_add_before(&instr->entry, &cast3->entry); if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, cast3, &instr->loc))) return false; list_add_before(&instr->entry, &neg->entry); if (!(cond = hlsl_add_conditional(ctx, &instr->entry, and, neg, cast3))) return false; hlsl_replace_node(instr, &cond->node); return true; } static bool lower_int_abs(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_type *type = instr->data_type; struct hlsl_ir_node *arg, *neg; struct hlsl_ir_expr *expr; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); if (expr->op != HLSL_OP1_ABS) return false; if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR) return false; if (type->base_type != HLSL_TYPE_INT) return false; arg = expr->operands[0].node; if (!(neg = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg, &instr->loc))) return false; list_add_before(&instr->entry, &neg->entry); expr->op = HLSL_OP2_MAX; hlsl_src_from_node(&expr->operands[1], neg); return true; } static bool lower_float_modulus(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_node *arg1, *arg2, *mul1, *neg1, *ge, *neg2, *div, *mul2, *frc; struct hlsl_type *type = instr->data_type, *btype; struct hlsl_ir_constant *one; struct hlsl_ir_load *cond; struct hlsl_ir_expr *expr; unsigned int i; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); arg1 = expr->operands[0].node; arg2 = expr->operands[1].node; if (expr->op != HLSL_OP2_MOD) return false; if (type->class != HLSL_CLASS_SCALAR && type->class != HLSL_CLASS_VECTOR) return false; if (type->base_type != HLSL_TYPE_FLOAT) return false; btype = hlsl_get_numeric_type(ctx, type->class, HLSL_TYPE_BOOL, type->dimx, type->dimy); if (!(mul1 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, arg2, arg1))) return false; list_add_before(&instr->entry, &mul1->entry); if (!(neg1 = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, mul1, &instr->loc))) return false; list_add_before(&instr->entry, &neg1->entry); if (!(ge = hlsl_new_binary_expr(ctx, HLSL_OP2_GEQUAL, mul1, neg1))) return false; ge->data_type = btype; list_add_before(&instr->entry, &ge->entry); if (!(neg2 = hlsl_new_unary_expr(ctx, HLSL_OP1_NEG, arg2, &instr->loc))) return false; list_add_before(&instr->entry, &neg2->entry); if (!(cond = hlsl_add_conditional(ctx, &instr->entry, ge, arg2, neg2))) return false; if (!(one = hlsl_new_constant(ctx, type, &instr->loc))) return false; for (i = 0; i < type->dimx; ++i) one->value.u[i].f = 1.0f; list_add_before(&instr->entry, &one->node.entry); if (!(div = hlsl_new_binary_expr(ctx, HLSL_OP2_DIV, &one->node, &cond->node))) return false; list_add_before(&instr->entry, &div->entry); if (!(mul2 = hlsl_new_binary_expr(ctx, HLSL_OP2_MUL, div, arg1))) return false; list_add_before(&instr->entry, &mul2->entry); if (!(frc = hlsl_new_unary_expr(ctx, HLSL_OP1_FRACT, mul2, &instr->loc))) return false; list_add_before(&instr->entry, &frc->entry); expr->op = HLSL_OP2_MUL; hlsl_src_remove(&expr->operands[0]); hlsl_src_remove(&expr->operands[1]); hlsl_src_from_node(&expr->operands[0], frc); hlsl_src_from_node(&expr->operands[1], &cond->node); return true; } static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { switch (instr->type) { case HLSL_IR_CONSTANT: case HLSL_IR_EXPR: case HLSL_IR_INDEX: case HLSL_IR_LOAD: case HLSL_IR_RESOURCE_LOAD: case HLSL_IR_SWIZZLE: if (list_empty(&instr->uses)) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); struct hlsl_ir_var *var = store->lhs.var; if (var->last_read < instr->index) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; } case HLSL_IR_CALL: case HLSL_IR_IF: case HLSL_IR_JUMP: case HLSL_IR_LOOP: case HLSL_IR_RESOURCE_STORE: break; } return false; } /* Allocate a unique, ordered index to each instruction, which will be used for * computing liveness ranges. */ static unsigned int index_instructions(struct hlsl_block *block, unsigned int index) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { instr->index = index++; if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); index = index_instructions(&iff->then_block, index); index = index_instructions(&iff->else_block, index); } else if (instr->type == HLSL_IR_LOOP) { index = index_instructions(&hlsl_ir_loop(instr)->body, index); hlsl_ir_loop(instr)->next_index = index; } } return index; } static void dump_function_decl(struct rb_entry *entry, void *context) { struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry); struct hlsl_ctx *ctx = context; if (func->has_body) hlsl_dump_function(ctx, func); } static void dump_function(struct rb_entry *entry, void *context) { struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry); struct hlsl_ctx *ctx = context; rb_for_each_entry(&func->overloads, dump_function_decl, ctx); } static char get_regset_name(enum hlsl_regset regset) { switch (regset) { case HLSL_REGSET_SAMPLERS: return 's'; case HLSL_REGSET_TEXTURES: return 't'; case HLSL_REGSET_UAVS: return 'u'; case HLSL_REGSET_NUMERIC: vkd3d_unreachable(); } vkd3d_unreachable(); } static void allocate_register_reservations(struct hlsl_ctx *ctx) { struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { enum hlsl_regset regset; if (!hlsl_type_is_resource(var->data_type)) continue; regset = hlsl_type_get_regset(var->data_type); if (var->reg_reservation.reg_type) { if (var->reg_reservation.reg_type != get_regset_name(regset)) { struct vkd3d_string_buffer *type_string; type_string = hlsl_type_to_string(ctx, var->data_type); hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "Object of type '%s' must be bound to register type '%c'.", type_string->buffer, get_regset_name(regset)); hlsl_release_string_buffer(ctx, type_string); } else { var->regs[regset].allocated = true; var->regs[regset].id = var->reg_reservation.reg_index; TRACE("Allocated reserved %s to %c%u.\n", var->name, var->reg_reservation.reg_type, var->reg_reservation.reg_index); } } } } /* Compute the earliest and latest liveness for each variable. In the case that * a variable is accessed inside of a loop, we promote its liveness to extend * to at least the range of the entire loop. Note that we don't need to do this * for anonymous nodes, since there's currently no way to use a node which was * calculated in an earlier iteration of the loop. */ static void compute_liveness_recurse(struct hlsl_block *block, unsigned int loop_first, unsigned int loop_last) { struct hlsl_ir_node *instr; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { const unsigned int var_last_read = loop_last ? max(instr->index, loop_last) : instr->index; switch (instr->type) { case HLSL_IR_CALL: /* We should have inlined all calls before computing liveness. */ vkd3d_unreachable(); case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); var = store->lhs.var; if (!var->first_write) var->first_write = loop_first ? min(instr->index, loop_first) : instr->index; store->rhs.node->last_read = instr->index; if (store->lhs.offset.node) store->lhs.offset.node->last_read = instr->index; break; } case HLSL_IR_EXPR: { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); unsigned int i; for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i) expr->operands[i].node->last_read = instr->index; break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); compute_liveness_recurse(&iff->then_block, loop_first, loop_last); compute_liveness_recurse(&iff->else_block, loop_first, loop_last); iff->condition.node->last_read = instr->index; break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); var = load->src.var; var->last_read = max(var->last_read, var_last_read); if (load->src.offset.node) load->src.offset.node->last_read = instr->index; break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index, loop_last ? loop_last : loop->next_index); break; } case HLSL_IR_RESOURCE_LOAD: { struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr); var = load->resource.var; var->last_read = max(var->last_read, var_last_read); if (load->resource.offset.node) load->resource.offset.node->last_read = instr->index; if ((var = load->sampler.var)) { var->last_read = max(var->last_read, var_last_read); if (load->sampler.offset.node) load->sampler.offset.node->last_read = instr->index; } load->coords.node->last_read = instr->index; if (load->texel_offset.node) load->texel_offset.node->last_read = instr->index; if (load->lod.node) load->lod.node->last_read = instr->index; break; } case HLSL_IR_RESOURCE_STORE: { struct hlsl_ir_resource_store *store = hlsl_ir_resource_store(instr); var = store->resource.var; var->last_read = max(var->last_read, var_last_read); if (store->resource.offset.node) store->resource.offset.node->last_read = instr->index; store->coords.node->last_read = instr->index; store->value.node->last_read = instr->index; break; } case HLSL_IR_SWIZZLE: { struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr); swizzle->val.node->last_read = instr->index; break; } case HLSL_IR_INDEX: { struct hlsl_ir_index *index = hlsl_ir_index(instr); index->val.node->last_read = instr->index; index->idx.node->last_read = instr->index; break; } case HLSL_IR_CONSTANT: case HLSL_IR_JUMP: break; } } } static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct hlsl_scope *scope; struct hlsl_ir_var *var; /* Index 0 means unused; index 1 means function entry, so start at 2. */ index_instructions(&entry_func->body, 2); LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry) { LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry) var->first_write = var->last_read = 0; } LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform || var->is_input_semantic) var->first_write = 1; else if (var->is_output_semantic) var->last_read = UINT_MAX; } compute_liveness_recurse(&entry_func->body, 0, 0); } struct liveness { size_t size; uint32_t reg_count; struct { /* 0 if not live yet. */ unsigned int last_read; } *regs; }; static unsigned int get_available_writemask(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int reg_size) { unsigned int i, writemask = 0, count = 0; for (i = 0; i < 4; ++i) { if (liveness->regs[component_idx + i].last_read <= first_write) { writemask |= 1u << i; if (++count == reg_size) return writemask; } } return 0; } static bool resize_liveness(struct hlsl_ctx *ctx, struct liveness *liveness, size_t new_count) { size_t old_capacity = liveness->size; if (!hlsl_array_reserve(ctx, (void **)&liveness->regs, &liveness->size, new_count, sizeof(*liveness->regs))) return false; if (liveness->size > old_capacity) memset(liveness->regs + old_capacity, 0, (liveness->size - old_capacity) * sizeof(*liveness->regs)); return true; } /* reg_size is the number of register components to be reserved, while component_count is the number * of components for the register's writemask. In SM1, floats and vectors allocate the whole * register, even if they don't use it completely. */ static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int reg_size, unsigned int component_count) { unsigned int component_idx, writemask, i; struct hlsl_reg ret = {0}; assert(component_count <= reg_size); for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if ((writemask = get_available_writemask(liveness, first_write, component_idx, reg_size))) break; } if (component_idx == liveness->size) { if (!resize_liveness(ctx, liveness, component_idx + 4)) return ret; writemask = (1u << reg_size) - 1; } for (i = 0; i < 4; ++i) { if (writemask & (1u << i)) liveness->regs[component_idx + i].last_read = last_read; } ret.id = component_idx / 4; ret.writemask = hlsl_combine_writemasks(writemask, (1u << component_count) - 1); ret.allocated = true; liveness->reg_count = max(liveness->reg_count, ret.id + 1); return ret; } static bool is_range_available(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int reg_size) { unsigned int i; for (i = 0; i < reg_size; i += 4) { if (!get_available_writemask(liveness, first_write, component_idx + i, 4)) return false; } return true; } static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int reg_size) { unsigned int i, component_idx; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if (is_range_available(liveness, first_write, component_idx, min(reg_size, liveness->size - component_idx))) break; } if (!resize_liveness(ctx, liveness, component_idx + reg_size)) return ret; for (i = 0; i < reg_size; ++i) liveness->regs[component_idx + i].last_read = last_read; ret.id = component_idx / 4; ret.allocated = true; liveness->reg_count = max(liveness->reg_count, ret.id + align(reg_size, 4)); return ret; } static struct hlsl_reg allocate_numeric_registers_for_type(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, const struct hlsl_type *type) { unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC]; if (type->class <= HLSL_CLASS_VECTOR) return allocate_register(ctx, liveness, first_write, last_read, reg_size, type->dimx); else return allocate_range(ctx, liveness, first_write, last_read, reg_size); } static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type) { static const char writemask_offset[] = {'w','x','y','z'}; unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC]; if (reg_size > 4) { if (reg_size & 3) return vkd3d_dbg_sprintf("%c%u-%c%u.%c", class, reg.id, class, reg.id + (reg_size / 4), writemask_offset[reg_size & 3]); return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class, reg.id + (reg_size / 4) - 1); } return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask)); } static void allocate_variable_temp_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, struct liveness *liveness) { if (var->is_input_semantic || var->is_output_semantic || var->is_uniform) return; if (!var->regs[HLSL_REGSET_NUMERIC].allocated && var->last_read) { var->regs[HLSL_REGSET_NUMERIC] = allocate_numeric_registers_for_type(ctx, liveness, var->first_write, var->last_read, var->data_type); TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name, debug_register('r', var->regs[HLSL_REGSET_NUMERIC], var->data_type), var->first_write, var->last_read); } } static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct liveness *liveness) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { if (!instr->reg.allocated && instr->last_read) { instr->reg = allocate_numeric_registers_for_type(ctx, liveness, instr->index, instr->last_read, instr->data_type); TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index, debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read); } switch (instr->type) { case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_temp_registers_recurse(ctx, &iff->then_block, liveness); allocate_temp_registers_recurse(ctx, &iff->else_block, liveness); break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); /* We need to at least allocate a variable for undefs. * FIXME: We should probably find a way to remove them instead. */ allocate_variable_temp_register(ctx, load->src.var, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_temp_registers_recurse(ctx, &loop->body, liveness); break; } case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); allocate_variable_temp_register(ctx, store->lhs.var, liveness); break; } default: break; } } } static void allocate_const_registers_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct liveness *liveness) { struct hlsl_constant_defs *defs = &ctx->constant_defs; struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_CONSTANT: { struct hlsl_ir_constant *constant = hlsl_ir_constant(instr); const struct hlsl_type *type = instr->data_type; unsigned int x, y, i, writemask, end_reg; unsigned int reg_size = type->reg_size[HLSL_REGSET_NUMERIC]; constant->reg = allocate_numeric_registers_for_type(ctx, liveness, 1, UINT_MAX, type); TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type)); if (!hlsl_array_reserve(ctx, (void **)&defs->values, &defs->size, constant->reg.id + reg_size / 4, sizeof(*defs->values))) return; end_reg = constant->reg.id + reg_size / 4; if (end_reg > defs->count) { memset(&defs->values[defs->count], 0, sizeof(*defs->values) * (end_reg - defs->count)); defs->count = end_reg; } assert(type->class <= HLSL_CLASS_LAST_NUMERIC); if (!(writemask = constant->reg.writemask)) writemask = (1u << type->dimx) - 1; for (y = 0; y < type->dimy; ++y) { for (x = 0, i = 0; x < 4; ++x) { const union hlsl_constant_value_component *value; float f; if (!(writemask & (1u << x))) continue; value = &constant->value.u[i++]; switch (type->base_type) { case HLSL_TYPE_BOOL: f = !!value->u; break; case HLSL_TYPE_FLOAT: case HLSL_TYPE_HALF: f = value->f; break; case HLSL_TYPE_INT: f = value->i; break; case HLSL_TYPE_UINT: f = value->u; break; case HLSL_TYPE_DOUBLE: FIXME("Double constant.\n"); return; default: vkd3d_unreachable(); } defs->values[constant->reg.id + y].f[x] = f; } } break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_const_registers_recurse(ctx, &iff->then_block, liveness); allocate_const_registers_recurse(ctx, &iff->else_block, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_const_registers_recurse(ctx, &loop->body, liveness); break; } default: break; } } } static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; struct hlsl_ir_var *var; allocate_const_registers_recurse(ctx, &entry_func->body, &liveness); LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform && var->last_read) { unsigned int reg_size = var->data_type->reg_size[HLSL_REGSET_NUMERIC]; if (reg_size == 0) continue; var->regs[HLSL_REGSET_NUMERIC] = allocate_numeric_registers_for_type(ctx, &liveness, 1, UINT_MAX, var->data_type); TRACE("Allocated %s to %s.\n", var->name, debug_register('c', var->regs[HLSL_REGSET_NUMERIC], var->data_type)); } } } /* Simple greedy temporary register allocation pass that just assigns a unique * index to all (simultaneously live) variables or intermediate values. Agnostic * as to how many registers are actually available for the current backend, and * does not handle constants. */ static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; allocate_temp_registers_recurse(ctx, &entry_func->body, &liveness); ctx->temp_count = liveness.reg_count; vkd3d_free(liveness.regs); } static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output) { static const char *const shader_names[] = { [VKD3D_SHADER_TYPE_PIXEL] = "Pixel", [VKD3D_SHADER_TYPE_VERTEX] = "Vertex", [VKD3D_SHADER_TYPE_GEOMETRY] = "Geometry", [VKD3D_SHADER_TYPE_HULL] = "Hull", [VKD3D_SHADER_TYPE_DOMAIN] = "Domain", [VKD3D_SHADER_TYPE_COMPUTE] = "Compute", }; unsigned int type; uint32_t reg; bool builtin; assert(var->semantic.name); if (ctx->profile->major_version < 4) { D3DDECLUSAGE usage; uint32_t usage_idx; builtin = hlsl_sm1_register_from_semantic(ctx, &var->semantic, output, &type, ®); if (!builtin && !hlsl_sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx)) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Invalid semantic '%s'.", var->semantic.name); return; } if ((!output && !var->last_read) || (output && !var->first_write)) return; } else { D3D_NAME usage; bool has_idx; if (!hlsl_sm4_usage_from_semantic(ctx, &var->semantic, output, &usage)) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Invalid semantic '%s'.", var->semantic.name); return; } if ((builtin = hlsl_sm4_register_from_semantic(ctx, &var->semantic, output, &type, NULL, &has_idx))) reg = has_idx ? var->semantic.index : 0; } if (builtin) { TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n", shader_names[ctx->profile->type], output ? "output" : "input", var->semantic.name, var->semantic.index, type, reg); } else { var->regs[HLSL_REGSET_NUMERIC].allocated = true; var->regs[HLSL_REGSET_NUMERIC].id = (*counter)++; var->regs[HLSL_REGSET_NUMERIC].writemask = (1 << var->data_type->dimx) - 1; TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v', var->regs[HLSL_REGSET_NUMERIC], var->data_type)); } } static void allocate_semantic_registers(struct hlsl_ctx *ctx) { unsigned int input_counter = 0, output_counter = 0; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_input_semantic) allocate_semantic_register(ctx, var, &input_counter, false); if (var->is_output_semantic) allocate_semantic_register(ctx, var, &output_counter, true); } } static const struct hlsl_buffer *get_reserved_buffer(struct hlsl_ctx *ctx, uint32_t index) { const struct hlsl_buffer *buffer; LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, const struct hlsl_buffer, entry) { if (buffer->used_size && buffer->reservation.reg_type == 'b' && buffer->reservation.reg_index == index) return buffer; } return NULL; } static void calculate_buffer_offset(struct hlsl_ctx *ctx, struct hlsl_ir_var *var) { unsigned int var_reg_size = var->data_type->reg_size[HLSL_REGSET_NUMERIC]; enum hlsl_type_class var_class = var->data_type->class; struct hlsl_buffer *buffer = var->buffer; if (var->reg_reservation.offset_type == 'c') { if (var->reg_reservation.offset_index % 4) { if (var_class == HLSL_CLASS_MATRIX) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "packoffset() reservations with matrix types must be aligned with the beginning of a register."); } else if (var_class == HLSL_CLASS_ARRAY) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "packoffset() reservations with array types must be aligned with the beginning of a register."); } else if (var_class == HLSL_CLASS_STRUCT) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "packoffset() reservations with struct types must be aligned with the beginning of a register."); } else if (var_class == HLSL_CLASS_VECTOR) { unsigned int aligned_offset = hlsl_type_get_sm4_offset(var->data_type, var->reg_reservation.offset_index); if (var->reg_reservation.offset_index != aligned_offset) hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "packoffset() reservations with vector types cannot span multiple registers."); } } var->buffer_offset = var->reg_reservation.offset_index; } else { var->buffer_offset = hlsl_type_get_sm4_offset(var->data_type, buffer->size); } TRACE("Allocated buffer offset %u to %s.\n", var->buffer_offset, var->name); buffer->size = max(buffer->size, var->buffer_offset + var_reg_size); if (var->last_read) buffer->used_size = max(buffer->used_size, var->buffer_offset + var_reg_size); } static void validate_buffer_offsets(struct hlsl_ctx *ctx) { struct hlsl_ir_var *var1, *var2; struct hlsl_buffer *buffer; LIST_FOR_EACH_ENTRY(var1, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var1->is_uniform || var1->data_type->class == HLSL_CLASS_OBJECT) continue; buffer = var1->buffer; if (!buffer->used_size) continue; LIST_FOR_EACH_ENTRY(var2, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { unsigned int var1_reg_size, var2_reg_size; if (!var2->is_uniform || var2->data_type->class == HLSL_CLASS_OBJECT) continue; if (var1 == var2 || var1->buffer != var2->buffer) continue; /* This is to avoid reporting the error twice for the same pair of overlapping variables. */ if (strcmp(var1->name, var2->name) >= 0) continue; var1_reg_size = var1->data_type->reg_size[HLSL_REGSET_NUMERIC]; var2_reg_size = var2->data_type->reg_size[HLSL_REGSET_NUMERIC]; if (var1->buffer_offset < var2->buffer_offset + var2_reg_size && var2->buffer_offset < var1->buffer_offset + var1_reg_size) hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "Invalid packoffset() reservation: Variables %s and %s overlap.", var1->name, var2->name); } } LIST_FOR_EACH_ENTRY(var1, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { buffer = var1->buffer; if (!buffer || buffer == ctx->globals_buffer) continue; if (var1->reg_reservation.offset_type || (var1->data_type->class == HLSL_CLASS_OBJECT && var1->reg_reservation.reg_type)) buffer->manually_packed_elements = true; else buffer->automatically_packed_elements = true; if (buffer->manually_packed_elements && buffer->automatically_packed_elements) { hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "packoffset() must be specified for all the buffer elements, or none of them."); break; } } } static void allocate_buffers(struct hlsl_ctx *ctx) { struct hlsl_buffer *buffer; struct hlsl_ir_var *var; uint32_t index = 0; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform && var->data_type->class != HLSL_CLASS_OBJECT) { if (var->is_param) var->buffer = ctx->params_buffer; calculate_buffer_offset(ctx, var); } } validate_buffer_offsets(ctx); LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, struct hlsl_buffer, entry) { if (!buffer->used_size) continue; if (buffer->type == HLSL_BUFFER_CONSTANT) { if (buffer->reservation.reg_type == 'b') { const struct hlsl_buffer *reserved_buffer = get_reserved_buffer(ctx, buffer->reservation.reg_index); if (reserved_buffer && reserved_buffer != buffer) { hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS, "Multiple buffers bound to cb%u.", buffer->reservation.reg_index); hlsl_note(ctx, &reserved_buffer->loc, VKD3D_SHADER_LOG_ERROR, "Buffer %s is already bound to cb%u.", reserved_buffer->name, buffer->reservation.reg_index); } buffer->reg.id = buffer->reservation.reg_index; buffer->reg.allocated = true; TRACE("Allocated reserved %s to cb%u.\n", buffer->name, index); } else if (!buffer->reservation.reg_type) { while (get_reserved_buffer(ctx, index)) ++index; buffer->reg.id = index; buffer->reg.allocated = true; TRACE("Allocated %s to cb%u.\n", buffer->name, index); ++index; } else { hlsl_error(ctx, &buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "Constant buffers must be allocated to register type 'b'."); } } else { FIXME("Allocate registers for texture buffers.\n"); } } } static const struct hlsl_ir_var *get_allocated_object(struct hlsl_ctx *ctx, enum hlsl_regset regset, uint32_t index) { const struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, const struct hlsl_ir_var, extern_entry) { if (!var->regs[regset].allocated) continue; if (index == var->regs[regset].id) return var; } return NULL; } static void allocate_objects(struct hlsl_ctx *ctx, enum hlsl_regset regset) { char regset_name = get_regset_name(regset); struct hlsl_ir_var *var; uint32_t min_index = 0; uint32_t index; if (regset == HLSL_REGSET_UAVS) { LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->semantic.name && (!ascii_strcasecmp(var->semantic.name, "color") || !ascii_strcasecmp(var->semantic.name, "sv_target"))) min_index = max(min_index, var->semantic.index + 1); } } index = min_index; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->last_read || !var->data_type->reg_size[regset]) continue; if (var->regs[regset].allocated) { const struct hlsl_ir_var *reserved_object; unsigned int index = var->regs[regset].id; reserved_object = get_allocated_object(ctx, regset, index); if (var->regs[regset].id < min_index) { assert(regset == HLSL_REGSET_UAVS); hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS, "UAV index (%u) must be higher than the maximum render target index (%u).", var->regs[regset].id, min_index - 1); } else if (reserved_object && reserved_object != var) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS, "Multiple objects bound to %c%u.", regset_name, index); hlsl_note(ctx, &reserved_object->loc, VKD3D_SHADER_LOG_ERROR, "Object '%s' is already bound to %c%u.", reserved_object->name, regset_name, index); } var->regs[regset].id = var->reg_reservation.reg_index; var->regs[regset].allocated = true; TRACE("Allocated reserved %s to %c%u.\n", var->name, regset_name, var->regs[regset].id); } else { while (get_allocated_object(ctx, regset, index)) ++index; var->regs[regset].id = index; var->regs[regset].allocated = true; TRACE("Allocated object to %c%u.\n", regset_name, index); ++index; } } } bool hlsl_component_index_range_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref, unsigned int *start, unsigned int *count) { struct hlsl_type *type = deref->var->data_type; unsigned int i, k; *start = 0; *count = 0; for (i = 0; i < deref->path_len; ++i) { struct hlsl_ir_node *path_node = deref->path[i].node; unsigned int idx = 0; assert(path_node); if (path_node->type != HLSL_IR_CONSTANT) return false; /* We should always have generated a cast to UINT. */ assert(path_node->data_type->class == HLSL_CLASS_SCALAR && path_node->data_type->base_type == HLSL_TYPE_UINT); idx = hlsl_ir_constant(path_node)->value.u[0].u; switch (type->class) { case HLSL_CLASS_VECTOR: if (idx >= type->dimx) { hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS, "Vector index is out of bounds. %u/%u", idx, type->dimx); return false; } *start += idx; break; case HLSL_CLASS_MATRIX: if (idx >= hlsl_type_major_size(type)) { hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS, "Matrix index is out of bounds. %u/%u", idx, hlsl_type_major_size(type)); return false; } if (hlsl_type_is_row_major(type)) *start += idx * type->dimx; else *start += idx * type->dimy; break; case HLSL_CLASS_ARRAY: if (idx >= type->e.array.elements_count) { hlsl_error(ctx, &path_node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS, "Array index is out of bounds. %u/%u", idx, type->e.array.elements_count); return false; } *start += idx * hlsl_type_component_count(type->e.array.type); break; case HLSL_CLASS_STRUCT: for (k = 0; k < idx; ++k) *start += hlsl_type_component_count(type->e.record.fields[k].type); break; default: vkd3d_unreachable(); } type = hlsl_get_element_type_from_path_index(ctx, type, path_node); } *count = hlsl_type_component_count(type); return true; } bool hlsl_offset_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref, unsigned int *offset) { struct hlsl_ir_node *offset_node = deref->offset.node; unsigned int size; if (!offset_node) { *offset = 0; return true; } /* We should always have generated a cast to UINT. */ assert(offset_node->data_type->class == HLSL_CLASS_SCALAR && offset_node->data_type->base_type == HLSL_TYPE_UINT); if (offset_node->type != HLSL_IR_CONSTANT) return false; *offset = hlsl_ir_constant(offset_node)->value.u[0].u; size = deref->var->data_type->reg_size[deref->offset_regset]; if (*offset >= size) { hlsl_error(ctx, &deref->offset.node->loc, VKD3D_SHADER_ERROR_HLSL_OFFSET_OUT_OF_BOUNDS, "Dereference is out of bounds. %u/%u", *offset, size); return false; } return true; } unsigned int hlsl_offset_from_deref_safe(struct hlsl_ctx *ctx, const struct hlsl_deref *deref) { unsigned int offset; if (hlsl_offset_from_deref(ctx, deref, &offset)) return offset; hlsl_fixme(ctx, &deref->offset.node->loc, "Dereference with non-constant offset of type %s.", hlsl_node_type_to_string(deref->offset.node->type)); return 0; } struct hlsl_reg hlsl_reg_from_deref(struct hlsl_ctx *ctx, const struct hlsl_deref *deref) { const struct hlsl_ir_var *var = deref->var; struct hlsl_reg ret = var->regs[HLSL_REGSET_NUMERIC]; unsigned int offset = hlsl_offset_from_deref_safe(ctx, deref); assert(deref->offset_regset == HLSL_REGSET_NUMERIC); ret.id += offset / 4; ret.writemask = 0xf & (0xf << (offset % 4)); if (var->regs[HLSL_REGSET_NUMERIC].writemask) ret.writemask = hlsl_combine_writemasks(var->regs[HLSL_REGSET_NUMERIC].writemask, ret.writemask); return ret; } static void parse_numthreads_attribute(struct hlsl_ctx *ctx, const struct hlsl_attribute *attr) { unsigned int i; ctx->found_numthreads = 1; if (attr->args_count != 3) { hlsl_error(ctx, &attr->loc, VKD3D_SHADER_ERROR_HLSL_WRONG_PARAMETER_COUNT, "Expected 3 parameters for [numthreads] attribute, but got %u.", attr->args_count); return; } for (i = 0; i < attr->args_count; ++i) { const struct hlsl_ir_node *instr = attr->args[i].node; const struct hlsl_type *type = instr->data_type; const struct hlsl_ir_constant *constant; if (type->class != HLSL_CLASS_SCALAR || (type->base_type != HLSL_TYPE_INT && type->base_type != HLSL_TYPE_UINT)) { struct vkd3d_string_buffer *string; if ((string = hlsl_type_to_string(ctx, type))) hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_TYPE, "Wrong type for argument %u of [numthreads]: expected int or uint, but got %s.", i, string->buffer); hlsl_release_string_buffer(ctx, string); break; } if (instr->type != HLSL_IR_CONSTANT) { hlsl_fixme(ctx, &instr->loc, "Non-constant expression in [numthreads] initializer."); break; } constant = hlsl_ir_constant(instr); if ((type->base_type == HLSL_TYPE_INT && constant->value.u[0].i <= 0) || (type->base_type == HLSL_TYPE_UINT && !constant->value.u[0].u)) hlsl_error(ctx, &instr->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_THREAD_COUNT, "Thread count must be a positive integer."); ctx->thread_count[i] = constant->value.u[0].u; } } int hlsl_emit_bytecode(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, enum vkd3d_shader_target_type target_type, struct vkd3d_shader_code *out) { const struct hlsl_profile_info *profile = ctx->profile; struct hlsl_block *const body = &entry_func->body; struct recursive_call_ctx recursive_call_ctx; struct hlsl_ir_var *var; unsigned int i; bool progress; list_move_head(&body->instrs, &ctx->static_initializers); memset(&recursive_call_ctx, 0, sizeof(recursive_call_ctx)); hlsl_transform_ir(ctx, find_recursive_calls, body, &recursive_call_ctx); vkd3d_free(recursive_call_ctx.backtrace); /* Avoid going into an infinite loop when processing call instructions. * lower_return() recurses into inferior calls. */ if (ctx->result) return ctx->result; lower_return(ctx, entry_func, body, false); while (hlsl_transform_ir(ctx, lower_calls, body, NULL)); hlsl_transform_ir(ctx, lower_index_loads, body, NULL); LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry) { if (var->storage_modifiers & HLSL_STORAGE_UNIFORM) prepend_uniform_copy(ctx, &body->instrs, var); } for (i = 0; i < entry_func->parameters.count; ++i) { var = entry_func->parameters.vars[i]; if (hlsl_type_is_resource(var->data_type) || (var->storage_modifiers & HLSL_STORAGE_UNIFORM)) { prepend_uniform_copy(ctx, &body->instrs, var); } else { if (hlsl_get_multiarray_element_type(var->data_type)->class != HLSL_CLASS_STRUCT && !var->semantic.name) { hlsl_error(ctx, &var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Parameter \"%s\" is missing a semantic.", var->name); var->semantic.reported_missing = true; } if (var->storage_modifiers & HLSL_STORAGE_IN) prepend_input_var_copy(ctx, &body->instrs, var); if (var->storage_modifiers & HLSL_STORAGE_OUT) append_output_var_copy(ctx, &body->instrs, var); } } if (entry_func->return_var) { if (entry_func->return_var->data_type->class != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name) hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Entry point \"%s\" is missing a return value semantic.", entry_func->func->name); append_output_var_copy(ctx, &body->instrs, entry_func->return_var); } for (i = 0; i < entry_func->attr_count; ++i) { const struct hlsl_attribute *attr = entry_func->attrs[i]; if (!strcmp(attr->name, "numthreads") && profile->type == VKD3D_SHADER_TYPE_COMPUTE) parse_numthreads_attribute(ctx, attr); else hlsl_warning(ctx, &entry_func->attrs[i]->loc, VKD3D_SHADER_WARNING_HLSL_UNKNOWN_ATTRIBUTE, "Ignoring unknown attribute \"%s\".", entry_func->attrs[i]->name); } if (profile->type == VKD3D_SHADER_TYPE_COMPUTE && !ctx->found_numthreads) hlsl_error(ctx, &entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_ATTRIBUTE, "Entry point \"%s\" is missing a [numthreads] attribute.", entry_func->func->name); hlsl_transform_ir(ctx, lower_broadcasts, body, NULL); while (hlsl_transform_ir(ctx, fold_redundant_casts, body, NULL)); do { progress = hlsl_transform_ir(ctx, split_array_copies, body, NULL); progress |= hlsl_transform_ir(ctx, split_struct_copies, body, NULL); } while (progress); hlsl_transform_ir(ctx, split_matrix_copies, body, NULL); hlsl_transform_ir(ctx, lower_narrowing_casts, body, NULL); hlsl_transform_ir(ctx, lower_casts_to_bool, body, NULL); hlsl_transform_ir(ctx, lower_int_division, body, NULL); hlsl_transform_ir(ctx, lower_int_modulus, body, NULL); hlsl_transform_ir(ctx, lower_int_abs, body, NULL); hlsl_transform_ir(ctx, lower_float_modulus, body, NULL); do { progress = hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL); progress |= hlsl_transform_ir(ctx, hlsl_fold_constant_swizzles, body, NULL); progress |= copy_propagation_execute(ctx, body); progress |= hlsl_transform_ir(ctx, fold_swizzle_chains, body, NULL); progress |= hlsl_transform_ir(ctx, remove_trivial_swizzles, body, NULL); } while (progress); if (profile->major_version < 4) { hlsl_transform_ir(ctx, lower_division, body, NULL); hlsl_transform_ir(ctx, lower_sqrt, body, NULL); hlsl_transform_ir(ctx, lower_dot, body, NULL); hlsl_transform_ir(ctx, lower_round, body, NULL); } if (profile->major_version < 2) { hlsl_transform_ir(ctx, lower_abs, body, NULL); } hlsl_transform_ir(ctx, validate_static_object_references, body, NULL); /* TODO: move forward, remove when no longer needed */ hlsl_transform_ir(ctx, transform_deref_paths_into_offsets, body, NULL); while (hlsl_transform_ir(ctx, hlsl_fold_constant_exprs, body, NULL)); do compute_liveness(ctx, entry_func); while (hlsl_transform_ir(ctx, dce, body, NULL)); compute_liveness(ctx, entry_func); if (TRACE_ON()) rb_for_each_entry(&ctx->functions, dump_function, ctx); allocate_register_reservations(ctx); allocate_temp_registers(ctx, entry_func); if (profile->major_version < 4) { allocate_const_registers(ctx, entry_func); } else { allocate_buffers(ctx); allocate_objects(ctx, HLSL_REGSET_TEXTURES); allocate_objects(ctx, HLSL_REGSET_UAVS); } allocate_semantic_registers(ctx); allocate_objects(ctx, HLSL_REGSET_SAMPLERS); if (ctx->result) return ctx->result; switch (target_type) { case VKD3D_SHADER_TARGET_D3D_BYTECODE: return hlsl_sm1_write(ctx, entry_func, out); case VKD3D_SHADER_TARGET_DXBC_TPF: return hlsl_sm4_write(ctx, entry_func, out); default: ERR("Unsupported shader target type %#x.\n", target_type); return VKD3D_ERROR_INVALID_ARGUMENT; } }