/* * HLSL optimization and code generation * * Copyright 2019-2020 Zebediah Figura for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "hlsl.h" #include #include "vkd3d_d3dx9shader.h" /* Split uniforms into two variables representing the constant and temp * registers, and copy the former to the latter, so that writes to uniforms * work. */ static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp) { struct vkd3d_string_buffer *name; struct hlsl_ir_var *uniform; struct hlsl_ir_store *store; struct hlsl_ir_load *load; /* Use the synthetic name for the temp, rather than the uniform, so that we * can write the uniform name into the shader reflection data. */ if (!(uniform = hlsl_new_var(temp->name, temp->data_type, temp->loc, NULL, temp->reg_reservation))) { ctx->failed = true; return; } list_add_before(&temp->scope_entry, &uniform->scope_entry); list_add_tail(&ctx->extern_vars, &uniform->extern_entry); temp->is_uniform = 0; uniform->is_uniform = 1; uniform->is_param = temp->is_param; if (!(name = vkd3d_string_buffer_get(&ctx->string_buffers))) { ctx->failed = true; return; } vkd3d_string_buffer_printf(name, "", temp->name); temp->name = vkd3d_strdup(name->buffer); vkd3d_string_buffer_release(&ctx->string_buffers, name); if (!(load = hlsl_new_var_load(uniform, temp->loc))) { ctx->failed = true; return; } list_add_head(instrs, &load->node.entry); if (!(store = hlsl_new_simple_store(temp, &load->node))) { ctx->failed = true; return; } list_add_after(&load->node.entry, &store->node.entry); } static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset, const char *semantic) { struct vkd3d_string_buffer *name; struct hlsl_ir_constant *offset; struct hlsl_ir_store *store; struct hlsl_ir_var *varying; struct hlsl_ir_load *load; if (!(name = vkd3d_string_buffer_get(&ctx->string_buffers))) { ctx->failed = true; return; } vkd3d_string_buffer_printf(name, "", semantic); if (!(varying = hlsl_new_var(vkd3d_strdup(name->buffer), type, var->loc, vkd3d_strdup(semantic), NULL))) { vkd3d_string_buffer_release(&ctx->string_buffers, name); ctx->failed = true; return; } vkd3d_string_buffer_release(&ctx->string_buffers, name); varying->is_input_varying = 1; varying->is_param = var->is_param; list_add_before(&var->scope_entry, &varying->scope_entry); list_add_tail(&ctx->extern_vars, &varying->extern_entry); if (!(load = hlsl_new_var_load(varying, var->loc))) { ctx->failed = true; return; } list_add_head(instrs, &load->node.entry); if (!(offset = hlsl_new_uint_constant(ctx, field_offset * 4, var->loc))) { ctx->failed = true; return; } list_add_after(&load->node.entry, &offset->node.entry); if (!(store = hlsl_new_store(var, &offset->node, &load->node, 0, var->loc))) { ctx->failed = true; return; } list_add_after(&offset->node.entry, &store->node.entry); } static void prepend_input_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset) { struct hlsl_struct_field *field; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (field->type->type == HLSL_CLASS_STRUCT) prepend_input_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset); else if (field->semantic) prepend_input_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, field->semantic); else hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); } } /* Split input varyings into two variables representing the varying and temp * registers, and copy the former to the latter, so that writes to input * varyings work. */ static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { if (var->data_type->type == HLSL_CLASS_STRUCT) prepend_input_struct_copy(ctx, instrs, var, var->data_type, 0); else if (var->semantic) prepend_input_copy(ctx, instrs, var, var->data_type, 0, var->semantic); var->is_input_varying = 0; } static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset, const char *semantic) { struct vkd3d_string_buffer *name; struct hlsl_ir_constant *offset; struct hlsl_ir_store *store; struct hlsl_ir_var *varying; struct hlsl_ir_load *load; if (!(name = vkd3d_string_buffer_get(&ctx->string_buffers))) { ctx->failed = true; return; } vkd3d_string_buffer_printf(name, "", semantic); if (!(varying = hlsl_new_var(vkd3d_strdup(name->buffer), type, var->loc, vkd3d_strdup(semantic), NULL))) { vkd3d_string_buffer_release(&ctx->string_buffers, name); ctx->failed = true; return; } vkd3d_string_buffer_release(&ctx->string_buffers, name); varying->is_output_varying = 1; varying->is_param = var->is_param; list_add_before(&var->scope_entry, &varying->scope_entry); list_add_tail(&ctx->extern_vars, &varying->extern_entry); if (!(offset = hlsl_new_uint_constant(ctx, field_offset * 4, var->loc))) { ctx->failed = true; return; } list_add_tail(instrs, &offset->node.entry); if (!(load = hlsl_new_load(var, &offset->node, type, var->loc))) { ctx->failed = true; return; } list_add_after(&offset->node.entry, &load->node.entry); if (!(store = hlsl_new_store(varying, NULL, &load->node, 0, var->loc))) { ctx->failed = true; return; } list_add_after(&load->node.entry, &store->node.entry); } static void append_output_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset) { struct hlsl_struct_field *field; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (field->type->type == HLSL_CLASS_STRUCT) append_output_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset); else if (field->semantic) append_output_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, field->semantic); else hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); } } /* Split output varyings into two variables representing the temp and varying * registers, and copy the former to the latter, so that reads from output * varyings work. */ static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { if (var->data_type->type == HLSL_CLASS_STRUCT) append_output_struct_copy(ctx, instrs, var, var->data_type, 0); else if (var->semantic) append_output_copy(ctx, instrs, var, var->data_type, 0, var->semantic); var->is_output_varying = 0; } static bool transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *), struct list *instrs, void *context) { struct hlsl_ir_node *instr, *next; bool progress = 0; LIST_FOR_EACH_ENTRY_SAFE(instr, next, instrs, struct hlsl_ir_node, entry) { if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); progress |= transform_ir(ctx, func, &iff->then_instrs, context); progress |= transform_ir(ctx, func, &iff->else_instrs, context); } else if (instr->type == HLSL_IR_LOOP) progress |= transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context); progress |= func(ctx, instr, context); } return progress; } static void replace_node(struct hlsl_ir_node *old, struct hlsl_ir_node *new) { struct hlsl_src *src, *next; LIST_FOR_EACH_ENTRY_SAFE(src, next, &old->uses, struct hlsl_src, entry) { hlsl_src_remove(src); hlsl_src_from_node(src, new); } list_remove(&old->entry); hlsl_free_instr(old); } static bool is_vec1(const struct hlsl_type *type) { return (type->type == HLSL_CLASS_SCALAR) || (type->type == HLSL_CLASS_VECTOR && type->dimx == 1); } static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { if (instr->type == HLSL_IR_EXPR) { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); const struct hlsl_type *src_type = expr->operands[0].node->data_type; const struct hlsl_type *dst_type = expr->node.data_type; if (expr->op != HLSL_IR_UNOP_CAST) return false; if (hlsl_types_are_equal(src_type, dst_type) || (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type))) { replace_node(&expr->node, expr->operands[0].node); return true; } } return false; } static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_struct_field *field; const struct hlsl_ir_load *rhs_load; const struct hlsl_ir_node *rhs; const struct hlsl_type *type; struct hlsl_ir_store *store; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->type != HLSL_CLASS_STRUCT) return false; rhs_load = hlsl_ir_load(rhs); LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { struct hlsl_ir_store *field_store; struct hlsl_ir_node *offset, *add; struct hlsl_ir_load *field_load; struct hlsl_ir_constant *c; if (!(c = hlsl_new_uint_constant(ctx, field->reg_offset * 4, instr->loc))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &c->node.entry); offset = &c->node; if (rhs_load->src.offset.node) { if (!(add = hlsl_new_binary_expr(HLSL_IR_BINOP_ADD, rhs_load->src.offset.node, &c->node))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &add->entry); offset = add; } if (!(field_load = hlsl_new_load(rhs_load->src.var, offset, field->type, instr->loc))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &field_load->node.entry); offset = &c->node; if (store->lhs.offset.node) { if (!(add = hlsl_new_binary_expr(HLSL_IR_BINOP_ADD, store->lhs.offset.node, &c->node))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &add->entry); offset = add; } if (!(field_store = hlsl_new_store(store->lhs.var, offset, &field_load->node, 0, instr->loc))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &field_store->node.entry); } /* Remove the store instruction, so that we can split structs which contain * other structs. Although assignments produce a value, we don't allow * HLSL_IR_STORE to be used as a source. */ list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool fold_constants(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_constant *arg1, *arg2 = NULL, *res; struct hlsl_ir_expr *expr; unsigned int i; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); for (i = 0; i < ARRAY_SIZE(expr->operands); ++i) { if (expr->operands[i].node && expr->operands[i].node->type != HLSL_IR_CONSTANT) return false; } arg1 = hlsl_ir_constant(expr->operands[0].node); if (expr->operands[1].node) arg2 = hlsl_ir_constant(expr->operands[1].node); if (!(res = vkd3d_calloc(1, sizeof(*res)))) { ctx->failed = true; return false; } init_node(&res->node, HLSL_IR_CONSTANT, instr->data_type, instr->loc); switch (instr->data_type->base_type) { case HLSL_TYPE_UINT: { unsigned int i; switch (expr->op) { case HLSL_IR_BINOP_ADD: for (i = 0; i < instr->data_type->dimx; ++i) res->value.u[i] = arg1->value.u[i] + arg2->value.u[i]; break; case HLSL_IR_BINOP_MUL: for (i = 0; i < instr->data_type->dimx; ++i) res->value.u[i] = arg1->value.u[i] * arg2->value.u[i]; break; default: FIXME("Fold uint op %#x.\n", expr->op); vkd3d_free(res); return false; } break; } default: FIXME("Fold type %#x op %#x.\n", instr->data_type->base_type, expr->op); vkd3d_free(res); return false; } list_add_before(&expr->node.entry, &res->node.entry); replace_node(&expr->node, &res->node); return true; } static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { switch (instr->type) { case HLSL_IR_CONSTANT: case HLSL_IR_EXPR: case HLSL_IR_LOAD: case HLSL_IR_SWIZZLE: if (list_empty(&instr->uses)) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); struct hlsl_ir_var *var = store->lhs.var; if (var->last_read < instr->index) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; } case HLSL_IR_IF: case HLSL_IR_JUMP: case HLSL_IR_LOOP: break; } return false; } /* Allocate a unique, ordered index to each instruction, which will be used for * computing liveness ranges. */ static unsigned int index_instructions(struct list *instrs, unsigned int index) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { instr->index = index++; if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); index = index_instructions(&iff->then_instrs, index); index = index_instructions(&iff->else_instrs, index); } else if (instr->type == HLSL_IR_LOOP) { index = index_instructions(&hlsl_ir_loop(instr)->body, index); hlsl_ir_loop(instr)->next_index = index; } } return index; } static void dump_function_decl(struct rb_entry *entry, void *context) { struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry); if (func->body) hlsl_dump_function(func); } static void dump_function(struct rb_entry *entry, void *context) { struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry); rb_for_each_entry(&func->overloads, dump_function_decl, NULL); } /* Compute the earliest and latest liveness for each variable. In the case that * a variable is accessed inside of a loop, we promote its liveness to extend * to at least the range of the entire loop. Note that we don't need to do this * for anonymous nodes, since there's currently no way to use a node which was * calculated in an earlier iteration of the loop. */ static void compute_liveness_recurse(struct list *instrs, unsigned int loop_first, unsigned int loop_last) { struct hlsl_ir_node *instr; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); var = store->lhs.var; if (!var->first_write) var->first_write = loop_first ? min(instr->index, loop_first) : instr->index; store->rhs.node->last_read = instr->index; if (store->lhs.offset.node) store->lhs.offset.node->last_read = instr->index; break; } case HLSL_IR_EXPR: { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); unsigned int i; for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i) expr->operands[i].node->last_read = instr->index; break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); compute_liveness_recurse(&iff->then_instrs, loop_first, loop_last); compute_liveness_recurse(&iff->else_instrs, loop_first, loop_last); iff->condition.node->last_read = instr->index; break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); var = load->src.var; var->last_read = max(var->last_read, loop_last ? max(instr->index, loop_last) : instr->index); if (load->src.offset.node) load->src.offset.node->last_read = instr->index; break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index, loop_last ? loop_last : loop->next_index); break; } case HLSL_IR_SWIZZLE: { struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr); swizzle->val.node->last_read = instr->index; break; } case HLSL_IR_CONSTANT: case HLSL_IR_JUMP: break; } } } static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct hlsl_scope *scope; struct hlsl_ir_var *var; /* Index 0 means unused; index 1 means function entry, so start at 2. */ index_instructions(entry_func->body, 2); LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry) { LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry) var->first_write = var->last_read = 0; } LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform || var->is_input_varying) var->first_write = 1; else if (var->is_output_varying) var->last_read = UINT_MAX; } if (entry_func->return_var) entry_func->return_var->last_read = UINT_MAX; compute_liveness_recurse(entry_func->body, 0, 0); } struct liveness { size_t size; struct { /* 0 if not live yet. */ unsigned int last_read; } *regs; }; static unsigned int get_available_writemask(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int component_count) { unsigned int i, writemask = 0, count = 0; for (i = 0; i < 4; ++i) { if (liveness->regs[component_idx + i].last_read <= first_write) { writemask |= 1u << i; if (++count == component_count) return writemask; } } return 0; } static bool resize_liveness(struct liveness *liveness, size_t new_count) { size_t old_capacity = liveness->size; if (!vkd3d_array_reserve((void **)&liveness->regs, &liveness->size, new_count, sizeof(*liveness->regs))) return false; if (liveness->size > old_capacity) memset(liveness->regs + old_capacity, 0, (liveness->size - old_capacity) * sizeof(*liveness->regs)); return true; } static struct hlsl_reg allocate_register(struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int component_count) { unsigned int component_idx, writemask, i; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if ((writemask = get_available_writemask(liveness, first_write, component_idx, component_count))) break; } if (component_idx == liveness->size) { if (!resize_liveness(liveness, component_idx + 4)) return ret; writemask = (1u << component_count) - 1; } for (i = 0; i < 4; ++i) { if (writemask & (1u << i)) liveness->regs[component_idx + i].last_read = last_read; } ret.id = component_idx / 4; ret.writemask = writemask; ret.allocated = true; return ret; } static bool is_range_available(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int component_count) { unsigned int i; for (i = 0; i < component_count; i += 4) { if (!get_available_writemask(liveness, first_write, component_idx + i, 4)) return false; } return true; } static struct hlsl_reg allocate_range(struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int reg_count) { const unsigned int component_count = reg_count * 4; unsigned int i, component_idx; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if (is_range_available(liveness, first_write, component_idx, min(component_count, liveness->size - component_idx))) break; } if (!resize_liveness(liveness, component_idx + component_count)) return ret; for (i = 0; i < component_count; ++i) liveness->regs[component_idx + i].last_read = last_read; ret.id = component_idx / 4; ret.allocated = true; return ret; } static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type) { if (type->reg_size > 1) return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class, reg.id + type->reg_size - 1); return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask)); } static void allocate_variable_temp_register(struct hlsl_ir_var *var, struct liveness *liveness) { if (var->is_input_varying || var->is_output_varying || var->is_uniform) return; if (!var->reg.allocated && var->last_read) { if (var->data_type->reg_size > 1) var->reg = allocate_range(liveness, var->first_write, var->last_read, var->data_type->reg_size); else var->reg = allocate_register(liveness, var->first_write, var->last_read, var->data_type->dimx); TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name, debug_register('r', var->reg, var->data_type), var->first_write, var->last_read); } } static void allocate_temp_registers_recurse(struct list *instrs, struct liveness *liveness) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { if (!instr->reg.allocated && instr->last_read) { if (instr->data_type->reg_size > 1) instr->reg = allocate_range(liveness, instr->index, instr->last_read, instr->data_type->reg_size); else instr->reg = allocate_register(liveness, instr->index, instr->last_read, instr->data_type->dimx); TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index, debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read); } switch (instr->type) { case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_temp_registers_recurse(&iff->then_instrs, liveness); allocate_temp_registers_recurse(&iff->else_instrs, liveness); break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); /* We need to at least allocate a variable for undefs. * FIXME: We should probably find a way to remove them instead. */ allocate_variable_temp_register(load->src.var, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_temp_registers_recurse(&loop->body, liveness); break; } case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); allocate_variable_temp_register(store->lhs.var, liveness); break; } default: break; } } } static void allocate_const_registers_recurse(struct list *instrs, struct liveness *liveness) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_CONSTANT: { struct hlsl_ir_constant *constant = hlsl_ir_constant(instr); if (instr->data_type->reg_size > 1) constant->reg = allocate_range(liveness, 1, UINT_MAX, instr->data_type->reg_size); else constant->reg = allocate_register(liveness, 1, UINT_MAX, instr->data_type->dimx); TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, instr->data_type)); break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_const_registers_recurse(&iff->then_instrs, liveness); allocate_const_registers_recurse(&iff->else_instrs, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_const_registers_recurse(&loop->body, liveness); break; } default: break; } } } static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform && var->last_read) { if (var->data_type->reg_size > 1) var->reg = allocate_range(&liveness, 1, UINT_MAX, var->data_type->reg_size); else { var->reg = allocate_register(&liveness, 1, UINT_MAX, 4); var->reg.writemask = (1u << var->data_type->dimx) - 1; } TRACE("Allocated %s to %s.\n", var->name, debug_register('c', var->reg, var->data_type)); } } allocate_const_registers_recurse(entry_func->body, &liveness); } /* Simple greedy temporary register allocation pass that just assigns a unique * index to all (simultaneously live) variables or intermediate values. Agnostic * as to how many registers are actually available for the current backend, and * does not handle constants. */ static void allocate_temp_registers(struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; allocate_temp_registers_recurse(entry_func->body, &liveness); } struct bytecode_buffer { uint32_t *data; size_t count, size; int status; }; static void put_dword(struct bytecode_buffer *buffer, uint32_t value) { if (buffer->status) return; if (!vkd3d_array_reserve((void **)&buffer->data, &buffer->size, buffer->count + 1, sizeof(*buffer->data))) { buffer->status = VKD3D_ERROR_OUT_OF_MEMORY; return; } buffer->data[buffer->count++] = value; } static void set_dword(struct bytecode_buffer *buffer, unsigned int index, uint32_t value) { if (buffer->status) return; assert(index < buffer->count); buffer->data[index] = value; } static void put_string(struct bytecode_buffer *buffer, const char *str) { size_t len = strlen(str) + 1; unsigned int token_count = (len + 3) / sizeof(*buffer->data); if (buffer->status) return; if (!vkd3d_array_reserve((void **)&buffer->data, &buffer->size, buffer->count + token_count, sizeof(*buffer->data))) { buffer->status = E_OUTOFMEMORY; return; } buffer->data[buffer->count + token_count - 1] = 0xabababab; memcpy(buffer->data + buffer->count, str, len); buffer->count += token_count; } static uint32_t sm1_version(enum vkd3d_shader_type type, unsigned int major, unsigned int minor) { if (type == VKD3D_SHADER_TYPE_VERTEX) return D3DVS_VERSION(major, minor); else return D3DPS_VERSION(major, minor); } static D3DXPARAMETER_CLASS sm1_class(const struct hlsl_type *type) { switch (type->type) { case HLSL_CLASS_ARRAY: return sm1_class(type->e.array.type); case HLSL_CLASS_MATRIX: assert(type->modifiers & HLSL_MODIFIERS_MAJORITY_MASK); if (type->modifiers & HLSL_MODIFIER_COLUMN_MAJOR) return D3DXPC_MATRIX_COLUMNS; else return D3DXPC_MATRIX_ROWS; case HLSL_CLASS_OBJECT: return D3DXPC_OBJECT; case HLSL_CLASS_SCALAR: return D3DXPC_SCALAR; case HLSL_CLASS_STRUCT: return D3DXPC_STRUCT; case HLSL_CLASS_VECTOR: return D3DXPC_VECTOR; default: ERR("Invalid class %#x.\n", type->type); assert(0); return 0; } } static D3DXPARAMETER_TYPE sm1_base_type(const struct hlsl_type *type) { switch (type->base_type) { case HLSL_TYPE_BOOL: return D3DXPT_BOOL; case HLSL_TYPE_FLOAT: case HLSL_TYPE_HALF: return D3DXPT_FLOAT; case HLSL_TYPE_INT: case HLSL_TYPE_UINT: return D3DXPT_INT; case HLSL_TYPE_PIXELSHADER: return D3DXPT_PIXELSHADER; case HLSL_TYPE_SAMPLER: switch (type->sampler_dim) { case HLSL_SAMPLER_DIM_1D: return D3DXPT_SAMPLER1D; case HLSL_SAMPLER_DIM_2D: return D3DXPT_SAMPLER2D; case HLSL_SAMPLER_DIM_3D: return D3DXPT_SAMPLER3D; case HLSL_SAMPLER_DIM_CUBE: return D3DXPT_SAMPLERCUBE; case HLSL_SAMPLER_DIM_GENERIC: return D3DXPT_SAMPLER; default: ERR("Invalid dimension %#x.\n", type->sampler_dim); } break; case HLSL_TYPE_STRING: return D3DXPT_STRING; case HLSL_TYPE_TEXTURE: switch (type->sampler_dim) { case HLSL_SAMPLER_DIM_1D: return D3DXPT_TEXTURE1D; case HLSL_SAMPLER_DIM_2D: return D3DXPT_TEXTURE2D; case HLSL_SAMPLER_DIM_3D: return D3DXPT_TEXTURE3D; case HLSL_SAMPLER_DIM_CUBE: return D3DXPT_TEXTURECUBE; case HLSL_SAMPLER_DIM_GENERIC: return D3DXPT_TEXTURE; default: ERR("Invalid dimension %#x.\n", type->sampler_dim); } break; case HLSL_TYPE_VERTEXSHADER: return D3DXPT_VERTEXSHADER; case HLSL_TYPE_VOID: return D3DXPT_VOID; default: assert(0); } assert(0); return 0; } static const struct hlsl_type *get_array_type(const struct hlsl_type *type) { if (type->type == HLSL_CLASS_ARRAY) return get_array_type(type->e.array.type); return type; } static unsigned int get_array_size(const struct hlsl_type *type) { if (type->type == HLSL_CLASS_ARRAY) return get_array_size(type->e.array.type) * type->e.array.elements_count; return 1; } static void write_sm1_type(struct bytecode_buffer *buffer, struct hlsl_type *type, unsigned int ctab_start) { const struct hlsl_type *array_type = get_array_type(type); unsigned int fields_offset = 0, field_count = 0; unsigned int array_size = get_array_size(type); struct hlsl_struct_field *field; if (type->bytecode_offset) return; if (array_type->type == HLSL_CLASS_STRUCT) { LIST_FOR_EACH_ENTRY(field, array_type->e.elements, struct hlsl_struct_field, entry) { field->name_offset = buffer->count; put_string(buffer, field->name); write_sm1_type(buffer, field->type, ctab_start); } fields_offset = (buffer->count - ctab_start) * sizeof(*buffer->data); LIST_FOR_EACH_ENTRY(field, array_type->e.elements, struct hlsl_struct_field, entry) { put_dword(buffer, (field->name_offset - ctab_start) * sizeof(*buffer->data)); put_dword(buffer, (field->type->bytecode_offset - ctab_start) * sizeof(*buffer->data)); ++field_count; } } type->bytecode_offset = buffer->count; put_dword(buffer, sm1_class(type) | (sm1_base_type(type) << 16)); put_dword(buffer, type->dimy | (type->dimx << 16)); put_dword(buffer, array_size | (field_count << 16)); put_dword(buffer, fields_offset); } static void sm1_sort_extern(struct list *sorted, struct hlsl_ir_var *to_sort) { struct hlsl_ir_var *var; list_remove(&to_sort->extern_entry); LIST_FOR_EACH_ENTRY(var, sorted, struct hlsl_ir_var, extern_entry) { if (strcmp(to_sort->name, var->name) < 0) { list_add_before(&var->extern_entry, &to_sort->extern_entry); return; } } list_add_tail(sorted, &to_sort->extern_entry); } static void sm1_sort_externs(struct hlsl_ctx *ctx) { struct list sorted = LIST_INIT(sorted); struct hlsl_ir_var *var, *next; LIST_FOR_EACH_ENTRY_SAFE(var, next, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) sm1_sort_extern(&sorted, var); list_move_tail(&ctx->extern_vars, &sorted); } static void write_sm1_uniforms(struct hlsl_ctx *ctx, struct bytecode_buffer *buffer, struct hlsl_ir_function_decl *entry_func) { unsigned int ctab_start, vars_start; unsigned int uniform_count = 0; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->semantic && var->reg.allocated) { ++uniform_count; if (var->is_param && var->is_uniform) { struct vkd3d_string_buffer *name; if (!(name = vkd3d_string_buffer_get(&ctx->string_buffers))) { buffer->status = VKD3D_ERROR_OUT_OF_MEMORY; return; } vkd3d_string_buffer_printf(name, "$%s", var->name); vkd3d_free((char *)var->name); var->name = vkd3d_strdup(name->buffer); vkd3d_string_buffer_release(&ctx->string_buffers, name); } } } sm1_sort_externs(ctx); put_dword(buffer, 0); /* COMMENT tag + size */ put_dword(buffer, MAKEFOURCC('C','T','A','B')); ctab_start = buffer->count; put_dword(buffer, sizeof(D3DXSHADER_CONSTANTTABLE)); /* size of this header */ put_dword(buffer, 0); /* creator */ put_dword(buffer, sm1_version(ctx->profile->type, ctx->profile->major_version, ctx->profile->minor_version)); put_dword(buffer, uniform_count); put_dword(buffer, sizeof(D3DXSHADER_CONSTANTTABLE)); /* offset of constants */ put_dword(buffer, 0); /* FIXME: flags */ put_dword(buffer, 0); /* FIXME: target string */ vars_start = buffer->count; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->semantic && var->reg.allocated) { put_dword(buffer, 0); /* name */ put_dword(buffer, D3DXRS_FLOAT4 | (var->reg.id << 16)); put_dword(buffer, var->data_type->reg_size); put_dword(buffer, 0); /* type */ put_dword(buffer, 0); /* FIXME: default value */ } } uniform_count = 0; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->semantic && var->reg.allocated) { set_dword(buffer, vars_start + (uniform_count * 5), (buffer->count - ctab_start) * sizeof(*buffer->data)); put_string(buffer, var->name); write_sm1_type(buffer, var->data_type, ctab_start); set_dword(buffer, vars_start + (uniform_count * 5) + 3, (var->data_type->bytecode_offset - ctab_start) * sizeof(*buffer->data)); ++uniform_count; } } set_dword(buffer, ctab_start + 1, (buffer->count - ctab_start) * sizeof(*buffer->data)); put_string(buffer, vkd3d_shader_get_version(NULL, NULL)); set_dword(buffer, ctab_start - 2, D3DSIO_COMMENT | ((buffer->count - (ctab_start - 1)) << 16)); } static int write_sm1_shader(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, struct vkd3d_shader_code *out) { struct bytecode_buffer buffer = {0}; int ret; put_dword(&buffer, sm1_version(ctx->profile->type, ctx->profile->major_version, ctx->profile->minor_version)); write_sm1_uniforms(ctx, &buffer, entry_func); put_dword(&buffer, D3DSIO_END); if (!(ret = buffer.status)) { out->code = buffer.data; out->size = buffer.count * sizeof(*buffer.data); } return ret; } int hlsl_emit_dxbc(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, struct vkd3d_shader_code *out) { struct hlsl_ir_var *var; list_move_head(entry_func->body, &ctx->static_initializers); LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry) { if (var->data_type->type == HLSL_CLASS_OBJECT) list_add_tail(&ctx->extern_vars, &var->extern_entry); if (var->is_uniform) prepend_uniform_copy(ctx, entry_func->body, var); } LIST_FOR_EACH_ENTRY(var, entry_func->parameters, struct hlsl_ir_var, param_entry) { if (var->data_type->type == HLSL_CLASS_OBJECT) list_add_tail(&ctx->extern_vars, &var->extern_entry); if (var->is_uniform) prepend_uniform_copy(ctx, entry_func->body, var); if (var->is_input_varying) prepend_input_var_copy(ctx, entry_func->body, var); if (var->is_output_varying) append_output_var_copy(ctx, entry_func->body, var); } if (entry_func->return_var) append_output_var_copy(ctx, entry_func->body, entry_func->return_var); while (transform_ir(ctx, fold_redundant_casts, entry_func->body, NULL)); while (transform_ir(ctx, split_struct_copies, entry_func->body, NULL)); while (transform_ir(ctx, fold_constants, entry_func->body, NULL)); do compute_liveness(ctx, entry_func); while (transform_ir(ctx, dce, entry_func->body, NULL)); compute_liveness(ctx, entry_func); if (TRACE_ON()) rb_for_each_entry(&ctx->functions, dump_function, NULL); allocate_temp_registers(entry_func); if (ctx->profile->major_version < 4) allocate_const_registers(ctx, entry_func); if (ctx->failed) return VKD3D_ERROR_INVALID_SHADER; if (ctx->profile->major_version < 4) return write_sm1_shader(ctx, entry_func, out); else return VKD3D_ERROR_NOT_IMPLEMENTED; }