gecko/gfx/public/nsRect.h

380 lines
15 KiB
C

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef NSRECT_H
#define NSRECT_H
#include <stdio.h>
#include "nsCoord.h"
#include "nsPoint.h"
#include "nsSize.h"
#include "nsMargin.h"
#include "gfxCore.h"
#include "nsTraceRefcnt.h"
struct nsIntRect;
struct NS_GFX nsRect {
nscoord x, y;
nscoord width, height;
// Constructors
nsRect() : x(0), y(0), width(0), height(0) {
MOZ_COUNT_CTOR(nsRect);
}
nsRect(const nsRect& aRect) {
MOZ_COUNT_CTOR(nsRect);
*this = aRect;
}
nsRect(const nsPoint& aOrigin, const nsSize &aSize) {
MOZ_COUNT_CTOR(nsRect);
x = aOrigin.x; y = aOrigin.y;
width = aSize.width; height = aSize.height;
}
nsRect(nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight) {
MOZ_COUNT_CTOR(nsRect);
x = aX; y = aY; width = aWidth; height = aHeight;
VERIFY_COORD(x); VERIFY_COORD(y); VERIFY_COORD(width); VERIFY_COORD(height);
}
#ifdef NS_BUILD_REFCNT_LOGGING
~nsRect() {
MOZ_COUNT_DTOR(nsRect);
}
#endif
// Emptiness. An empty rect is one that has no area, i.e. its height or width
// is <= 0
PRBool IsEmpty() const {
return (PRBool) ((height <= 0) || (width <= 0));
}
void Empty() {width = height = 0;}
// Containment
PRBool Contains(const nsRect& aRect) const;
PRBool Contains(nscoord aX, nscoord aY) const;
PRBool Contains(const nsPoint& aPoint) const {return Contains(aPoint.x, aPoint.y);}
// Intersection. Returns TRUE if the receiver overlaps aRect and
// FALSE otherwise
PRBool Intersects(const nsRect& aRect) const;
// Computes the area in which aRect1 and aRect2 overlap, and fills 'this' with
// the result. Returns FALSE if the rectangles don't intersect, and sets 'this'
// rect to be an empty rect.
//
// 'this' can be the same object as either aRect1 or aRect2
PRBool IntersectRect(const nsRect& aRect1, const nsRect& aRect2);
// Computes the smallest rectangle that contains both aRect1 and aRect2 and
// fills 'this' with the result, ignoring empty input rectangles.
// Returns FALSE and sets 'this' rect to be an empty rect if both aRect1
// and aRect2 are empty.
//
// 'this' can be the same object as either aRect1 or aRect2
PRBool UnionRect(const nsRect& aRect1, const nsRect& aRect2);
// Computes the smallest rectangle that contains both aRect1 and aRect2,
// where empty input rectangles are allowed to affect the result; the
// top-left of an empty input rectangle will be inside or on the edge of
// the result.
//
// 'this' can be the same object as either aRect1 or aRect2
void UnionRectIncludeEmpty(const nsRect& aRect1, const nsRect& aRect2);
// Accessors
void SetRect(nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight) {
x = aX; y = aY; width = aWidth; height = aHeight;
}
void SetRect(const nsPoint& aPt, const nsSize& aSize) {
SetRect(aPt.x, aPt.y, aSize.width, aSize.height);
}
void MoveTo(nscoord aX, nscoord aY) {x = aX; y = aY;}
void MoveTo(const nsPoint& aPoint) {x = aPoint.x; y = aPoint.y;}
void MoveBy(nscoord aDx, nscoord aDy) {x += aDx; y += aDy;}
void MoveBy(const nsPoint& aPoint) {x += aPoint.x; y += aPoint.y;}
void SizeTo(nscoord aWidth, nscoord aHeight) {width = aWidth; height = aHeight;}
void SizeTo(const nsSize& aSize) {SizeTo(aSize.width, aSize.height);}
void SizeBy(nscoord aDeltaWidth, nscoord aDeltaHeight) {width += aDeltaWidth;
height += aDeltaHeight;}
// Inflate the rect by the specified width/height or margin
void Inflate(nscoord aDx, nscoord aDy);
void Inflate(const nsSize& aSize) {Inflate(aSize.width, aSize.height);}
void Inflate(const nsMargin& aMargin);
// Deflate the rect by the specified width/height or margin
void Deflate(nscoord aDx, nscoord aDy);
void Deflate(const nsSize& aSize) {Deflate(aSize.width, aSize.height);}
void Deflate(const nsMargin& aMargin);
// Overloaded operators. Note that '=' isn't defined so we'll get the
// compiler generated default assignment operator.
PRBool operator==(const nsRect& aRect) const {
return (PRBool) ((IsEmpty() && aRect.IsEmpty()) ||
((x == aRect.x) && (y == aRect.y) &&
(width == aRect.width) && (height == aRect.height)));
}
PRBool operator!=(const nsRect& aRect) const {
return (PRBool) !operator==(aRect);
}
// Useful when we care about the exact x/y/width/height values being
// equal (i.e. we care about differences in empty rectangles)
PRBool IsExactEqual(const nsRect& aRect) const {
return x == aRect.x && y == aRect.y &&
width == aRect.width && height == aRect.height;
}
// Arithmetic with nsPoints
nsRect operator+(const nsPoint& aPoint) const {
return nsRect(x + aPoint.x, y + aPoint.y, width, height);
}
nsRect operator-(const nsPoint& aPoint) const {
return nsRect(x - aPoint.x, y - aPoint.y, width, height);
}
nsRect& operator+=(const nsPoint& aPoint) {x += aPoint.x; y += aPoint.y; return *this;}
nsRect& operator-=(const nsPoint& aPoint) {x -= aPoint.x; y -= aPoint.y; return *this;}
// Arithmetic with nsMargins
nsMargin operator-(const nsRect& aRect) const; // Find difference as nsMargin
nsRect& operator+=(const nsMargin& aMargin) { Inflate(aMargin); return *this; }
nsRect& operator-=(const nsMargin& aMargin) { Deflate(aMargin); return *this; }
nsRect operator+(const nsMargin& aMargin) const { return nsRect(*this) += aMargin; }
nsRect operator-(const nsMargin& aMargin) const { return nsRect(*this) -= aMargin; }
// Scale by aScale, converting coordinates to integers so that the result
// is the smallest integer-coordinate rectangle containing the unrounded result
nsRect& ScaleRoundOut(float aScale);
// Helpers for accessing the vertices
nsPoint TopLeft() const { return nsPoint(x, y); }
nsPoint TopRight() const { return nsPoint(XMost(), y); }
nsPoint BottomLeft() const { return nsPoint(x, YMost()); }
nsPoint BottomRight() const { return nsPoint(XMost(), YMost()); }
nsSize Size() const { return nsSize(width, height); }
// Helper methods for computing the extents
nscoord XMost() const {return x + width;}
nscoord YMost() const {return y + height;}
inline nsIntRect ToNearestPixels(nscoord aAppUnitsPerPixel) const;
inline nsIntRect ToOutsidePixels(nscoord aAppUnitsPerPixel) const;
inline nsIntRect ToInsidePixels(nscoord aAppUnitsPerPixel) const;
};
struct NS_GFX nsIntRect {
PRInt32 x, y;
PRInt32 width, height;
// Constructors
nsIntRect() : x(0), y(0), width(0), height(0) {}
nsIntRect(const nsIntRect& aRect) {*this = aRect;}
nsIntRect(const nsIntPoint& aOrigin, const nsIntSize &aSize) {
x = aOrigin.x; y = aOrigin.y;
width = aSize.width; height = aSize.height;
}
nsIntRect(PRInt32 aX, PRInt32 aY, PRInt32 aWidth, PRInt32 aHeight) {
x = aX; y = aY; width = aWidth; height = aHeight;
}
// Emptiness. An empty rect is one that has no area, i.e. its height or width
// is <= 0
PRBool IsEmpty() const {
return (PRBool) ((height <= 0) || (width <= 0));
}
void Empty() {width = height = 0;}
// Inflate the rect by the specified width/height or margin
void Inflate(PRInt32 aDx, PRInt32 aDy) {
x -= aDx;
y -= aDy;
width += aDx*2;
height += aDy*2;
}
void Inflate(const nsIntMargin &aMargin) {
x -= aMargin.left;
y -= aMargin.top;
width += aMargin.left + aMargin.right;
height += aMargin.top + aMargin.bottom;
}
// Overloaded operators. Note that '=' isn't defined so we'll get the
// compiler generated default assignment operator.
PRBool operator==(const nsIntRect& aRect) const {
return (PRBool) ((IsEmpty() && aRect.IsEmpty()) ||
((x == aRect.x) && (y == aRect.y) &&
(width == aRect.width) && (height == aRect.height)));
}
PRBool operator!=(const nsIntRect& aRect) const {
return (PRBool) !operator==(aRect);
}
nsIntRect operator+(const nsIntPoint& aPoint) const {
return nsIntRect(x + aPoint.x, y + aPoint.y, width, height);
}
nsIntRect operator-(const nsIntPoint& aPoint) const {
return nsIntRect(x - aPoint.x, y - aPoint.y, width, height);
}
nsIntRect& operator+=(const nsIntPoint& aPoint) {x += aPoint.x; y += aPoint.y; return *this;}
nsIntRect& operator-=(const nsIntPoint& aPoint) {x -= aPoint.x; y -= aPoint.y; return *this;}
void SetRect(PRInt32 aX, PRInt32 aY, PRInt32 aWidth, PRInt32 aHeight) {
x = aX; y = aY; width = aWidth; height = aHeight;
}
void MoveTo(PRInt32 aX, PRInt32 aY) {x = aX; y = aY;}
void MoveTo(const nsIntPoint& aPoint) {x = aPoint.x; y = aPoint.y;}
void MoveBy(PRInt32 aDx, PRInt32 aDy) {x += aDx; y += aDy;}
void MoveBy(const nsIntPoint& aPoint) {x += aPoint.x; y += aPoint.y;}
void SizeTo(PRInt32 aWidth, PRInt32 aHeight) {width = aWidth; height = aHeight;}
void SizeTo(const nsIntSize& aSize) {SizeTo(aSize.width, aSize.height);}
void SizeBy(PRInt32 aDeltaWidth, PRInt32 aDeltaHeight) {width += aDeltaWidth;
height += aDeltaHeight;}
PRBool Contains(const nsIntRect& aRect) const
{
return (PRBool) ((aRect.x >= x) && (aRect.y >= y) &&
(aRect.XMost() <= XMost()) && (aRect.YMost() <= YMost()));
}
PRBool Contains(PRInt32 aX, PRInt32 aY) const
{
return (PRBool) ((aX >= x) && (aY >= y) &&
(aX < XMost()) && (aY < YMost()));
}
PRBool Contains(const nsIntPoint& aPoint) const { return Contains(aPoint.x, aPoint.y); }
// Intersection. Returns TRUE if the receiver overlaps aRect and
// FALSE otherwise
PRBool Intersects(const nsIntRect& aRect) const {
return (PRBool) ((x < aRect.XMost()) && (y < aRect.YMost()) &&
(aRect.x < XMost()) && (aRect.y < YMost()));
}
// Computes the area in which aRect1 and aRect2 overlap, and fills 'this' with
// the result. Returns FALSE if the rectangles don't intersect, and sets 'this'
// rect to be an empty rect.
//
// 'this' can be the same object as either aRect1 or aRect2
PRBool IntersectRect(const nsIntRect& aRect1, const nsIntRect& aRect2);
// Computes the smallest rectangle that contains both aRect1 and aRect2 and
// fills 'this' with the result. Returns FALSE and sets 'this' rect to be an
// empty rect if both aRect1 and aRect2 are empty
//
// 'this' can be the same object as either aRect1 or aRect2
PRBool UnionRect(const nsIntRect& aRect1, const nsIntRect& aRect2);
// Helpers for accessing the vertices
nsIntPoint TopLeft() const { return nsIntPoint(x, y); }
nsIntPoint TopRight() const { return nsIntPoint(XMost(), y); }
nsIntPoint BottomLeft() const { return nsIntPoint(x, YMost()); }
nsIntPoint BottomRight() const { return nsIntPoint(XMost(), YMost()); }
nsIntSize Size() const { return nsIntSize(width, height); }
// Helper methods for computing the extents
PRInt32 XMost() const {return x + width;}
PRInt32 YMost() const {return y + height;}
inline nsRect ToAppUnits(nscoord aAppUnitsPerPixel) const;
};
/*
* App Unit/Pixel conversions
*/
// scale the rect but round to preserve centers
inline nsIntRect
nsRect::ToNearestPixels(nscoord aAppUnitsPerPixel) const
{
nsIntRect rect;
rect.x = NSToIntRoundUp(NSAppUnitsToFloatPixels(x, float(aAppUnitsPerPixel)));
rect.y = NSToIntRoundUp(NSAppUnitsToFloatPixels(y, float(aAppUnitsPerPixel)));
rect.width = NSToIntRoundUp(NSAppUnitsToFloatPixels(XMost(),
float(aAppUnitsPerPixel))) - rect.x;
rect.height = NSToIntRoundUp(NSAppUnitsToFloatPixels(YMost(),
float(aAppUnitsPerPixel))) - rect.y;
return rect;
}
// scale the rect but round to smallest containing rect
inline nsIntRect
nsRect::ToOutsidePixels(nscoord aAppUnitsPerPixel) const
{
nsIntRect rect;
rect.x = NSToIntFloor(NSAppUnitsToFloatPixels(x, float(aAppUnitsPerPixel)));
rect.y = NSToIntFloor(NSAppUnitsToFloatPixels(y, float(aAppUnitsPerPixel)));
rect.width = NSToIntCeil(NSAppUnitsToFloatPixels(XMost(),
float(aAppUnitsPerPixel))) - rect.x;
rect.height = NSToIntCeil(NSAppUnitsToFloatPixels(YMost(),
float(aAppUnitsPerPixel))) - rect.y;
return rect;
}
// scale the rect but round to largest contained rect
inline nsIntRect
nsRect::ToInsidePixels(nscoord aAppUnitsPerPixel) const
{
nsIntRect rect;
rect.x = NSToIntCeil(NSAppUnitsToFloatPixels(x, float(aAppUnitsPerPixel)));
rect.y = NSToIntCeil(NSAppUnitsToFloatPixels(y, float(aAppUnitsPerPixel)));
rect.width = NSToIntFloor(NSAppUnitsToFloatPixels(XMost(),
float(aAppUnitsPerPixel))) - rect.x;
rect.height = NSToIntFloor(NSAppUnitsToFloatPixels(YMost(),
float(aAppUnitsPerPixel))) - rect.y;
return rect;
}
// app units are integer multiples of pixels, so no rounding needed
inline nsRect
nsIntRect::ToAppUnits(nscoord aAppUnitsPerPixel) const
{
return nsRect(NSIntPixelsToAppUnits(x, aAppUnitsPerPixel),
NSIntPixelsToAppUnits(y, aAppUnitsPerPixel),
NSIntPixelsToAppUnits(width, aAppUnitsPerPixel),
NSIntPixelsToAppUnits(height, aAppUnitsPerPixel));
}
#ifdef DEBUG
// Diagnostics
extern NS_GFX FILE* operator<<(FILE* out, const nsRect& rect);
#endif // DEBUG
#endif /* NSRECT_H */