/* * HLSL optimization and code generation * * Copyright 2019-2020 Zebediah Figura for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "hlsl.h" static bool transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *), struct list *instrs, void *context) { struct hlsl_ir_node *instr, *next; bool progress = 0; LIST_FOR_EACH_ENTRY_SAFE(instr, next, instrs, struct hlsl_ir_node, entry) { if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); progress |= transform_ir(ctx, func, &iff->then_instrs, context); progress |= transform_ir(ctx, func, &iff->else_instrs, context); } else if (instr->type == HLSL_IR_LOOP) progress |= transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context); progress |= func(ctx, instr, context); } return progress; } static void replace_node(struct hlsl_ir_node *old, struct hlsl_ir_node *new) { struct hlsl_src *src, *next; LIST_FOR_EACH_ENTRY_SAFE(src, next, &old->uses, struct hlsl_src, entry) { hlsl_src_remove(src); hlsl_src_from_node(src, new); } list_remove(&old->entry); hlsl_free_instr(old); } static bool is_vec1(const struct hlsl_type *type) { return (type->type == HLSL_CLASS_SCALAR) || (type->type == HLSL_CLASS_VECTOR && type->dimx == 1); } static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { if (instr->type == HLSL_IR_EXPR) { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); const struct hlsl_type *src_type = expr->operands[0].node->data_type; const struct hlsl_type *dst_type = expr->node.data_type; if (expr->op != HLSL_IR_UNOP_CAST) return false; if (hlsl_types_are_equal(src_type, dst_type) || (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type))) { replace_node(&expr->node, expr->operands[0].node); return true; } } return false; } static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_struct_field *field; const struct hlsl_ir_load *rhs_load; struct hlsl_ir_assignment *assign; const struct hlsl_ir_node *rhs; const struct hlsl_type *type; if (instr->type != HLSL_IR_ASSIGNMENT) return false; assign = hlsl_ir_assignment(instr); rhs = assign->rhs.node; type = rhs->data_type; if (type->type != HLSL_CLASS_STRUCT) return false; rhs_load = hlsl_ir_load(rhs); LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { struct hlsl_ir_node *offset, *add; struct hlsl_ir_assignment *store; struct hlsl_ir_load *field_load; struct hlsl_ir_constant *c; if (!(c = hlsl_new_uint_constant(ctx, field->reg_offset * 4, instr->loc))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &c->node.entry); offset = &c->node; if (rhs_load->src.offset.node) { if (!(add = hlsl_new_binary_expr(HLSL_IR_BINOP_ADD, rhs_load->src.offset.node, &c->node))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &add->entry); offset = add; } if (!(field_load = hlsl_new_load(rhs_load->src.var, offset, field->type, instr->loc))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &field_load->node.entry); offset = &c->node; if (assign->lhs.offset.node) { if (!(add = hlsl_new_binary_expr(HLSL_IR_BINOP_ADD, assign->lhs.offset.node, &c->node))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &add->entry); offset = add; } if (!(store = hlsl_new_assignment(assign->lhs.var, offset, &field_load->node, 0, instr->loc))) { ctx->failed = true; return false; } list_add_before(&instr->entry, &store->node.entry); } /* Remove the assignment instruction, so that we can split structs * which contain other structs. Although assignment instructions * produce a value, we don't allow HLSL_IR_ASSIGNMENT to be used as * a source. */ list_remove(&assign->node.entry); hlsl_free_instr(&assign->node); return true; } static bool fold_constants(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_constant *arg1, *arg2 = NULL, *res; struct hlsl_ir_expr *expr; unsigned int i; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); for (i = 0; i < ARRAY_SIZE(expr->operands); ++i) { if (expr->operands[i].node && expr->operands[i].node->type != HLSL_IR_CONSTANT) return false; } arg1 = hlsl_ir_constant(expr->operands[0].node); if (expr->operands[1].node) arg2 = hlsl_ir_constant(expr->operands[1].node); if (!(res = vkd3d_calloc(1, sizeof(*res)))) { ctx->failed = true; return false; } init_node(&res->node, HLSL_IR_CONSTANT, instr->data_type, instr->loc); switch (instr->data_type->base_type) { case HLSL_TYPE_UINT: { unsigned int i; switch (expr->op) { case HLSL_IR_BINOP_ADD: for (i = 0; i < instr->data_type->dimx; ++i) res->value.u[i] = arg1->value.u[i] + arg2->value.u[i]; break; case HLSL_IR_BINOP_MUL: for (i = 0; i < instr->data_type->dimx; ++i) res->value.u[i] = arg1->value.u[i] * arg2->value.u[i]; break; default: FIXME("Fold uint op %#x.\n", expr->op); vkd3d_free(res); return false; } break; } default: FIXME("Fold type %#x op %#x.\n", instr->data_type->base_type, expr->op); vkd3d_free(res); return false; } list_add_before(&expr->node.entry, &res->node.entry); replace_node(&expr->node, &res->node); return true; } static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { switch (instr->type) { case HLSL_IR_CONSTANT: case HLSL_IR_EXPR: case HLSL_IR_LOAD: case HLSL_IR_SWIZZLE: if (list_empty(&instr->uses)) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; case HLSL_IR_ASSIGNMENT: { struct hlsl_ir_assignment *assignment = hlsl_ir_assignment(instr); struct hlsl_ir_var *var = assignment->lhs.var; if (var->last_read < instr->index) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; } case HLSL_IR_IF: case HLSL_IR_JUMP: case HLSL_IR_LOOP: break; } return false; } /* Allocate a unique, ordered index to each instruction, which will be used for * computing liveness ranges. */ static unsigned int index_instructions(struct list *instrs, unsigned int index) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { instr->index = index++; if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); index = index_instructions(&iff->then_instrs, index); index = index_instructions(&iff->else_instrs, index); } else if (instr->type == HLSL_IR_LOOP) { index = index_instructions(&hlsl_ir_loop(instr)->body, index); hlsl_ir_loop(instr)->next_index = index; } } return index; } static void dump_function_decl(struct rb_entry *entry, void *context) { struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry); if (func->body) hlsl_dump_function(func); } static void dump_function(struct rb_entry *entry, void *context) { struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry); rb_for_each_entry(&func->overloads, dump_function_decl, NULL); } /* Compute the earliest and latest liveness for each variable. In the case that * a variable is accessed inside of a loop, we promote its liveness to extend * to at least the range of the entire loop. Note that we don't need to do this * for anonymous nodes, since there's currently no way to use a node which was * calculated in an earlier iteration of the loop. */ static void compute_liveness_recurse(struct list *instrs, unsigned int loop_first, unsigned int loop_last) { struct hlsl_ir_node *instr; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(instr, instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_ASSIGNMENT: { struct hlsl_ir_assignment *assignment = hlsl_ir_assignment(instr); var = assignment->lhs.var; if (!var->first_write) var->first_write = loop_first ? min(instr->index, loop_first) : instr->index; assignment->rhs.node->last_read = instr->index; if (assignment->lhs.offset.node) assignment->lhs.offset.node->last_read = instr->index; break; } case HLSL_IR_EXPR: { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); unsigned int i; for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i) expr->operands[i].node->last_read = instr->index; break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); compute_liveness_recurse(&iff->then_instrs, loop_first, loop_last); compute_liveness_recurse(&iff->else_instrs, loop_first, loop_last); iff->condition.node->last_read = instr->index; break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); var = load->src.var; var->last_read = max(var->last_read, loop_last ? max(instr->index, loop_last) : instr->index); if (load->src.offset.node) load->src.offset.node->last_read = instr->index; break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index, loop_last ? loop_last : loop->next_index); break; } case HLSL_IR_SWIZZLE: { struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr); swizzle->val.node->last_read = instr->index; break; } case HLSL_IR_CONSTANT: case HLSL_IR_JUMP: break; } } } static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct hlsl_scope *scope; struct hlsl_ir_var *var; /* Index 0 means unused; index 1 means function entry, so start at 2. */ index_instructions(entry_func->body, 2); LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry) { LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry) var->first_write = var->last_read = 0; } LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry) { var->first_write = 1; } LIST_FOR_EACH_ENTRY(var, entry_func->parameters, struct hlsl_ir_var, param_entry) { if (var->modifiers & HLSL_STORAGE_IN) var->first_write = 1; if (var->modifiers & HLSL_STORAGE_OUT) var->last_read = UINT_MAX; } if (entry_func->return_var) entry_func->return_var->last_read = UINT_MAX; compute_liveness_recurse(entry_func->body, 0, 0); } int hlsl_emit_dxbc(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { list_move_head(entry_func->body, &ctx->static_initializers); while (transform_ir(ctx, fold_redundant_casts, entry_func->body, NULL)); while (transform_ir(ctx, split_struct_copies, entry_func->body, NULL)); while (transform_ir(ctx, fold_constants, entry_func->body, NULL)); do compute_liveness(ctx, entry_func); while (transform_ir(ctx, dce, entry_func->body, NULL)); compute_liveness(ctx, entry_func); if (TRACE_ON()) rb_for_each_entry(&ctx->functions, dump_function, NULL); if (ctx->failed) return VKD3D_ERROR_INVALID_SHADER; return VKD3D_ERROR_NOT_IMPLEMENTED; }