Otherwise we may create nodes of different dimensions than the ones we
are replacing.
"count" is the number of components of the source deref (without
considering the swizzle), while "instr_component_count" is the actual
number of components of the instruction to be replaced.
Prevent them from being ever looked up.
Our naming scheme for synthetic variables already effectively prevents this, but
this is better for clarity. We also will need to be able to move some named
variables into a dummy scope to account for complexities around function
definition and declarations.
Reinterpret min16float, min10float, min16int, min12int, and min16uint
as their regular counterparts: float, float, int, int, uint,
respectively.
A proper implementation would require adding minimum precision
indicators to all the dxbc-tpf instructions that use these types.
Consider the output of fxc 10.1 with the following shader:
uniform int i;
float4 main() : sv_target
{
min16float4 a = {0, 1, 2, i};
min16int2 b = {4, i};
min10float3 c = {6.4, 7, i};
min12int d = 9.4;
min16uint4x2 e = {14.4, 15, 16, 17, 18, 19, 20, i};
return mul(e, b) + a + c.xyzx + d;
}
However, if the graphics driver doesn't have minimum precision support,
it ignores the minimum precision indicators and runs at 32-bit
precision, which is equivalent as working with regular types.
We have a different system of generating intrinsics, which makes it easier to
deal with "polymorphic" arithmetic functions.
Defining and storing intrinsics as hlsl_ir_function_decls would also require
more space in memory (and more optimization passes to get rid of the parameter
variables), and doesn't really save us any effort in terms of source code.
The function has far too many arguments, including multiple different arguments
with the same type. Use a structure for clarity and to avoid errors.
Merge hlsl_new_sample_lod() into hlsl_new_resource_load() accordingly.
This should silence warnings about some branches non returning any value
without requiring additional "return 0" statement or similar.
Also, in theory this might enable to compiler to optimize the program
a little bit more, though that's unlikely to have any measurable effect.
HLSL_ARRAY_ELEMENTS_COUNT_IMPLICIT (zero) is used as a temporal value
for elements_count for implicit size arrays.
This value is replaced by the correct one after parsing the initializer.
In case the implicit array is not initialized correctly, hlsl_error()
is called but the array size is kept at 0. So the rest of the code
must handle these cases.
In shader model 5.1, unlike in 5.0, declaring a multi-dimensional
object-type array with the last dimension implicit results in
an error. This happens even in presence of an initializer.
So, both gen_struct_fields() and declare_vars() first check if the
shader model is 5.1, the array elements are objects, and if there is
at least one implicit array size to handle the whole type as an
unbounded resource array.
Signed-off-by: Francisco Casas <fcasas@codeweavers.com>