gecko/image/src/imgFrame.cpp
Benoit Girard fc10a7cfe4 Bug 851611 - Part 3: Rename headers. r=jrmuizel
--HG--
rename : tools/profiler/sampler.h => tools/profiler/GeckoProfiler.h
rename : tools/profiler/sps_sampler.h => tools/profiler/GeckoProfilerImpl.h
extra : rebase_source : 6ea7c660764a4390cdd8dd91561fff1d7bad6035
2013-03-18 15:25:50 +01:00

879 lines
26 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "DiscardTracker.h"
#include <limits.h>
#include "prenv.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
static bool gDisableOptimize = false;
#include "cairo.h"
#include "GeckoProfiler.h"
#include "mozilla/Likely.h"
#if defined(XP_WIN)
#include "gfxWindowsPlatform.h"
/* Whether to use the windows surface; only for desktop win32 */
#define USE_WIN_SURFACE 1
static uint32_t gTotalDDBs = 0;
static uint32_t gTotalDDBSize = 0;
// only use up a maximum of 64MB in DDBs
#define kMaxDDBSize (64*1024*1024)
// and don't let anything in that's bigger than 4MB
#define kMaxSingleDDBSize (4*1024*1024)
#endif
using namespace mozilla::image;
// Returns true if an image of aWidth x aHeight is allowed and legal.
static bool AllowedImageSize(int32_t aWidth, int32_t aHeight)
{
// reject over-wide or over-tall images
const int32_t k64KLimit = 0x0000FFFF;
if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) {
NS_WARNING("image too big");
return false;
}
// protect against invalid sizes
if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) {
return false;
}
// check to make sure we don't overflow a 32-bit
int32_t tmp = aWidth * aHeight;
if (MOZ_UNLIKELY(tmp / aHeight != aWidth)) {
NS_WARNING("width or height too large");
return false;
}
tmp = tmp * 4;
if (MOZ_UNLIKELY(tmp / 4 != aWidth * aHeight)) {
NS_WARNING("width or height too large");
return false;
}
#if defined(XP_MACOSX)
// CoreGraphics is limited to images < 32K in *height*, so clamp all surfaces on the Mac to that height
if (MOZ_UNLIKELY(aHeight > SHRT_MAX)) {
NS_WARNING("image too big");
return false;
}
#endif
return true;
}
// Returns whether we should, at this time, use image surfaces instead of
// optimized platform-specific surfaces.
static bool ShouldUseImageSurfaces()
{
#if defined(USE_WIN_SURFACE)
static const DWORD kGDIObjectsHighWaterMark = 7000;
if (gfxWindowsPlatform::GetPlatform()->GetRenderMode() ==
gfxWindowsPlatform::RENDER_DIRECT2D) {
return true;
}
// at 7000 GDI objects, stop allocating normal images to make sure
// we never hit the 10k hard limit.
// GetCurrentProcess() just returns (HANDLE)-1, it's inlined afaik
DWORD count = GetGuiResources(GetCurrentProcess(), GR_GDIOBJECTS);
if (count == 0 ||
count > kGDIObjectsHighWaterMark)
{
// either something's broken (count == 0),
// or we hit our high water mark; disable
// image allocations for a bit.
return true;
}
#endif
return false;
}
imgFrame::imgFrame() :
mDecoded(0, 0, 0, 0),
mPalettedImageData(nullptr),
mSinglePixelColor(0),
mTimeout(100),
mDisposalMethod(0), /* imgIContainer::kDisposeNotSpecified */
mLockCount(0),
mBlendMethod(1), /* imgIContainer::kBlendOver */
mSinglePixel(false),
mNeverUseDeviceSurface(false),
mFormatChanged(false),
mCompositingFailed(false),
mNonPremult(false),
#ifdef USE_WIN_SURFACE
mIsDDBSurface(false),
#endif
mInformedDiscardTracker(false)
{
static bool hasCheckedOptimize = false;
if (!hasCheckedOptimize) {
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
gDisableOptimize = true;
}
hasCheckedOptimize = true;
}
}
imgFrame::~imgFrame()
{
moz_free(mPalettedImageData);
mPalettedImageData = nullptr;
#ifdef USE_WIN_SURFACE
if (mIsDDBSurface) {
gTotalDDBs--;
gTotalDDBSize -= mSize.width * mSize.height * 4;
}
#endif
if (mInformedDiscardTracker) {
DiscardTracker::InformAllocation(-4 * mSize.height * mSize.width);
}
}
nsresult imgFrame::Init(int32_t aX, int32_t aY, int32_t aWidth, int32_t aHeight,
gfxASurface::gfxImageFormat aFormat, uint8_t aPaletteDepth /* = 0 */)
{
// assert for properties that should be verified by decoders, warn for properties related to bad content
if (!AllowedImageSize(aWidth, aHeight))
return NS_ERROR_FAILURE;
mOffset.MoveTo(aX, aY);
mSize.SizeTo(aWidth, aHeight);
mFormat = aFormat;
mPaletteDepth = aPaletteDepth;
if (aPaletteDepth != 0) {
// We're creating for a paletted image.
if (aPaletteDepth > 8) {
NS_ERROR("This Depth is not supported");
return NS_ERROR_FAILURE;
}
// Use the fallible allocator here
mPalettedImageData = (uint8_t*)moz_malloc(PaletteDataLength() + GetImageDataLength());
NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
} else {
// For Windows, we must create the device surface first (if we're
// going to) so that the image surface can wrap it. Can't be done
// the other way around.
#ifdef USE_WIN_SURFACE
if (!mNeverUseDeviceSurface && !ShouldUseImageSurfaces()) {
mWinSurface = new gfxWindowsSurface(gfxIntSize(mSize.width, mSize.height), mFormat);
if (mWinSurface && mWinSurface->CairoStatus() == 0) {
// no error
mImageSurface = mWinSurface->GetAsImageSurface();
} else {
mWinSurface = nullptr;
}
}
#endif
// For other platforms we create the image surface first and then
// possibly wrap it in a device surface. This branch is also used
// on Windows if we're not using device surfaces or if we couldn't
// create one.
if (!mImageSurface)
mImageSurface = new gfxImageSurface(gfxIntSize(mSize.width, mSize.height), mFormat);
if (!mImageSurface || mImageSurface->CairoStatus()) {
mImageSurface = nullptr;
// guess
return NS_ERROR_OUT_OF_MEMORY;
}
#ifdef XP_MACOSX
if (!mNeverUseDeviceSurface && !ShouldUseImageSurfaces()) {
mQuartzSurface = new gfxQuartzImageSurface(mImageSurface);
}
#endif
}
// Inform the discard tracker that we've allocated some memory, but only if
// we're not a paletted image (paletted images are not usually large and are
// used only for animated frames, which we don't discard).
if (!mPalettedImageData) {
DiscardTracker::InformAllocation(4 * mSize.width * mSize.height);
mInformedDiscardTracker = true;
}
return NS_OK;
}
nsresult imgFrame::Optimize()
{
if (gDisableOptimize)
return NS_OK;
if (mPalettedImageData || mOptSurface || mSinglePixel)
return NS_OK;
// Don't do single-color opts on non-premult data.
// Cairo doesn't support non-premult single-colors.
if (mNonPremult)
return NS_OK;
/* Figure out if the entire image is a constant color */
// this should always be true
if (mImageSurface->Stride() == mSize.width * 4) {
uint32_t *imgData = (uint32_t*) mImageSurface->Data();
uint32_t firstPixel = * (uint32_t*) imgData;
uint32_t pixelCount = mSize.width * mSize.height + 1;
while (--pixelCount && *imgData++ == firstPixel)
;
if (pixelCount == 0) {
// all pixels were the same
if (mFormat == gfxASurface::ImageFormatARGB32 ||
mFormat == gfxASurface::ImageFormatRGB24)
{
// Should already be premult if desired.
gfxRGBA::PackedColorType inputType = gfxRGBA::PACKED_XRGB;
if (mFormat == gfxASurface::ImageFormatARGB32)
inputType = gfxRGBA::PACKED_ARGB_PREMULTIPLIED;
mSinglePixelColor = gfxRGBA(firstPixel, inputType);
mSinglePixel = true;
// blow away the older surfaces (if they exist), to release their memory
mImageSurface = nullptr;
mOptSurface = nullptr;
#ifdef USE_WIN_SURFACE
mWinSurface = nullptr;
#endif
#ifdef XP_MACOSX
mQuartzSurface = nullptr;
#endif
// We just dumped most of our allocated memory, so tell the discard
// tracker that we're not using any at all.
if (mInformedDiscardTracker) {
DiscardTracker::InformAllocation(-4 * mSize.width * mSize.height);
mInformedDiscardTracker = false;
}
return NS_OK;
}
}
// if it's not RGB24/ARGB32, don't optimize, but we never hit this at the moment
}
// if we're being forced to use image surfaces due to
// resource constraints, don't try to optimize beyond same-pixel.
if (mNeverUseDeviceSurface || ShouldUseImageSurfaces())
return NS_OK;
mOptSurface = nullptr;
#ifdef USE_WIN_SURFACE
// we need to special-case windows here, because windows has
// a distinction between DIB and DDB and we want to use DDBs as much
// as we can.
if (mWinSurface) {
// Don't do DDBs for large images; see bug 359147
// Note that we bother with DDBs at all because they are much faster
// on some systems; on others there isn't much of a speed difference
// between DIBs and DDBs.
//
// Originally this just limited to 1024x1024; but that still
// had us hitting overall total memory usage limits (which was
// around 220MB on my intel shared memory system with 2GB RAM
// and 16-128mb in use by the video card, so I can't make
// heads or tails out of this limit).
//
// So instead, we clamp the max size to 64MB (this limit shuld
// be made dynamic based on.. something.. as soon a we figure
// out that something) and also limit each individual image to
// be less than 4MB to keep very large images out of DDBs.
// assume (almost -- we don't quadword-align) worst-case size
uint32_t ddbSize = mSize.width * mSize.height * 4;
if (ddbSize <= kMaxSingleDDBSize &&
ddbSize + gTotalDDBSize <= kMaxDDBSize)
{
nsRefPtr<gfxWindowsSurface> wsurf = mWinSurface->OptimizeToDDB(nullptr, gfxIntSize(mSize.width, mSize.height), mFormat);
if (wsurf) {
gTotalDDBs++;
gTotalDDBSize += ddbSize;
mIsDDBSurface = true;
mOptSurface = wsurf;
}
}
if (!mOptSurface && !mFormatChanged) {
// just use the DIB if the format has not changed
mOptSurface = mWinSurface;
}
}
#endif
#ifdef XP_MACOSX
if (mQuartzSurface) {
mQuartzSurface->Flush();
mOptSurface = mQuartzSurface;
}
#endif
if (mOptSurface == nullptr)
mOptSurface = gfxPlatform::GetPlatform()->OptimizeImage(mImageSurface, mFormat);
if (mOptSurface) {
mImageSurface = nullptr;
#ifdef USE_WIN_SURFACE
mWinSurface = nullptr;
#endif
#ifdef XP_MACOSX
mQuartzSurface = nullptr;
#endif
}
return NS_OK;
}
static void
DoSingleColorFastPath(gfxContext* aContext,
const gfxRGBA& aSinglePixelColor,
const gfxRect& aFill)
{
// if a == 0, it's a noop
if (aSinglePixelColor.a == 0.0)
return;
gfxContext::GraphicsOperator op = aContext->CurrentOperator();
if (op == gfxContext::OPERATOR_OVER && aSinglePixelColor.a == 1.0) {
aContext->SetOperator(gfxContext::OPERATOR_SOURCE);
}
aContext->SetDeviceColor(aSinglePixelColor);
aContext->NewPath();
aContext->Rectangle(aFill);
aContext->Fill();
aContext->SetOperator(op);
aContext->SetDeviceColor(gfxRGBA(0,0,0,0));
}
imgFrame::SurfaceWithFormat
imgFrame::SurfaceForDrawing(bool aDoPadding,
bool aDoPartialDecode,
bool aDoTile,
const nsIntMargin& aPadding,
gfxMatrix& aUserSpaceToImageSpace,
gfxRect& aFill,
gfxRect& aSubimage,
gfxRect& aSourceRect,
gfxRect& aImageRect)
{
gfxIntSize size(int32_t(aImageRect.Width()), int32_t(aImageRect.Height()));
if (!aDoPadding && !aDoPartialDecode) {
NS_ASSERTION(!mSinglePixel, "This should already have been handled");
return SurfaceWithFormat(new gfxSurfaceDrawable(ThebesSurface(), size), mFormat);
}
gfxRect available = gfxRect(mDecoded.x, mDecoded.y, mDecoded.width, mDecoded.height);
if (aDoTile || mSinglePixel) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
gfxImageSurface::gfxImageFormat format = gfxASurface::ImageFormatARGB32;
nsRefPtr<gfxASurface> surface =
gfxPlatform::GetPlatform()->CreateOffscreenSurface(size, gfxImageSurface::ContentFromFormat(format));
if (!surface || surface->CairoStatus())
return SurfaceWithFormat();
// Fill 'available' with whatever we've got
gfxContext tmpCtx(surface);
tmpCtx.SetOperator(gfxContext::OPERATOR_SOURCE);
if (mSinglePixel) {
tmpCtx.SetDeviceColor(mSinglePixelColor);
} else {
tmpCtx.SetSource(ThebesSurface(), gfxPoint(aPadding.left, aPadding.top));
}
tmpCtx.Rectangle(available);
tmpCtx.Fill();
return SurfaceWithFormat(new gfxSurfaceDrawable(surface, size), format);
}
// Not tiling, and we have a surface, so we can account for
// padding and/or a partial decode just by twiddling parameters.
// First, update our user-space fill rect.
aSourceRect = aSourceRect.Intersect(available);
gfxMatrix imageSpaceToUserSpace = aUserSpaceToImageSpace;
imageSpaceToUserSpace.Invert();
aFill = imageSpaceToUserSpace.Transform(aSourceRect);
aSubimage = aSubimage.Intersect(available) - gfxPoint(aPadding.left, aPadding.top);
aUserSpaceToImageSpace.Multiply(gfxMatrix().Translate(-gfxPoint(aPadding.left, aPadding.top)));
aSourceRect = aSourceRect - gfxPoint(aPadding.left, aPadding.top);
aImageRect = gfxRect(0, 0, mSize.width, mSize.height);
gfxIntSize availableSize(mDecoded.width, mDecoded.height);
return SurfaceWithFormat(new gfxSurfaceDrawable(ThebesSurface(),
availableSize),
mFormat);
}
void imgFrame::Draw(gfxContext *aContext, gfxPattern::GraphicsFilter aFilter,
const gfxMatrix &aUserSpaceToImageSpace, const gfxRect& aFill,
const nsIntMargin &aPadding, const nsIntRect &aSubimage,
uint32_t aImageFlags)
{
PROFILER_LABEL("image", "imgFrame::Draw");
NS_ASSERTION(!aFill.IsEmpty(), "zero dest size --- fix caller");
NS_ASSERTION(!aSubimage.IsEmpty(), "zero source size --- fix caller");
NS_ASSERTION(!mPalettedImageData, "Directly drawing a paletted image!");
bool doPadding = aPadding != nsIntMargin(0,0,0,0);
bool doPartialDecode = !ImageComplete();
if (mSinglePixel && !doPadding && !doPartialDecode) {
DoSingleColorFastPath(aContext, mSinglePixelColor, aFill);
return;
}
gfxMatrix userSpaceToImageSpace = aUserSpaceToImageSpace;
gfxRect sourceRect = userSpaceToImageSpace.Transform(aFill);
gfxRect imageRect(0, 0, mSize.width + aPadding.LeftRight(),
mSize.height + aPadding.TopBottom());
gfxRect subimage(aSubimage.x, aSubimage.y, aSubimage.width, aSubimage.height);
gfxRect fill = aFill;
NS_ASSERTION(!sourceRect.Intersect(subimage).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
bool doTile = !imageRect.Contains(sourceRect) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
SurfaceWithFormat surfaceResult =
SurfaceForDrawing(doPadding, doPartialDecode, doTile, aPadding,
userSpaceToImageSpace, fill, subimage, sourceRect,
imageRect);
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
userSpaceToImageSpace,
subimage, sourceRect, imageRect, fill,
surfaceResult.mFormat, aFilter, aImageFlags);
}
}
nsresult imgFrame::Extract(const nsIntRect& aRegion, imgFrame** aResult)
{
nsAutoPtr<imgFrame> subImage(new imgFrame());
// The scaling problems described in bug 468496 are especially
// likely to be visible for the sub-image, as at present the only
// user is the border-image code and border-images tend to get
// stretched a lot. At the same time, the performance concerns
// that prevent us from just using Cairo's fallback scaler when
// accelerated graphics won't cut it are less relevant to such
// images, since they also tend to be small. Thus, we forcibly
// disable the use of anything other than a client-side image
// surface for the sub-image; this ensures that the correct
// (albeit slower) Cairo fallback scaler will be used.
subImage->mNeverUseDeviceSurface = true;
nsresult rv = subImage->Init(0, 0, aRegion.width, aRegion.height,
mFormat, mPaletteDepth);
NS_ENSURE_SUCCESS(rv, rv);
subImage->SetAsNonPremult(mNonPremult);
// scope to destroy ctx
{
gfxContext ctx(subImage->ThebesSurface());
ctx.SetOperator(gfxContext::OPERATOR_SOURCE);
if (mSinglePixel) {
ctx.SetDeviceColor(mSinglePixelColor);
} else {
// SetSource() places point (0,0) of its first argument at
// the coordinages given by its second argument. We want
// (x,y) of the image to be (0,0) of source space, so we
// put (0,0) of the image at (-x,-y).
ctx.SetSource(this->ThebesSurface(), gfxPoint(-aRegion.x, -aRegion.y));
}
ctx.Rectangle(gfxRect(0, 0, aRegion.width, aRegion.height));
ctx.Fill();
}
nsIntRect filled(0, 0, aRegion.width, aRegion.height);
rv = subImage->ImageUpdated(filled);
NS_ENSURE_SUCCESS(rv, rv);
subImage->Optimize();
*aResult = subImage.forget();
return NS_OK;
}
nsresult imgFrame::ImageUpdated(const nsIntRect &aUpdateRect)
{
mDecoded.UnionRect(mDecoded, aUpdateRect);
// clamp to bounds, in case someone sends a bogus updateRect (I'm looking at
// you, gif decoder)
nsIntRect boundsRect(mOffset, mSize);
mDecoded.IntersectRect(mDecoded, boundsRect);
#ifdef XP_MACOSX
if (mQuartzSurface)
mQuartzSurface->Flush();
#endif
return NS_OK;
}
nsIntRect imgFrame::GetRect() const
{
return nsIntRect(mOffset, mSize);
}
gfxASurface::gfxImageFormat imgFrame::GetFormat() const
{
return mFormat;
}
bool imgFrame::GetNeedsBackground() const
{
// We need a background painted if we have alpha or we're incomplete.
return (mFormat == gfxASurface::ImageFormatARGB32 || !ImageComplete());
}
uint32_t imgFrame::GetImageBytesPerRow() const
{
if (mImageSurface)
return mImageSurface->Stride();
if (mPaletteDepth)
return mSize.width;
NS_ERROR("GetImageBytesPerRow called with mImageSurface == null and mPaletteDepth == 0");
return 0;
}
uint32_t imgFrame::GetImageDataLength() const
{
return GetImageBytesPerRow() * mSize.height;
}
void imgFrame::GetImageData(uint8_t **aData, uint32_t *length) const
{
NS_ABORT_IF_FALSE(mLockCount != 0, "Can't GetImageData unless frame is locked");
if (mImageSurface)
*aData = mImageSurface->Data();
else if (mPalettedImageData)
*aData = mPalettedImageData + PaletteDataLength();
else
*aData = nullptr;
*length = GetImageDataLength();
}
bool imgFrame::GetIsPaletted() const
{
return mPalettedImageData != nullptr;
}
bool imgFrame::GetHasAlpha() const
{
return mFormat == gfxASurface::ImageFormatARGB32;
}
void imgFrame::GetPaletteData(uint32_t **aPalette, uint32_t *length) const
{
NS_ABORT_IF_FALSE(mLockCount != 0, "Can't GetPaletteData unless frame is locked");
if (!mPalettedImageData) {
*aPalette = nullptr;
*length = 0;
} else {
*aPalette = (uint32_t *) mPalettedImageData;
*length = PaletteDataLength();
}
}
nsresult imgFrame::LockImageData()
{
NS_ABORT_IF_FALSE(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0) {
return NS_ERROR_FAILURE;
}
mLockCount++;
// If we are not the first lock, there's nothing to do.
if (mLockCount != 1) {
return NS_OK;
}
// Paletted images don't have surfaces, so there's nothing to do.
if (mPalettedImageData)
return NS_OK;
if ((mOptSurface || mSinglePixel) && !mImageSurface) {
// Recover the pixels
mImageSurface = new gfxImageSurface(gfxIntSize(mSize.width, mSize.height),
gfxImageSurface::ImageFormatARGB32);
if (!mImageSurface || mImageSurface->CairoStatus())
return NS_ERROR_OUT_OF_MEMORY;
gfxContext context(mImageSurface);
context.SetOperator(gfxContext::OPERATOR_SOURCE);
if (mSinglePixel)
context.SetDeviceColor(mSinglePixelColor);
else
context.SetSource(mOptSurface);
context.Paint();
mOptSurface = nullptr;
#ifdef USE_WIN_SURFACE
mWinSurface = nullptr;
#endif
#ifdef XP_MACOSX
mQuartzSurface = nullptr;
#endif
}
// We might write to the bits in this image surface, so we need to make the
// surface ready for that.
if (mImageSurface)
mImageSurface->Flush();
#ifdef USE_WIN_SURFACE
if (mWinSurface)
mWinSurface->Flush();
#endif
return NS_OK;
}
nsresult imgFrame::UnlockImageData()
{
NS_ABORT_IF_FALSE(mLockCount != 0, "Unlocking an unlocked image!");
if (mLockCount == 0) {
return NS_ERROR_FAILURE;
}
mLockCount--;
NS_ABORT_IF_FALSE(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0) {
return NS_ERROR_FAILURE;
}
// If we are not the last lock, there's nothing to do.
if (mLockCount != 0) {
return NS_OK;
}
// Paletted images don't have surfaces, so there's nothing to do.
if (mPalettedImageData)
return NS_OK;
// Assume we've been written to.
if (mImageSurface)
mImageSurface->MarkDirty();
#ifdef USE_WIN_SURFACE
if (mWinSurface)
mWinSurface->MarkDirty();
#endif
#ifdef XP_MACOSX
// The quartz image surface (ab)uses the flush method to get the
// cairo_image_surface data into a CGImage, so we have to call Flush() here.
if (mQuartzSurface)
mQuartzSurface->Flush();
#endif
return NS_OK;
}
void imgFrame::MarkImageDataDirty()
{
if (mImageSurface)
mImageSurface->Flush();
#ifdef USE_WIN_SURFACE
if (mWinSurface)
mWinSurface->Flush();
#endif
if (mImageSurface)
mImageSurface->MarkDirty();
#ifdef USE_WIN_SURFACE
if (mWinSurface)
mWinSurface->MarkDirty();
#endif
#ifdef XP_MACOSX
// The quartz image surface (ab)uses the flush method to get the
// cairo_image_surface data into a CGImage, so we have to call Flush() here.
if (mQuartzSurface)
mQuartzSurface->Flush();
#endif
}
int32_t imgFrame::GetTimeout() const
{
// Ensure a minimal time between updates so we don't throttle the UI thread.
// consider 0 == unspecified and make it fast but not too fast. See bug
// 125137, bug 139677, and bug 207059. The behavior of recent IE and Opera
// versions seems to be:
// IE 6/Win:
// 10 - 50ms go 100ms
// >50ms go correct speed
// Opera 7 final/Win:
// 10ms goes 100ms
// >10ms go correct speed
// It seems that there are broken tools out there that set a 0ms or 10ms
// timeout when they really want a "default" one. So munge values in that
// range.
if (mTimeout >= 0 && mTimeout <= 10)
return 100;
else
return mTimeout;
}
void imgFrame::SetTimeout(int32_t aTimeout)
{
mTimeout = aTimeout;
}
int32_t imgFrame::GetFrameDisposalMethod() const
{
return mDisposalMethod;
}
void imgFrame::SetFrameDisposalMethod(int32_t aFrameDisposalMethod)
{
mDisposalMethod = aFrameDisposalMethod;
}
int32_t imgFrame::GetBlendMethod() const
{
return mBlendMethod;
}
void imgFrame::SetBlendMethod(int32_t aBlendMethod)
{
mBlendMethod = (int8_t)aBlendMethod;
}
bool imgFrame::ImageComplete() const
{
return mDecoded.IsEqualInterior(nsIntRect(mOffset, mSize));
}
// A hint from the image decoders that this image has no alpha, even
// though we created is ARGB32. This changes our format to RGB24,
// which in turn will cause us to Optimize() to RGB24. Has no effect
// after Optimize() is called, though in all cases it will be just a
// performance win -- the pixels are still correct and have the A byte
// set to 0xff.
void imgFrame::SetHasNoAlpha()
{
if (mFormat == gfxASurface::ImageFormatARGB32) {
mFormat = gfxASurface::ImageFormatRGB24;
mFormatChanged = true;
}
}
void imgFrame::SetAsNonPremult(bool aIsNonPremult)
{
mNonPremult = aIsNonPremult;
}
bool imgFrame::GetCompositingFailed() const
{
return mCompositingFailed;
}
void imgFrame::SetCompositingFailed(bool val)
{
mCompositingFailed = val;
}
// If |aLocation| indicates this is heap memory, we try to measure things with
// |aMallocSizeOf|. If that fails (because the platform doesn't support it) or
// it's non-heap memory, we fall back to computing the size analytically.
size_t
imgFrame::SizeOfExcludingThisWithComputedFallbackIfHeap(gfxASurface::MemoryLocation aLocation, nsMallocSizeOfFun aMallocSizeOf) const
{
// aMallocSizeOf is only used if aLocation==MEMORY_IN_PROCESS_HEAP. It
// should be NULL otherwise.
NS_ABORT_IF_FALSE(
(aLocation == gfxASurface::MEMORY_IN_PROCESS_HEAP && aMallocSizeOf) ||
(aLocation != gfxASurface::MEMORY_IN_PROCESS_HEAP && !aMallocSizeOf),
"mismatch between aLocation and aMallocSizeOf");
size_t n = 0;
if (mPalettedImageData && aLocation == gfxASurface::MEMORY_IN_PROCESS_HEAP) {
size_t n2 = aMallocSizeOf(mPalettedImageData);
if (n2 == 0) {
n2 = GetImageDataLength() + PaletteDataLength();
}
n += n2;
}
#ifdef USE_WIN_SURFACE
if (mWinSurface && aLocation == mWinSurface->GetMemoryLocation()) {
n += mWinSurface->KnownMemoryUsed();
} else
#endif
#ifdef XP_MACOSX
if (mQuartzSurface && aLocation == gfxASurface::MEMORY_IN_PROCESS_HEAP) {
n += mSize.width * mSize.height * 4;
} else
#endif
if (mImageSurface && aLocation == mImageSurface->GetMemoryLocation()) {
size_t n2 = 0;
if (aLocation == gfxASurface::MEMORY_IN_PROCESS_HEAP) { // HEAP: measure
n2 = mImageSurface->SizeOfIncludingThis(aMallocSizeOf);
}
if (n2 == 0) { // non-HEAP or computed fallback for HEAP
n2 = mImageSurface->KnownMemoryUsed();
}
n += n2;
}
if (mOptSurface && aLocation == mOptSurface->GetMemoryLocation()) {
size_t n2 = 0;
if (aLocation == gfxASurface::MEMORY_IN_PROCESS_HEAP &&
mOptSurface->SizeOfIsMeasured()) {
// HEAP: measure (but only if the sub-class is capable of measuring)
n2 = mOptSurface->SizeOfIncludingThis(aMallocSizeOf);
}
if (n2 == 0) { // non-HEAP or computed fallback for HEAP
n2 = mOptSurface->KnownMemoryUsed();
}
n += n2;
}
return n;
}