/* * HLSL optimization and code generation * * Copyright 2019-2020 Zebediah Figura for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "hlsl.h" #include /* Split uniforms into two variables representing the constant and temp * registers, and copy the former to the latter, so that writes to uniforms * work. */ static void prepend_uniform_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *temp) { struct vkd3d_string_buffer *name; struct hlsl_ir_var *uniform; struct hlsl_ir_store *store; struct hlsl_ir_load *load; /* Use the synthetic name for the temp, rather than the uniform, so that we * can write the uniform name into the shader reflection data. */ if (!(uniform = hlsl_new_var(ctx, temp->name, temp->data_type, temp->loc, NULL, 0, &temp->reg_reservation))) return; list_add_before(&temp->scope_entry, &uniform->scope_entry); list_add_tail(&ctx->extern_vars, &uniform->extern_entry); uniform->is_uniform = 1; uniform->is_param = temp->is_param; uniform->buffer = temp->buffer; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", temp->name); temp->name = hlsl_strdup(ctx, name->buffer); hlsl_release_string_buffer(ctx, name); if (!(load = hlsl_new_var_load(ctx, uniform, temp->loc))) return; list_add_head(instrs, &load->node.entry); if (!(store = hlsl_new_simple_store(ctx, temp, &load->node))) return; list_add_after(&load->node.entry, &store->node.entry); } static void prepend_input_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset, const struct hlsl_semantic *semantic) { struct vkd3d_string_buffer *name; struct hlsl_semantic new_semantic; struct hlsl_ir_constant *offset; struct hlsl_ir_store *store; struct hlsl_ir_load *load; struct hlsl_ir_var *input; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", semantic->name, semantic->index); if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name))) { hlsl_release_string_buffer(ctx, name); return; } new_semantic.index = semantic->index; if (!(input = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, var->loc, &new_semantic, 0, NULL))) { hlsl_release_string_buffer(ctx, name); vkd3d_free((void *)new_semantic.name); return; } hlsl_release_string_buffer(ctx, name); input->is_input_semantic = 1; input->is_param = var->is_param; list_add_before(&var->scope_entry, &input->scope_entry); list_add_tail(&ctx->extern_vars, &input->extern_entry); if (!(load = hlsl_new_var_load(ctx, input, var->loc))) return; list_add_head(instrs, &load->node.entry); if (!(offset = hlsl_new_uint_constant(ctx, field_offset, var->loc))) return; list_add_after(&load->node.entry, &offset->node.entry); if (!(store = hlsl_new_store(ctx, var, &offset->node, &load->node, 0, var->loc))) return; list_add_after(&offset->node.entry, &store->node.entry); } static void prepend_input_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset) { struct hlsl_struct_field *field; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (field->type->type == HLSL_CLASS_STRUCT) prepend_input_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset); else if (field->semantic.name) prepend_input_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, &field->semantic); else hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); } } /* Split inputs into two variables representing the semantic and temp registers, * and copy the former to the latter, so that writes to input variables work. */ static void prepend_input_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { if (var->data_type->type == HLSL_CLASS_STRUCT) prepend_input_struct_copy(ctx, instrs, var, var->data_type, 0); else if (var->semantic.name) prepend_input_copy(ctx, instrs, var, var->data_type, 0, &var->semantic); } static void append_output_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset, const struct hlsl_semantic *semantic) { struct vkd3d_string_buffer *name; struct hlsl_semantic new_semantic; struct hlsl_ir_constant *offset; struct hlsl_ir_store *store; struct hlsl_ir_var *output; struct hlsl_ir_load *load; if (!(name = hlsl_get_string_buffer(ctx))) return; vkd3d_string_buffer_printf(name, "", semantic->name, semantic->index); if (!(new_semantic.name = hlsl_strdup(ctx, semantic->name))) { hlsl_release_string_buffer(ctx, name); return; } new_semantic.index = semantic->index; if (!(output = hlsl_new_var(ctx, hlsl_strdup(ctx, name->buffer), type, var->loc, &new_semantic, 0, NULL))) { vkd3d_free((void *)new_semantic.name); hlsl_release_string_buffer(ctx, name); return; } hlsl_release_string_buffer(ctx, name); output->is_output_semantic = 1; output->is_param = var->is_param; list_add_before(&var->scope_entry, &output->scope_entry); list_add_tail(&ctx->extern_vars, &output->extern_entry); if (!(offset = hlsl_new_uint_constant(ctx, field_offset, var->loc))) return; list_add_tail(instrs, &offset->node.entry); if (!(load = hlsl_new_load(ctx, var, &offset->node, type, var->loc))) return; list_add_after(&offset->node.entry, &load->node.entry); if (!(store = hlsl_new_store(ctx, output, NULL, &load->node, 0, var->loc))) return; list_add_after(&load->node.entry, &store->node.entry); } static void append_output_struct_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var, struct hlsl_type *type, unsigned int field_offset) { struct hlsl_struct_field *field; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (field->type->type == HLSL_CLASS_STRUCT) append_output_struct_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset); else if (field->semantic.name) append_output_copy(ctx, instrs, var, field->type, field_offset + field->reg_offset, &field->semantic); else hlsl_error(ctx, field->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Field '%s' is missing a semantic.", field->name); } } /* Split outputs into two variables representing the temp and semantic * registers, and copy the former to the latter, so that reads from output * variables work. */ static void append_output_var_copy(struct hlsl_ctx *ctx, struct list *instrs, struct hlsl_ir_var *var) { if (var->data_type->type == HLSL_CLASS_STRUCT) append_output_struct_copy(ctx, instrs, var, var->data_type, 0); else if (var->semantic.name) append_output_copy(ctx, instrs, var, var->data_type, 0, &var->semantic); } static bool transform_ir(struct hlsl_ctx *ctx, bool (*func)(struct hlsl_ctx *ctx, struct hlsl_ir_node *, void *), struct hlsl_block *block, void *context) { struct hlsl_ir_node *instr, *next; bool progress = 0; LIST_FOR_EACH_ENTRY_SAFE(instr, next, &block->instrs, struct hlsl_ir_node, entry) { if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); progress |= transform_ir(ctx, func, &iff->then_instrs, context); progress |= transform_ir(ctx, func, &iff->else_instrs, context); } else if (instr->type == HLSL_IR_LOOP) progress |= transform_ir(ctx, func, &hlsl_ir_loop(instr)->body, context); progress |= func(ctx, instr, context); } return progress; } static void replace_node(struct hlsl_ir_node *old, struct hlsl_ir_node *new) { struct hlsl_src *src, *next; LIST_FOR_EACH_ENTRY_SAFE(src, next, &old->uses, struct hlsl_src, entry) { hlsl_src_remove(src); hlsl_src_from_node(src, new); } list_remove(&old->entry); hlsl_free_instr(old); } static bool is_vec1(const struct hlsl_type *type) { return (type->type == HLSL_CLASS_SCALAR) || (type->type == HLSL_CLASS_VECTOR && type->dimx == 1); } static bool fold_redundant_casts(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { if (instr->type == HLSL_IR_EXPR) { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); const struct hlsl_type *src_type = expr->operands[0].node->data_type; const struct hlsl_type *dst_type = expr->node.data_type; if (expr->op != HLSL_OP1_CAST) return false; if (hlsl_types_are_equal(src_type, dst_type) || (src_type->base_type == dst_type->base_type && is_vec1(src_type) && is_vec1(dst_type))) { replace_node(&expr->node, expr->operands[0].node); return true; } } return false; } /* Helper for split_array_copies() and split_struct_copies(). Inserts new * instructions right before "store". */ static bool split_copy(struct hlsl_ctx *ctx, struct hlsl_ir_store *store, const struct hlsl_ir_load *load, const unsigned int offset, struct hlsl_type *type) { struct hlsl_ir_node *offset_instr, *add; struct hlsl_ir_store *split_store; struct hlsl_ir_load *split_load; struct hlsl_ir_constant *c; if (!(c = hlsl_new_uint_constant(ctx, offset, store->node.loc))) return false; list_add_before(&store->node.entry, &c->node.entry); offset_instr = &c->node; if (load->src.offset.node) { if (!(add = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, load->src.offset.node, &c->node))) return false; list_add_before(&store->node.entry, &add->entry); offset_instr = add; } if (!(split_load = hlsl_new_load(ctx, load->src.var, offset_instr, type, store->node.loc))) return false; list_add_before(&store->node.entry, &split_load->node.entry); offset_instr = &c->node; if (store->lhs.offset.node) { if (!(add = hlsl_new_binary_expr(ctx, HLSL_OP2_ADD, store->lhs.offset.node, &c->node))) return false; list_add_before(&store->node.entry, &add->entry); offset_instr = add; } if (!(split_store = hlsl_new_store(ctx, store->lhs.var, offset_instr, &split_load->node, 0, store->node.loc))) return false; list_add_before(&store->node.entry, &split_store->node.entry); return true; } static bool split_array_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_ir_node *rhs; struct hlsl_type *element_type; const struct hlsl_type *type; unsigned int element_size, i; struct hlsl_ir_store *store; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->type != HLSL_CLASS_ARRAY) return false; element_type = type->e.array.type; element_size = element_type->reg_size; for (i = 0; i < type->e.array.elements_count; ++i) { if (!split_copy(ctx, store, hlsl_ir_load(rhs), i * element_size, element_type)) return false; } /* Remove the store instruction, so that we can split structs which contain * other structs. Although assignments produce a value, we don't allow * HLSL_IR_STORE to be used as a source. */ list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool split_struct_copies(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { const struct hlsl_struct_field *field; const struct hlsl_ir_node *rhs; const struct hlsl_type *type; struct hlsl_ir_store *store; if (instr->type != HLSL_IR_STORE) return false; store = hlsl_ir_store(instr); rhs = store->rhs.node; type = rhs->data_type; if (type->type != HLSL_CLASS_STRUCT) return false; LIST_FOR_EACH_ENTRY(field, type->e.elements, struct hlsl_struct_field, entry) { if (!split_copy(ctx, store, hlsl_ir_load(rhs), field->reg_offset, field->type)) return false; } /* Remove the store instruction, so that we can split structs which contain * other structs. Although assignments produce a value, we don't allow * HLSL_IR_STORE to be used as a source. */ list_remove(&store->node.entry); hlsl_free_instr(&store->node); return true; } static bool fold_constants(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_constant *arg1, *arg2 = NULL, *res; struct hlsl_ir_expr *expr; unsigned int i, dimx; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); for (i = 0; i < ARRAY_SIZE(expr->operands); ++i) { if (expr->operands[i].node && expr->operands[i].node->type != HLSL_IR_CONSTANT) return false; } arg1 = hlsl_ir_constant(expr->operands[0].node); if (expr->operands[1].node) arg2 = hlsl_ir_constant(expr->operands[1].node); dimx = instr->data_type->dimx; if (!(res = hlsl_alloc(ctx, sizeof(*res)))) return false; init_node(&res->node, HLSL_IR_CONSTANT, instr->data_type, instr->loc); switch (instr->data_type->base_type) { case HLSL_TYPE_FLOAT: { switch (expr->op) { case HLSL_OP1_CAST: if (instr->data_type->dimx != arg1->node.data_type->dimx || instr->data_type->dimy != arg1->node.data_type->dimy) { FIXME("Cast from %s to %s.\n", debug_hlsl_type(ctx, arg1->node.data_type), debug_hlsl_type(ctx, instr->data_type)); vkd3d_free(res); return false; } switch (arg1->node.data_type->base_type) { case HLSL_TYPE_INT: for (i = 0; i < dimx; ++i) res->value[i].f = arg1->value[i].i; break; case HLSL_TYPE_UINT: for (i = 0; i < dimx; ++i) res->value[i].f = arg1->value[i].u; break; default: FIXME("Cast from %s to %s.\n", debug_hlsl_type(ctx, arg1->node.data_type), debug_hlsl_type(ctx, instr->data_type)); vkd3d_free(res); return false; } break; default: FIXME("Fold float op %#x.\n", expr->op); vkd3d_free(res); return false; } break; } case HLSL_TYPE_UINT: { switch (expr->op) { case HLSL_OP1_NEG: for (i = 0; i < instr->data_type->dimx; ++i) res->value[i].u = -arg1->value[i].u; break; case HLSL_OP2_ADD: for (i = 0; i < instr->data_type->dimx; ++i) res->value[i].u = arg1->value[i].u + arg2->value[i].u; break; case HLSL_OP2_MUL: for (i = 0; i < instr->data_type->dimx; ++i) res->value[i].u = arg1->value[i].u * arg2->value[i].u; break; default: FIXME("Fold uint op %#x.\n", expr->op); vkd3d_free(res); return false; } break; } default: FIXME("Fold type %#x op %#x.\n", instr->data_type->base_type, expr->op); vkd3d_free(res); return false; } list_add_before(&expr->node.entry, &res->node.entry); replace_node(&expr->node, &res->node); return true; } /* Lower DIV to RCP + MUL. */ static bool lower_division(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { struct hlsl_ir_expr *expr; struct hlsl_ir_node *rcp; if (instr->type != HLSL_IR_EXPR) return false; expr = hlsl_ir_expr(instr); if (expr->op != HLSL_OP2_DIV) return false; if (!(rcp = hlsl_new_unary_expr(ctx, HLSL_OP1_RCP, expr->operands[1].node, instr->loc))) return false; list_add_before(&expr->node.entry, &rcp->entry); expr->op = HLSL_OP2_MUL; hlsl_src_remove(&expr->operands[1]); hlsl_src_from_node(&expr->operands[1], rcp); return true; } static bool dce(struct hlsl_ctx *ctx, struct hlsl_ir_node *instr, void *context) { switch (instr->type) { case HLSL_IR_CONSTANT: case HLSL_IR_EXPR: case HLSL_IR_LOAD: case HLSL_IR_RESOURCE_LOAD: case HLSL_IR_SWIZZLE: if (list_empty(&instr->uses)) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); struct hlsl_ir_var *var = store->lhs.var; if (var->last_read < instr->index) { list_remove(&instr->entry); hlsl_free_instr(instr); return true; } break; } case HLSL_IR_IF: case HLSL_IR_JUMP: case HLSL_IR_LOOP: break; } return false; } /* Allocate a unique, ordered index to each instruction, which will be used for * computing liveness ranges. */ static unsigned int index_instructions(struct hlsl_block *block, unsigned int index) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { instr->index = index++; if (instr->type == HLSL_IR_IF) { struct hlsl_ir_if *iff = hlsl_ir_if(instr); index = index_instructions(&iff->then_instrs, index); index = index_instructions(&iff->else_instrs, index); } else if (instr->type == HLSL_IR_LOOP) { index = index_instructions(&hlsl_ir_loop(instr)->body, index); hlsl_ir_loop(instr)->next_index = index; } } return index; } static void dump_function_decl(struct rb_entry *entry, void *context) { struct hlsl_ir_function_decl *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function_decl, entry); struct hlsl_ctx *ctx = context; if (func->has_body) hlsl_dump_function(ctx, func); } static void dump_function(struct rb_entry *entry, void *context) { struct hlsl_ir_function *func = RB_ENTRY_VALUE(entry, struct hlsl_ir_function, entry); struct hlsl_ctx *ctx = context; rb_for_each_entry(&func->overloads, dump_function_decl, ctx); } /* Compute the earliest and latest liveness for each variable. In the case that * a variable is accessed inside of a loop, we promote its liveness to extend * to at least the range of the entire loop. Note that we don't need to do this * for anonymous nodes, since there's currently no way to use a node which was * calculated in an earlier iteration of the loop. */ static void compute_liveness_recurse(struct hlsl_block *block, unsigned int loop_first, unsigned int loop_last) { struct hlsl_ir_node *instr; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { const unsigned int var_last_read = loop_last ? max(instr->index, loop_last) : instr->index; switch (instr->type) { case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); var = store->lhs.var; if (!var->first_write) var->first_write = loop_first ? min(instr->index, loop_first) : instr->index; store->rhs.node->last_read = instr->index; if (store->lhs.offset.node) store->lhs.offset.node->last_read = instr->index; break; } case HLSL_IR_EXPR: { struct hlsl_ir_expr *expr = hlsl_ir_expr(instr); unsigned int i; for (i = 0; i < ARRAY_SIZE(expr->operands) && expr->operands[i].node; ++i) expr->operands[i].node->last_read = instr->index; break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); compute_liveness_recurse(&iff->then_instrs, loop_first, loop_last); compute_liveness_recurse(&iff->else_instrs, loop_first, loop_last); iff->condition.node->last_read = instr->index; break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); var = load->src.var; var->last_read = max(var->last_read, var_last_read); if (load->src.offset.node) load->src.offset.node->last_read = instr->index; break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); compute_liveness_recurse(&loop->body, loop_first ? loop_first : instr->index, loop_last ? loop_last : loop->next_index); break; } case HLSL_IR_RESOURCE_LOAD: { struct hlsl_ir_resource_load *load = hlsl_ir_resource_load(instr); var = load->resource.var; var->last_read = max(var->last_read, var_last_read); if (load->resource.offset.node) load->resource.offset.node->last_read = instr->index; load->coords.node->last_read = instr->index; break; } case HLSL_IR_SWIZZLE: { struct hlsl_ir_swizzle *swizzle = hlsl_ir_swizzle(instr); swizzle->val.node->last_read = instr->index; break; } case HLSL_IR_CONSTANT: case HLSL_IR_JUMP: break; } } } static void compute_liveness(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct hlsl_scope *scope; struct hlsl_ir_var *var; /* Index 0 means unused; index 1 means function entry, so start at 2. */ index_instructions(&entry_func->body, 2); LIST_FOR_EACH_ENTRY(scope, &ctx->scopes, struct hlsl_scope, entry) { LIST_FOR_EACH_ENTRY(var, &scope->vars, struct hlsl_ir_var, scope_entry) var->first_write = var->last_read = 0; } LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform || var->is_input_semantic) var->first_write = 1; else if (var->is_output_semantic) var->last_read = UINT_MAX; } compute_liveness_recurse(&entry_func->body, 0, 0); } struct liveness { size_t size; uint32_t reg_count; struct { /* 0 if not live yet. */ unsigned int last_read; } *regs; }; static unsigned int get_available_writemask(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int component_count) { unsigned int i, writemask = 0, count = 0; for (i = 0; i < 4; ++i) { if (liveness->regs[component_idx + i].last_read <= first_write) { writemask |= 1u << i; if (++count == component_count) return writemask; } } return 0; } static bool resize_liveness(struct hlsl_ctx *ctx, struct liveness *liveness, size_t new_count) { size_t old_capacity = liveness->size; if (!hlsl_array_reserve(ctx, (void **)&liveness->regs, &liveness->size, new_count, sizeof(*liveness->regs))) return false; if (liveness->size > old_capacity) memset(liveness->regs + old_capacity, 0, (liveness->size - old_capacity) * sizeof(*liveness->regs)); return true; } static struct hlsl_reg allocate_register(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int component_count) { unsigned int component_idx, writemask, i; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if ((writemask = get_available_writemask(liveness, first_write, component_idx, component_count))) break; } if (component_idx == liveness->size) { if (!resize_liveness(ctx, liveness, component_idx + 4)) return ret; writemask = (1u << component_count) - 1; } for (i = 0; i < 4; ++i) { if (writemask & (1u << i)) liveness->regs[component_idx + i].last_read = last_read; } ret.id = component_idx / 4; ret.writemask = writemask; ret.allocated = true; liveness->reg_count = max(liveness->reg_count, ret.id + 1); return ret; } static bool is_range_available(struct liveness *liveness, unsigned int first_write, unsigned int component_idx, unsigned int component_count) { unsigned int i; for (i = 0; i < component_count; i += 4) { if (!get_available_writemask(liveness, first_write, component_idx + i, 4)) return false; } return true; } static struct hlsl_reg allocate_range(struct hlsl_ctx *ctx, struct liveness *liveness, unsigned int first_write, unsigned int last_read, unsigned int component_count) { unsigned int i, component_idx; struct hlsl_reg ret = {0}; for (component_idx = 0; component_idx < liveness->size; component_idx += 4) { if (is_range_available(liveness, first_write, component_idx, min(component_count, liveness->size - component_idx))) break; } if (!resize_liveness(ctx, liveness, component_idx + component_count)) return ret; for (i = 0; i < component_count; ++i) liveness->regs[component_idx + i].last_read = last_read; ret.id = component_idx / 4; ret.allocated = true; liveness->reg_count = max(liveness->reg_count, ret.id + align(component_count, 4)); return ret; } static const char *debug_register(char class, struct hlsl_reg reg, const struct hlsl_type *type) { static const char writemask_offset[] = {'w','x','y','z'}; if (type->reg_size > 4) { if (type->reg_size & 3) return vkd3d_dbg_sprintf("%c%u-%c%u.%c", class, reg.id, class, reg.id + (type->reg_size / 4), writemask_offset[type->reg_size & 3]); return vkd3d_dbg_sprintf("%c%u-%c%u", class, reg.id, class, reg.id + (type->reg_size / 4) - 1); } return vkd3d_dbg_sprintf("%c%u%s", class, reg.id, debug_hlsl_writemask(reg.writemask)); } static void allocate_variable_temp_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, struct liveness *liveness) { if (var->is_input_semantic || var->is_output_semantic || var->is_uniform) return; if (!var->reg.allocated && var->last_read) { if (var->data_type->reg_size > 4) var->reg = allocate_range(ctx, liveness, var->first_write, var->last_read, var->data_type->reg_size); else var->reg = allocate_register(ctx, liveness, var->first_write, var->last_read, var->data_type->dimx); TRACE("Allocated %s to %s (liveness %u-%u).\n", var->name, debug_register('r', var->reg, var->data_type), var->first_write, var->last_read); } } static void allocate_temp_registers_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct liveness *liveness) { struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { if (!instr->reg.allocated && instr->last_read) { if (instr->data_type->reg_size > 4) instr->reg = allocate_range(ctx, liveness, instr->index, instr->last_read, instr->data_type->reg_size); else instr->reg = allocate_register(ctx, liveness, instr->index, instr->last_read, instr->data_type->dimx); TRACE("Allocated anonymous expression @%u to %s (liveness %u-%u).\n", instr->index, debug_register('r', instr->reg, instr->data_type), instr->index, instr->last_read); } switch (instr->type) { case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_temp_registers_recurse(ctx, &iff->then_instrs, liveness); allocate_temp_registers_recurse(ctx, &iff->else_instrs, liveness); break; } case HLSL_IR_LOAD: { struct hlsl_ir_load *load = hlsl_ir_load(instr); /* We need to at least allocate a variable for undefs. * FIXME: We should probably find a way to remove them instead. */ allocate_variable_temp_register(ctx, load->src.var, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_temp_registers_recurse(ctx, &loop->body, liveness); break; } case HLSL_IR_STORE: { struct hlsl_ir_store *store = hlsl_ir_store(instr); allocate_variable_temp_register(ctx, store->lhs.var, liveness); break; } default: break; } } } static void allocate_const_registers_recurse(struct hlsl_ctx *ctx, struct hlsl_block *block, struct liveness *liveness) { struct hlsl_constant_defs *defs = &ctx->constant_defs; struct hlsl_ir_node *instr; LIST_FOR_EACH_ENTRY(instr, &block->instrs, struct hlsl_ir_node, entry) { switch (instr->type) { case HLSL_IR_CONSTANT: { struct hlsl_ir_constant *constant = hlsl_ir_constant(instr); const struct hlsl_type *type = instr->data_type; unsigned int x, y, i, writemask, end_reg; unsigned int reg_size = type->reg_size; if (reg_size > 4) constant->reg = allocate_range(ctx, liveness, 1, UINT_MAX, reg_size); else constant->reg = allocate_register(ctx, liveness, 1, UINT_MAX, type->dimx); TRACE("Allocated constant @%u to %s.\n", instr->index, debug_register('c', constant->reg, type)); if (!hlsl_array_reserve(ctx, (void **)&defs->values, &defs->size, constant->reg.id + reg_size / 4, sizeof(*defs->values))) return; end_reg = constant->reg.id + reg_size / 4; if (end_reg > defs->count) { memset(&defs->values[defs->count], 0, sizeof(*defs->values) * (end_reg - defs->count)); defs->count = end_reg; } assert(type->type <= HLSL_CLASS_LAST_NUMERIC); if (!(writemask = constant->reg.writemask)) writemask = (1u << type->dimx) - 1; for (y = 0; y < type->dimy; ++y) { for (x = 0, i = 0; x < 4; ++x) { const union hlsl_constant_value *value; float f; if (!(writemask & (1u << x))) continue; value = &constant->value[i++]; switch (type->base_type) { case HLSL_TYPE_BOOL: f = value->b; break; case HLSL_TYPE_FLOAT: case HLSL_TYPE_HALF: f = value->f; break; case HLSL_TYPE_INT: f = value->i; break; case HLSL_TYPE_UINT: f = value->u; break; case HLSL_TYPE_DOUBLE: FIXME("Double constant.\n"); return; default: assert(0); return; } defs->values[constant->reg.id + y].f[x] = f; } } break; } case HLSL_IR_IF: { struct hlsl_ir_if *iff = hlsl_ir_if(instr); allocate_const_registers_recurse(ctx, &iff->then_instrs, liveness); allocate_const_registers_recurse(ctx, &iff->else_instrs, liveness); break; } case HLSL_IR_LOOP: { struct hlsl_ir_loop *loop = hlsl_ir_loop(instr); allocate_const_registers_recurse(ctx, &loop->body, liveness); break; } default: break; } } } static void allocate_const_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; struct hlsl_ir_var *var; allocate_const_registers_recurse(ctx, &entry_func->body, &liveness); LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform && var->last_read) { if (var->data_type->reg_size > 4) var->reg = allocate_range(ctx, &liveness, 1, UINT_MAX, var->data_type->reg_size); else { var->reg = allocate_register(ctx, &liveness, 1, UINT_MAX, 4); var->reg.writemask = (1u << var->data_type->dimx) - 1; } TRACE("Allocated %s to %s.\n", var->name, debug_register('c', var->reg, var->data_type)); } } } /* Simple greedy temporary register allocation pass that just assigns a unique * index to all (simultaneously live) variables or intermediate values. Agnostic * as to how many registers are actually available for the current backend, and * does not handle constants. */ static void allocate_temp_registers(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func) { struct liveness liveness = {0}; allocate_temp_registers_recurse(ctx, &entry_func->body, &liveness); ctx->temp_count = liveness.reg_count; vkd3d_free(liveness.regs); } static void allocate_semantic_register(struct hlsl_ctx *ctx, struct hlsl_ir_var *var, unsigned int *counter, bool output) { static const char *shader_names[] = { [VKD3D_SHADER_TYPE_PIXEL] = "Pixel", [VKD3D_SHADER_TYPE_VERTEX] = "Vertex", [VKD3D_SHADER_TYPE_GEOMETRY] = "Geometry", [VKD3D_SHADER_TYPE_HULL] = "Hull", [VKD3D_SHADER_TYPE_DOMAIN] = "Domain", [VKD3D_SHADER_TYPE_COMPUTE] = "Compute", }; unsigned int type; uint32_t reg; bool builtin; assert(var->semantic.name); if (ctx->profile->major_version < 4) { D3DDECLUSAGE usage; uint32_t usage_idx; if (!hlsl_sm1_usage_from_semantic(&var->semantic, &usage, &usage_idx)) { hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Invalid semantic '%s'.", var->semantic.name); return; } if ((!output && !var->last_read) || (output && !var->first_write)) return; builtin = hlsl_sm1_register_from_semantic(ctx, &var->semantic, output, &type, ®); } else { D3D_NAME usage; bool has_idx; if (!hlsl_sm4_usage_from_semantic(ctx, &var->semantic, output, &usage)) { hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_SEMANTIC, "Invalid semantic '%s'.", var->semantic.name); return; } if ((builtin = hlsl_sm4_register_from_semantic(ctx, &var->semantic, output, &type, &has_idx))) reg = has_idx ? var->semantic.index : 0; } if (builtin) { TRACE("%s %s semantic %s[%u] matches predefined register %#x[%u].\n", shader_names[ctx->profile->type], output ? "output" : "input", var->semantic.name, var->semantic.index, type, reg); } else { var->reg.allocated = true; var->reg.id = (*counter)++; var->reg.writemask = (1 << var->data_type->dimx) - 1; TRACE("Allocated %s to %s.\n", var->name, debug_register(output ? 'o' : 'v', var->reg, var->data_type)); } } static void allocate_semantic_registers(struct hlsl_ctx *ctx) { unsigned int input_counter = 0, output_counter = 0; struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_input_semantic) allocate_semantic_register(ctx, var, &input_counter, false); if (var->is_output_semantic) allocate_semantic_register(ctx, var, &output_counter, true); } } static const struct hlsl_buffer *get_reserved_buffer(struct hlsl_ctx *ctx, uint32_t index) { const struct hlsl_buffer *buffer; LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, const struct hlsl_buffer, entry) { if (buffer->used_size && buffer->reservation.type == 'b' && buffer->reservation.index == index) return buffer; } return NULL; } static void calculate_buffer_offset(struct hlsl_ir_var *var) { struct hlsl_buffer *buffer = var->buffer; buffer->size = hlsl_type_get_sm4_offset(var->data_type, buffer->size); var->buffer_offset = buffer->size; TRACE("Allocated buffer offset %u to %s.\n", var->buffer_offset, var->name); buffer->size += var->data_type->reg_size; if (var->last_read) buffer->used_size = buffer->size; } static void allocate_buffers(struct hlsl_ctx *ctx) { struct hlsl_buffer *buffer; struct hlsl_ir_var *var; uint32_t index = 0; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (var->is_uniform) { if (var->is_param) var->buffer = ctx->params_buffer; calculate_buffer_offset(var); } } LIST_FOR_EACH_ENTRY(buffer, &ctx->buffers, struct hlsl_buffer, entry) { if (!buffer->used_size) continue; if (buffer->type == HLSL_BUFFER_CONSTANT) { if (buffer->reservation.type == 'b') { const struct hlsl_buffer *reserved_buffer = get_reserved_buffer(ctx, buffer->reservation.index); if (reserved_buffer && reserved_buffer != buffer) { hlsl_error(ctx, buffer->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS, "Multiple buffers bound to cb%u.", buffer->reservation.index); hlsl_note(ctx, reserved_buffer->loc, VKD3D_SHADER_LOG_ERROR, "Buffer %s is already bound to cb%u.", reserved_buffer->name, buffer->reservation.index); } buffer->reg.id = buffer->reservation.index; buffer->reg.allocated = true; TRACE("Allocated reserved %s to cb%u.\n", buffer->name, index); } else if (!buffer->reservation.type) { while (get_reserved_buffer(ctx, index)) ++index; buffer->reg.id = index; buffer->reg.allocated = true; TRACE("Allocated %s to cb%u.\n", buffer->name, index); ++index; } else { hlsl_error(ctx, buffer->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "Constant buffers must be allocated to register type 'b'."); } } else { FIXME("Allocate registers for texture buffers.\n"); } } } static const struct hlsl_ir_var *get_reserved_texture(struct hlsl_ctx *ctx, uint32_t index) { const struct hlsl_ir_var *var; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, const struct hlsl_ir_var, extern_entry) { if (var->last_read && var->reg_reservation.type == 't' && var->reg_reservation.index == index) return var; } return NULL; } static void allocate_textures(struct hlsl_ctx *ctx) { struct hlsl_ir_var *var; uint32_t index = 0; LIST_FOR_EACH_ENTRY(var, &ctx->extern_vars, struct hlsl_ir_var, extern_entry) { if (!var->last_read || var->data_type->type != HLSL_CLASS_OBJECT || var->data_type->base_type != HLSL_TYPE_TEXTURE) continue; if (var->reg_reservation.type == 't') { const struct hlsl_ir_var *reserved_texture = get_reserved_texture(ctx, var->reg_reservation.index); if (reserved_texture && reserved_texture != var) { hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_OVERLAPPING_RESERVATIONS, "Multiple textures bound to t%u.", var->reg_reservation.index); hlsl_note(ctx, reserved_texture->loc, VKD3D_SHADER_LOG_ERROR, "Texture '%s' is already bound to t%u.", reserved_texture->name, var->reg_reservation.index); } var->reg.id = var->reg_reservation.index; var->reg.allocated = true; TRACE("Allocated reserved %s to t%u.\n", var->name, index); } else if (!var->reg_reservation.type) { while (get_reserved_texture(ctx, index)) ++index; var->reg.id = index; var->reg.allocated = true; TRACE("Allocated %s to t%u.\n", var->name, index); ++index; } else { hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_INVALID_RESERVATION, "Textures must be bound to register type 't'."); } } } static bool type_is_single_reg(const struct hlsl_type *type) { return type->type == HLSL_CLASS_SCALAR || type->type == HLSL_CLASS_VECTOR; } unsigned int hlsl_offset_from_deref(const struct hlsl_deref *deref) { struct hlsl_ir_node *offset_node = deref->offset.node; if (!offset_node) return 0; /* We should always have generated a cast to UINT. */ assert(offset_node->data_type->type == HLSL_CLASS_SCALAR && offset_node->data_type->base_type == HLSL_TYPE_UINT); if (offset_node->type != HLSL_IR_CONSTANT) { FIXME("Dereference with non-constant offset of type %s.\n", hlsl_node_type_to_string(offset_node->type)); return 0; } return hlsl_ir_constant(offset_node)->value[0].u; } struct hlsl_reg hlsl_reg_from_deref(const struct hlsl_deref *deref, const struct hlsl_type *type) { const struct hlsl_ir_var *var = deref->var; struct hlsl_reg ret = var->reg; unsigned int offset = hlsl_offset_from_deref(deref); ret.id += offset / 4; if (type_is_single_reg(var->data_type)) { assert(!offset); ret.writemask = var->reg.writemask; } else { assert(type_is_single_reg(type)); ret.writemask = ((1 << type->dimx) - 1) << (offset % 4); } return ret; } int hlsl_emit_dxbc(struct hlsl_ctx *ctx, struct hlsl_ir_function_decl *entry_func, struct vkd3d_shader_code *out) { struct hlsl_block *const body = &entry_func->body; struct hlsl_ir_var *var; bool progress; list_move_head(&body->instrs, &ctx->static_initializers); LIST_FOR_EACH_ENTRY(var, &ctx->globals->vars, struct hlsl_ir_var, scope_entry) { if (var->modifiers & HLSL_STORAGE_UNIFORM) prepend_uniform_copy(ctx, &body->instrs, var); } LIST_FOR_EACH_ENTRY(var, entry_func->parameters, struct hlsl_ir_var, param_entry) { if (var->data_type->type == HLSL_CLASS_OBJECT || (var->modifiers & HLSL_STORAGE_UNIFORM)) { prepend_uniform_copy(ctx, &body->instrs, var); } else { if (var->data_type->type != HLSL_CLASS_STRUCT && !var->semantic.name) hlsl_error(ctx, var->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Parameter \"%s\" is missing a semantic.", var->name); if (var->modifiers & HLSL_STORAGE_IN) prepend_input_var_copy(ctx, &body->instrs, var); if (var->modifiers & HLSL_STORAGE_OUT) append_output_var_copy(ctx, &body->instrs, var); } } if (entry_func->return_var) { if (entry_func->return_var->data_type->type != HLSL_CLASS_STRUCT && !entry_func->return_var->semantic.name) hlsl_error(ctx, entry_func->loc, VKD3D_SHADER_ERROR_HLSL_MISSING_SEMANTIC, "Entry point \"%s\" is missing a return value semantic.", entry_func->func->name); append_output_var_copy(ctx, &body->instrs, entry_func->return_var); } while (transform_ir(ctx, fold_redundant_casts, body, NULL)); do { progress = transform_ir(ctx, split_array_copies, body, NULL); progress |= transform_ir(ctx, split_struct_copies, body, NULL); } while (progress); while (transform_ir(ctx, fold_constants, body, NULL)); if (ctx->profile->major_version < 4) transform_ir(ctx, lower_division, body, NULL); do compute_liveness(ctx, entry_func); while (transform_ir(ctx, dce, body, NULL)); compute_liveness(ctx, entry_func); if (TRACE_ON()) rb_for_each_entry(&ctx->functions, dump_function, ctx); allocate_temp_registers(ctx, entry_func); if (ctx->profile->major_version < 4) { allocate_const_registers(ctx, entry_func); } else { allocate_buffers(ctx); allocate_textures(ctx); } allocate_semantic_registers(ctx); if (ctx->result) return ctx->result; if (ctx->profile->major_version < 4) return hlsl_sm1_write(ctx, entry_func, out); else return hlsl_sm4_write(ctx, entry_func, out); }