mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
4453811aee
--HG-- rename : security/nss/lib/freebl/sechash.h => security/nss/lib/cryptohi/sechash.h rename : security/nss/lib/softoken/secmodt.h => security/nss/lib/pk11wrap/secmodt.h rename : security/nss/lib/freebl/hasht.h => security/nss/lib/util/hasht.h extra : rebase_source : 7da6cd73ca2605a261085ad7fb3b90315e38ad6b
1254 lines
32 KiB
C
1254 lines
32 KiB
C
/*
|
|
* PKCS#1 encoding and decoding functions.
|
|
* This file is believed to contain no code licensed from other parties.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
/* $Id: rsawrapr.c,v 1.21 2012/06/26 22:27:31 rrelyea%redhat.com Exp $ */
|
|
|
|
#include "blapi.h"
|
|
#include "softoken.h"
|
|
|
|
#include "lowkeyi.h"
|
|
#include "secerr.h"
|
|
|
|
#define RSA_BLOCK_MIN_PAD_LEN 8
|
|
#define RSA_BLOCK_FIRST_OCTET 0x00
|
|
#define RSA_BLOCK_PRIVATE0_PAD_OCTET 0x00
|
|
#define RSA_BLOCK_PRIVATE_PAD_OCTET 0xff
|
|
#define RSA_BLOCK_AFTER_PAD_OCTET 0x00
|
|
|
|
#define OAEP_SALT_LEN 8
|
|
#define OAEP_PAD_LEN 8
|
|
#define OAEP_PAD_OCTET 0x00
|
|
|
|
#define FLAT_BUFSIZE 512 /* bytes to hold flattened SHA1Context. */
|
|
|
|
/* Needed for RSA-PSS functions */
|
|
static const unsigned char eightZeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
static SHA1Context *
|
|
SHA1_CloneContext(SHA1Context *original)
|
|
{
|
|
SHA1Context * clone = NULL;
|
|
unsigned char *pBuf;
|
|
int sha1ContextSize = SHA1_FlattenSize(original);
|
|
SECStatus frv;
|
|
unsigned char buf[FLAT_BUFSIZE];
|
|
|
|
PORT_Assert(sizeof buf >= sha1ContextSize);
|
|
if (sizeof buf >= sha1ContextSize) {
|
|
pBuf = buf;
|
|
} else {
|
|
pBuf = PORT_Alloc(sha1ContextSize);
|
|
if (!pBuf)
|
|
goto done;
|
|
}
|
|
|
|
frv = SHA1_Flatten(original, pBuf);
|
|
if (frv == SECSuccess) {
|
|
clone = SHA1_Resurrect(pBuf, NULL);
|
|
memset(pBuf, 0, sha1ContextSize);
|
|
}
|
|
done:
|
|
if (pBuf != buf)
|
|
PORT_Free(pBuf);
|
|
return clone;
|
|
}
|
|
|
|
/*
|
|
* Modify data by XORing it with a special hash of salt.
|
|
*/
|
|
static SECStatus
|
|
oaep_xor_with_h1(unsigned char *data, unsigned int datalen,
|
|
unsigned char *salt, unsigned int saltlen)
|
|
{
|
|
SHA1Context *sha1cx;
|
|
unsigned char *dp, *dataend;
|
|
unsigned char end_octet;
|
|
|
|
sha1cx = SHA1_NewContext();
|
|
if (sha1cx == NULL) {
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* Get a hash of salt started; we will use it several times,
|
|
* adding in a different end octet (x00, x01, x02, ...).
|
|
*/
|
|
SHA1_Begin (sha1cx);
|
|
SHA1_Update (sha1cx, salt, saltlen);
|
|
end_octet = 0;
|
|
|
|
dp = data;
|
|
dataend = data + datalen;
|
|
|
|
while (dp < dataend) {
|
|
SHA1Context *sha1cx_h1;
|
|
unsigned int sha1len, sha1off;
|
|
unsigned char sha1[SHA1_LENGTH];
|
|
|
|
/*
|
|
* Create hash of (salt || end_octet)
|
|
*/
|
|
sha1cx_h1 = SHA1_CloneContext (sha1cx);
|
|
SHA1_Update (sha1cx_h1, &end_octet, 1);
|
|
SHA1_End (sha1cx_h1, sha1, &sha1len, sizeof(sha1));
|
|
SHA1_DestroyContext (sha1cx_h1, PR_TRUE);
|
|
PORT_Assert (sha1len == SHA1_LENGTH);
|
|
|
|
/*
|
|
* XOR that hash with the data.
|
|
* When we have fewer than SHA1_LENGTH octets of data
|
|
* left to xor, use just the low-order ones of the hash.
|
|
*/
|
|
sha1off = 0;
|
|
if ((dataend - dp) < SHA1_LENGTH)
|
|
sha1off = SHA1_LENGTH - (dataend - dp);
|
|
while (sha1off < SHA1_LENGTH)
|
|
*dp++ ^= sha1[sha1off++];
|
|
|
|
/*
|
|
* Bump for next hash chunk.
|
|
*/
|
|
end_octet++;
|
|
}
|
|
|
|
SHA1_DestroyContext (sha1cx, PR_TRUE);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Modify salt by XORing it with a special hash of data.
|
|
*/
|
|
static SECStatus
|
|
oaep_xor_with_h2(unsigned char *salt, unsigned int saltlen,
|
|
unsigned char *data, unsigned int datalen)
|
|
{
|
|
unsigned char sha1[SHA1_LENGTH];
|
|
unsigned char *psalt, *psha1, *saltend;
|
|
SECStatus rv;
|
|
|
|
/*
|
|
* Create a hash of data.
|
|
*/
|
|
rv = SHA1_HashBuf (sha1, data, datalen);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* XOR the low-order octets of that hash with salt.
|
|
*/
|
|
PORT_Assert (saltlen <= SHA1_LENGTH);
|
|
saltend = salt + saltlen;
|
|
psalt = salt;
|
|
psha1 = sha1 + SHA1_LENGTH - saltlen;
|
|
while (psalt < saltend) {
|
|
*psalt++ ^= *psha1++;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Format one block of data for public/private key encryption using
|
|
* the rules defined in PKCS #1.
|
|
*/
|
|
static unsigned char *
|
|
rsa_FormatOneBlock(unsigned modulusLen, RSA_BlockType blockType,
|
|
SECItem *data)
|
|
{
|
|
unsigned char *block;
|
|
unsigned char *bp;
|
|
int padLen;
|
|
int i, j;
|
|
SECStatus rv;
|
|
|
|
block = (unsigned char *) PORT_Alloc(modulusLen);
|
|
if (block == NULL)
|
|
return NULL;
|
|
|
|
bp = block;
|
|
|
|
/*
|
|
* All RSA blocks start with two octets:
|
|
* 0x00 || BlockType
|
|
*/
|
|
*bp++ = RSA_BLOCK_FIRST_OCTET;
|
|
*bp++ = (unsigned char) blockType;
|
|
|
|
switch (blockType) {
|
|
|
|
/*
|
|
* Blocks intended for private-key operation.
|
|
*/
|
|
case RSA_BlockPrivate0: /* essentially unused */
|
|
case RSA_BlockPrivate: /* preferred method */
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
* 1 1 padLen 1 data->len
|
|
* Pad is either all 0x00 or all 0xff bytes, depending on blockType.
|
|
*/
|
|
padLen = modulusLen - data->len - 3;
|
|
PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
|
|
if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
PORT_Memset (bp,
|
|
blockType == RSA_BlockPrivate0
|
|
? RSA_BLOCK_PRIVATE0_PAD_OCTET
|
|
: RSA_BLOCK_PRIVATE_PAD_OCTET,
|
|
padLen);
|
|
bp += padLen;
|
|
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
|
|
PORT_Memcpy (bp, data->data, data->len);
|
|
break;
|
|
|
|
/*
|
|
* Blocks intended for public-key operation.
|
|
*/
|
|
case RSA_BlockPublic:
|
|
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
* 1 1 padLen 1 data->len
|
|
* Pad is all non-zero random bytes.
|
|
*
|
|
* Build the block left to right.
|
|
* Fill the entire block from Pad to the end with random bytes.
|
|
* Use the bytes after Pad as a supply of extra random bytes from
|
|
* which to find replacements for the zero bytes in Pad.
|
|
* If we need more than that, refill the bytes after Pad with
|
|
* new random bytes as necessary.
|
|
*/
|
|
padLen = modulusLen - (data->len + 3);
|
|
PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
|
|
if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
j = modulusLen - 2;
|
|
rv = RNG_GenerateGlobalRandomBytes(bp, j);
|
|
if (rv == SECSuccess) {
|
|
for (i = 0; i < padLen; ) {
|
|
unsigned char repl;
|
|
/* Pad with non-zero random data. */
|
|
if (bp[i] != RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
++i;
|
|
continue;
|
|
}
|
|
if (j <= padLen) {
|
|
rv = RNG_GenerateGlobalRandomBytes(bp + padLen,
|
|
modulusLen - (2 + padLen));
|
|
if (rv != SECSuccess)
|
|
break;
|
|
j = modulusLen - 2;
|
|
}
|
|
do {
|
|
repl = bp[--j];
|
|
} while (repl == RSA_BLOCK_AFTER_PAD_OCTET && j > padLen);
|
|
if (repl != RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
bp[i++] = repl;
|
|
}
|
|
}
|
|
}
|
|
if (rv != SECSuccess) {
|
|
sftk_fatalError = PR_TRUE;
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
bp += padLen;
|
|
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
|
|
PORT_Memcpy (bp, data->data, data->len);
|
|
break;
|
|
|
|
/*
|
|
* Blocks intended for public-key operation, using
|
|
* Optimal Asymmetric Encryption Padding (OAEP).
|
|
*/
|
|
case RSA_BlockOAEP:
|
|
/*
|
|
* 0x00 || BT || Modified2(Salt) || Modified1(PaddedData)
|
|
* 1 1 OAEP_SALT_LEN OAEP_PAD_LEN + data->len [+ N]
|
|
*
|
|
* where:
|
|
* PaddedData is "Pad1 || ActualData [|| Pad2]"
|
|
* Salt is random data.
|
|
* Pad1 is all zeros.
|
|
* Pad2, if present, is random data.
|
|
* (The "modified" fields are all the same length as the original
|
|
* unmodified values; they are just xor'd with other values.)
|
|
*
|
|
* Modified1 is an XOR of PaddedData with a special octet
|
|
* string constructed of iterated hashing of Salt (see below).
|
|
* Modified2 is an XOR of Salt with the low-order octets of
|
|
* the hash of Modified1 (see farther below ;-).
|
|
*
|
|
* Whew!
|
|
*/
|
|
|
|
|
|
/*
|
|
* Salt
|
|
*/
|
|
rv = RNG_GenerateGlobalRandomBytes(bp, OAEP_SALT_LEN);
|
|
if (rv != SECSuccess) {
|
|
sftk_fatalError = PR_TRUE;
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
bp += OAEP_SALT_LEN;
|
|
|
|
/*
|
|
* Pad1
|
|
*/
|
|
PORT_Memset (bp, OAEP_PAD_OCTET, OAEP_PAD_LEN);
|
|
bp += OAEP_PAD_LEN;
|
|
|
|
/*
|
|
* Data
|
|
*/
|
|
PORT_Memcpy (bp, data->data, data->len);
|
|
bp += data->len;
|
|
|
|
/*
|
|
* Pad2
|
|
*/
|
|
if (bp < (block + modulusLen)) {
|
|
rv = RNG_GenerateGlobalRandomBytes(bp, block - bp + modulusLen);
|
|
if (rv != SECSuccess) {
|
|
sftk_fatalError = PR_TRUE;
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we have the following:
|
|
* 0x00 || BT || Salt || PaddedData
|
|
* (From this point on, "Pad1 || Data [|| Pad2]" is treated
|
|
* as the one entity PaddedData.)
|
|
*
|
|
* We need to turn PaddedData into Modified1.
|
|
*/
|
|
if (oaep_xor_with_h1(block + 2 + OAEP_SALT_LEN,
|
|
modulusLen - 2 - OAEP_SALT_LEN,
|
|
block + 2, OAEP_SALT_LEN) != SECSuccess) {
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Now we have:
|
|
* 0x00 || BT || Salt || Modified1(PaddedData)
|
|
*
|
|
* The remaining task is to turn Salt into Modified2.
|
|
*/
|
|
if (oaep_xor_with_h2(block + 2, OAEP_SALT_LEN,
|
|
block + 2 + OAEP_SALT_LEN,
|
|
modulusLen - 2 - OAEP_SALT_LEN) != SECSuccess) {
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
PORT_Assert (0);
|
|
PORT_Free (block);
|
|
return NULL;
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
static SECStatus
|
|
rsa_FormatBlock(SECItem *result, unsigned modulusLen,
|
|
RSA_BlockType blockType, SECItem *data)
|
|
{
|
|
/*
|
|
* XXX For now assume that the data length fits in a single
|
|
* XXX encryption block; the ASSERTs below force this.
|
|
* XXX To fix it, each case will have to loop over chunks whose
|
|
* XXX lengths satisfy the assertions, until all data is handled.
|
|
* XXX (Unless RSA has more to say about how to handle data
|
|
* XXX which does not fit in a single encryption block?)
|
|
* XXX And I do not know what the result is supposed to be,
|
|
* XXX so the interface to this function may need to change
|
|
* XXX to allow for returning multiple blocks, if they are
|
|
* XXX not wanted simply concatenated one after the other.
|
|
*/
|
|
|
|
switch (blockType) {
|
|
case RSA_BlockPrivate0:
|
|
case RSA_BlockPrivate:
|
|
case RSA_BlockPublic:
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
*
|
|
* The "3" below is the first octet + the second octet + the 0x00
|
|
* octet that always comes just before the ActualData.
|
|
*/
|
|
PORT_Assert (data->len <= (modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN)));
|
|
|
|
result->data = rsa_FormatOneBlock(modulusLen, blockType, data);
|
|
if (result->data == NULL) {
|
|
result->len = 0;
|
|
return SECFailure;
|
|
}
|
|
result->len = modulusLen;
|
|
|
|
break;
|
|
|
|
case RSA_BlockOAEP:
|
|
/*
|
|
* 0x00 || BT || M1(Salt) || M2(Pad1||ActualData[||Pad2])
|
|
*
|
|
* The "2" below is the first octet + the second octet.
|
|
* (The other fields do not contain the clear values, but are
|
|
* the same length as the clear values.)
|
|
*/
|
|
PORT_Assert (data->len <= (modulusLen - (2 + OAEP_SALT_LEN
|
|
+ OAEP_PAD_LEN)));
|
|
|
|
result->data = rsa_FormatOneBlock(modulusLen, blockType, data);
|
|
if (result->data == NULL) {
|
|
result->len = 0;
|
|
return SECFailure;
|
|
}
|
|
result->len = modulusLen;
|
|
|
|
break;
|
|
|
|
case RSA_BlockRaw:
|
|
/*
|
|
* Pad || ActualData
|
|
* Pad is zeros. The application is responsible for recovering
|
|
* the actual data.
|
|
*/
|
|
if (data->len > modulusLen ) {
|
|
return SECFailure;
|
|
}
|
|
result->data = (unsigned char*)PORT_ZAlloc(modulusLen);
|
|
result->len = modulusLen;
|
|
PORT_Memcpy(result->data+(modulusLen-data->len),data->data,data->len);
|
|
break;
|
|
|
|
default:
|
|
PORT_Assert (0);
|
|
result->data = NULL;
|
|
result->len = 0;
|
|
return SECFailure;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_Sign(NSSLOWKEYPrivateKey *key,
|
|
unsigned char * output,
|
|
unsigned int * output_len,
|
|
unsigned int maxOutputLen,
|
|
unsigned char * input,
|
|
unsigned int input_len)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
if (maxOutputLen < modulus_len)
|
|
return SECFailure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
return SECFailure;
|
|
|
|
unformatted.len = input_len;
|
|
unformatted.data = input;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockPrivate,
|
|
&unformatted);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
|
|
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, formatted.data);
|
|
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
|
sftk_fatalError = PR_TRUE;
|
|
}
|
|
*output_len = modulus_len;
|
|
|
|
goto done;
|
|
|
|
done:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulus_len);
|
|
return rv;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_CheckSign(NSSLOWKEYPublicKey *key,
|
|
unsigned char * sign,
|
|
unsigned int sign_len,
|
|
unsigned char * hash,
|
|
unsigned int hash_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
unsigned int i;
|
|
unsigned char * buffer;
|
|
|
|
modulus_len = nsslowkey_PublicModulusLen(key);
|
|
if (sign_len != modulus_len)
|
|
goto failure;
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
*
|
|
* The "3" below is the first octet + the second octet + the 0x00
|
|
* octet that always comes just before the ActualData.
|
|
*/
|
|
if (hash_len > modulus_len - (3 + RSA_BLOCK_MIN_PAD_LEN))
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
|
if (!buffer)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
|
if (rv != SECSuccess)
|
|
goto loser;
|
|
|
|
/*
|
|
* check the padding that was used
|
|
*/
|
|
if (buffer[0] != 0 || buffer[1] != 1)
|
|
goto loser;
|
|
for (i = 2; i < modulus_len - hash_len - 1; i++) {
|
|
if (buffer[i] != 0xff)
|
|
goto loser;
|
|
}
|
|
if (buffer[i] != 0)
|
|
goto loser;
|
|
|
|
/*
|
|
* make sure we get the same results
|
|
*/
|
|
if (PORT_Memcmp(buffer + modulus_len - hash_len, hash, hash_len) != 0)
|
|
goto loser;
|
|
|
|
PORT_Free(buffer);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_Free(buffer);
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_CheckSignRecover(NSSLOWKEYPublicKey *key,
|
|
unsigned char * data,
|
|
unsigned int * data_len,
|
|
unsigned int max_output_len,
|
|
unsigned char * sign,
|
|
unsigned int sign_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
unsigned int i;
|
|
unsigned char * buffer;
|
|
|
|
if (sign_len != modulus_len)
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
|
if (!buffer)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
|
if (rv != SECSuccess)
|
|
goto loser;
|
|
*data_len = 0;
|
|
|
|
/*
|
|
* check the padding that was used
|
|
*/
|
|
if (buffer[0] != 0 || buffer[1] != 1)
|
|
goto loser;
|
|
for (i = 2; i < modulus_len; i++) {
|
|
if (buffer[i] == 0) {
|
|
*data_len = modulus_len - i - 1;
|
|
break;
|
|
}
|
|
if (buffer[i] != 0xff)
|
|
goto loser;
|
|
}
|
|
if (*data_len == 0)
|
|
goto loser;
|
|
if (*data_len > max_output_len)
|
|
goto loser;
|
|
|
|
/*
|
|
* make sure we get the same results
|
|
*/
|
|
PORT_Memcpy(data,buffer + modulus_len - *data_len, *data_len);
|
|
|
|
PORT_Free(buffer);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_Free(buffer);
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_EncryptBlock(NSSLOWKEYPublicKey *key,
|
|
unsigned char * output,
|
|
unsigned int * output_len,
|
|
unsigned int max_output_len,
|
|
unsigned char * input,
|
|
unsigned int input_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
formatted.data = NULL;
|
|
if (max_output_len < modulus_len)
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
|
|
unformatted.len = input_len;
|
|
unformatted.data = input;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockPublic,
|
|
&unformatted);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, output, formatted.data);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
PORT_ZFree(formatted.data, modulus_len);
|
|
*output_len = modulus_len;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulus_len);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_DecryptBlock(NSSLOWKEYPrivateKey *key,
|
|
unsigned char * output,
|
|
unsigned int * output_len,
|
|
unsigned int max_output_len,
|
|
unsigned char * input,
|
|
unsigned int input_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
|
unsigned int i;
|
|
unsigned char * buffer;
|
|
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
if (input_len != modulus_len)
|
|
goto failure;
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
|
if (!buffer)
|
|
goto failure;
|
|
|
|
rv = RSA_PrivateKeyOp(&key->u.rsa, buffer, input);
|
|
if (rv != SECSuccess) {
|
|
if (PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
|
sftk_fatalError = PR_TRUE;
|
|
}
|
|
goto loser;
|
|
}
|
|
|
|
if (buffer[0] != 0 || buffer[1] != 2)
|
|
goto loser;
|
|
*output_len = 0;
|
|
for (i = 2; i < modulus_len; i++) {
|
|
if (buffer[i] == 0) {
|
|
*output_len = modulus_len - i - 1;
|
|
break;
|
|
}
|
|
}
|
|
if (*output_len == 0)
|
|
goto loser;
|
|
if (*output_len > max_output_len)
|
|
goto loser;
|
|
|
|
PORT_Memcpy(output, buffer + modulus_len - *output_len, *output_len);
|
|
|
|
PORT_Free(buffer);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_Free(buffer);
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
/*
|
|
* added to make pkcs #11 happy
|
|
* RAW is RSA_X_509
|
|
*/
|
|
SECStatus
|
|
RSA_SignRaw(NSSLOWKEYPrivateKey *key,
|
|
unsigned char * output,
|
|
unsigned int * output_len,
|
|
unsigned int maxOutputLen,
|
|
unsigned char * input,
|
|
unsigned int input_len)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
if (maxOutputLen < modulus_len)
|
|
return SECFailure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
return SECFailure;
|
|
|
|
unformatted.len = input_len;
|
|
unformatted.data = input;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockRaw, &unformatted);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
|
|
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, formatted.data);
|
|
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
|
sftk_fatalError = PR_TRUE;
|
|
}
|
|
*output_len = modulus_len;
|
|
|
|
done:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulus_len);
|
|
return rv;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_CheckSignRaw(NSSLOWKEYPublicKey *key,
|
|
unsigned char * sign,
|
|
unsigned int sign_len,
|
|
unsigned char * hash,
|
|
unsigned int hash_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
unsigned char * buffer;
|
|
|
|
if (sign_len != modulus_len)
|
|
goto failure;
|
|
if (hash_len > modulus_len)
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
|
|
if (!buffer)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
|
if (rv != SECSuccess)
|
|
goto loser;
|
|
|
|
/*
|
|
* make sure we get the same results
|
|
*/
|
|
/* NOTE: should we verify the leading zeros? */
|
|
if (PORT_Memcmp(buffer + (modulus_len-hash_len), hash, hash_len) != 0)
|
|
goto loser;
|
|
|
|
PORT_Free(buffer);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_Free(buffer);
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_CheckSignRecoverRaw(NSSLOWKEYPublicKey *key,
|
|
unsigned char * data,
|
|
unsigned int * data_len,
|
|
unsigned int max_output_len,
|
|
unsigned char * sign,
|
|
unsigned int sign_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
|
|
if (sign_len != modulus_len)
|
|
goto failure;
|
|
if (max_output_len < modulus_len)
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, data, sign);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
*data_len = modulus_len;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_EncryptRaw(NSSLOWKEYPublicKey *key,
|
|
unsigned char * output,
|
|
unsigned int * output_len,
|
|
unsigned int max_output_len,
|
|
unsigned char * input,
|
|
unsigned int input_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
formatted.data = NULL;
|
|
if (max_output_len < modulus_len)
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
|
|
unformatted.len = input_len;
|
|
unformatted.data = input;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockRaw, &unformatted);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, output, formatted.data);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
PORT_ZFree(formatted.data, modulus_len);
|
|
*output_len = modulus_len;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulus_len);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_DecryptRaw(NSSLOWKEYPrivateKey *key,
|
|
unsigned char * output,
|
|
unsigned int * output_len,
|
|
unsigned int max_output_len,
|
|
unsigned char * input,
|
|
unsigned int input_len)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
|
|
|
if (modulus_len <= 0)
|
|
goto failure;
|
|
if (modulus_len > max_output_len)
|
|
goto failure;
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey)
|
|
goto failure;
|
|
if (input_len != modulus_len)
|
|
goto failure;
|
|
|
|
rv = RSA_PrivateKeyOp(&key->u.rsa, output, input);
|
|
if (rv != SECSuccess) {
|
|
if (PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
|
sftk_fatalError = PR_TRUE;
|
|
}
|
|
goto failure;
|
|
}
|
|
|
|
*output_len = modulus_len;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* Mask generation function MGF1 as defined in PKCS #1 v2.1 / RFC 3447.
|
|
*/
|
|
static SECStatus
|
|
MGF1(HASH_HashType hashAlg, unsigned char *mask, unsigned int maskLen,
|
|
const unsigned char *mgfSeed, unsigned int mgfSeedLen)
|
|
{
|
|
unsigned int digestLen;
|
|
PRUint32 counter, rounds;
|
|
unsigned char *tempHash, *temp;
|
|
const SECHashObject *hash;
|
|
void *hashContext;
|
|
unsigned char C[4];
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
if (hash == NULL)
|
|
return SECFailure;
|
|
|
|
hashContext = (*hash->create)();
|
|
rounds = (maskLen + hash->length - 1) / hash->length;
|
|
for (counter = 0; counter < rounds; counter++) {
|
|
C[0] = (unsigned char)((counter >> 24) & 0xff);
|
|
C[1] = (unsigned char)((counter >> 16) & 0xff);
|
|
C[2] = (unsigned char)((counter >> 8) & 0xff);
|
|
C[3] = (unsigned char)(counter & 0xff);
|
|
|
|
/* This could be optimized when the clone functions in
|
|
* rawhash.c are implemented. */
|
|
(*hash->begin)(hashContext);
|
|
(*hash->update)(hashContext, mgfSeed, mgfSeedLen);
|
|
(*hash->update)(hashContext, C, sizeof C);
|
|
|
|
tempHash = mask + counter * hash->length;
|
|
if (counter != (rounds-1)) {
|
|
(*hash->end)(hashContext, tempHash, &digestLen, hash->length);
|
|
} else { /* we're in the last round and need to cut the hash */
|
|
temp = PORT_Alloc(hash->length);
|
|
(*hash->end)(hashContext, temp, &digestLen, hash->length);
|
|
PORT_Memcpy(tempHash, temp, maskLen - counter * hash->length);
|
|
PORT_Free(temp);
|
|
}
|
|
}
|
|
(*hash->destroy)(hashContext, PR_TRUE);
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Encode a RSA-PSS signature.
|
|
* Described in RFC 3447, section 9.1.1.
|
|
* We use mHash instead of M as input.
|
|
* emBits from the RFC is just modBits - 1, see section 8.1.1.
|
|
* We only support MGF1 as the MGF.
|
|
*
|
|
* NOTE: this code assumes modBits is a multiple of 8.
|
|
*/
|
|
static SECStatus
|
|
emsa_pss_encode(unsigned char *em, unsigned int emLen,
|
|
const unsigned char *mHash, HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg, unsigned int sLen)
|
|
{
|
|
const SECHashObject *hash;
|
|
void *hash_context;
|
|
unsigned char *dbMask;
|
|
unsigned int dbMaskLen, i;
|
|
SECStatus rv;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
dbMaskLen = emLen - hash->length - 1;
|
|
|
|
/* Step 3 */
|
|
if (emLen < hash->length + sLen + 2) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 4 */
|
|
rv = RNG_GenerateGlobalRandomBytes(&em[dbMaskLen - sLen], sLen);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
|
|
/* Step 5 + 6 */
|
|
/* Compute H and store it at its final location &em[dbMaskLen]. */
|
|
hash_context = (*hash->create)();
|
|
if (hash_context == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
(*hash->begin)(hash_context);
|
|
(*hash->update)(hash_context, eightZeros, 8);
|
|
(*hash->update)(hash_context, mHash, hash->length);
|
|
(*hash->update)(hash_context, &em[dbMaskLen - sLen], sLen);
|
|
(*hash->end)(hash_context, &em[dbMaskLen], &i, hash->length);
|
|
(*hash->destroy)(hash_context, PR_TRUE);
|
|
|
|
/* Step 7 + 8 */
|
|
memset(em, 0, dbMaskLen - sLen - 1);
|
|
em[dbMaskLen - sLen - 1] = 0x01;
|
|
|
|
/* Step 9 */
|
|
dbMask = (unsigned char *)PORT_Alloc(dbMaskLen);
|
|
if (dbMask == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
MGF1(maskHashAlg, dbMask, dbMaskLen, &em[dbMaskLen], hash->length);
|
|
|
|
/* Step 10 */
|
|
for (i = 0; i < dbMaskLen; i++)
|
|
em[i] ^= dbMask[i];
|
|
PORT_Free(dbMask);
|
|
|
|
/* Step 11 */
|
|
em[0] &= 0x7f;
|
|
|
|
/* Step 12 */
|
|
em[emLen - 1] = 0xbc;
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Verify a RSA-PSS signature.
|
|
* Described in RFC 3447, section 9.1.2.
|
|
* We use mHash instead of M as input.
|
|
* emBits from the RFC is just modBits - 1, see section 8.1.2.
|
|
* We only support MGF1 as the MGF.
|
|
*
|
|
* NOTE: this code assumes modBits is a multiple of 8.
|
|
*/
|
|
static SECStatus
|
|
emsa_pss_verify(const unsigned char *mHash,
|
|
const unsigned char *em, unsigned int emLen,
|
|
HASH_HashType hashAlg, HASH_HashType maskHashAlg,
|
|
unsigned int sLen)
|
|
{
|
|
const SECHashObject *hash;
|
|
void *hash_context;
|
|
unsigned char *db;
|
|
unsigned char *H_; /* H' from the RFC */
|
|
unsigned int i, dbMaskLen;
|
|
SECStatus rv;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
dbMaskLen = emLen - hash->length - 1;
|
|
|
|
/* Step 3 + 4 + 6 */
|
|
if ((emLen < (hash->length + sLen + 2)) ||
|
|
(em[emLen - 1] != 0xbc) ||
|
|
((em[0] & 0x80) != 0)) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 7 */
|
|
db = (unsigned char *)PORT_Alloc(dbMaskLen);
|
|
if (db == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
/* &em[dbMaskLen] points to H, used as mgfSeed */
|
|
MGF1(maskHashAlg, db, dbMaskLen, &em[dbMaskLen], hash->length);
|
|
|
|
/* Step 8 */
|
|
for (i = 0; i < dbMaskLen; i++) {
|
|
db[i] ^= em[i];
|
|
}
|
|
|
|
/* Step 9 */
|
|
db[0] &= 0x7f;
|
|
|
|
/* Step 10 */
|
|
for (i = 0; i < (dbMaskLen - sLen - 1); i++) {
|
|
if (db[i] != 0) {
|
|
PORT_Free(db);
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
if (db[dbMaskLen - sLen - 1] != 0x01) {
|
|
PORT_Free(db);
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 12 + 13 */
|
|
H_ = (unsigned char *)PORT_Alloc(hash->length);
|
|
if (H_ == NULL) {
|
|
PORT_Free(db);
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
hash_context = (*hash->create)();
|
|
if (hash_context == NULL) {
|
|
PORT_Free(db);
|
|
PORT_Free(H_);
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
(*hash->begin)(hash_context);
|
|
(*hash->update)(hash_context, eightZeros, 8);
|
|
(*hash->update)(hash_context, mHash, hash->length);
|
|
(*hash->update)(hash_context, &db[dbMaskLen - sLen], sLen);
|
|
(*hash->end)(hash_context, H_, &i, hash->length);
|
|
(*hash->destroy)(hash_context, PR_TRUE);
|
|
|
|
PORT_Free(db);
|
|
|
|
/* Step 14 */
|
|
if (PORT_Memcmp(H_, &em[dbMaskLen], hash->length) != 0) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
rv = SECFailure;
|
|
} else {
|
|
rv = SECSuccess;
|
|
}
|
|
|
|
PORT_Free(H_);
|
|
return rv;
|
|
}
|
|
|
|
static HASH_HashType
|
|
GetHashTypeFromMechanism(CK_MECHANISM_TYPE mech)
|
|
{
|
|
switch (mech) {
|
|
case CKM_SHA_1:
|
|
case CKG_MGF1_SHA1:
|
|
return HASH_AlgSHA1;
|
|
case CKM_SHA224:
|
|
case CKG_MGF1_SHA224:
|
|
return HASH_AlgSHA224;
|
|
case CKM_SHA256:
|
|
case CKG_MGF1_SHA256:
|
|
return HASH_AlgSHA256;
|
|
case CKM_SHA384:
|
|
case CKG_MGF1_SHA384:
|
|
return HASH_AlgSHA384;
|
|
case CKM_SHA512:
|
|
case CKG_MGF1_SHA512:
|
|
return HASH_AlgSHA512;
|
|
default:
|
|
return HASH_AlgNULL;
|
|
}
|
|
}
|
|
|
|
/* MGF1 is the only supported MGF. */
|
|
SECStatus
|
|
RSA_CheckSignPSS(CK_RSA_PKCS_PSS_PARAMS *pss_params,
|
|
NSSLOWKEYPublicKey *key,
|
|
const unsigned char *sign, unsigned int sign_len,
|
|
const unsigned char *hash, unsigned int hash_len)
|
|
{
|
|
HASH_HashType hashAlg;
|
|
HASH_HashType maskHashAlg;
|
|
SECStatus rv;
|
|
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
|
|
unsigned char *buffer;
|
|
|
|
if (sign_len != modulus_len) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
hashAlg = GetHashTypeFromMechanism(pss_params->hashAlg);
|
|
maskHashAlg = GetHashTypeFromMechanism(pss_params->mgf);
|
|
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulus_len);
|
|
if (!buffer) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
|
|
if (rv != SECSuccess) {
|
|
PORT_Free(buffer);
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = emsa_pss_verify(hash, buffer, modulus_len, hashAlg,
|
|
maskHashAlg, pss_params->sLen);
|
|
PORT_Free(buffer);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* MGF1 is the only supported MGF. */
|
|
SECStatus
|
|
RSA_SignPSS(CK_RSA_PKCS_PSS_PARAMS *pss_params, NSSLOWKEYPrivateKey *key,
|
|
unsigned char *output, unsigned int *output_len,
|
|
unsigned int max_output_len,
|
|
const unsigned char *input, unsigned int input_len)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
|
|
unsigned char *pss_encoded = NULL;
|
|
HASH_HashType hashAlg;
|
|
HASH_HashType maskHashAlg;
|
|
|
|
if (max_output_len < modulus_len) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
|
|
if (key->keyType != NSSLOWKEYRSAKey) {
|
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
|
return SECFailure;
|
|
}
|
|
|
|
hashAlg = GetHashTypeFromMechanism(pss_params->hashAlg);
|
|
maskHashAlg = GetHashTypeFromMechanism(pss_params->mgf);
|
|
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
pss_encoded = (unsigned char *)PORT_Alloc(modulus_len);
|
|
if (pss_encoded == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
rv = emsa_pss_encode(pss_encoded, modulus_len, input, hashAlg,
|
|
maskHashAlg, pss_params->sLen);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
|
|
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, pss_encoded);
|
|
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
|
|
sftk_fatalError = PR_TRUE;
|
|
}
|
|
*output_len = modulus_len;
|
|
|
|
done:
|
|
PORT_Free(pss_encoded);
|
|
return rv;
|
|
}
|