gecko/js/src/jsscope.cpp

1948 lines
66 KiB
C++

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=78:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS symbol tables.
*/
#include <stdlib.h>
#include <string.h>
#include "jstypes.h"
#include "jsstdint.h"
#include "jsarena.h"
#include "jsbit.h"
#include "jsclist.h"
#include "jsdhash.h"
#include "jsutil.h" /* Added by JSIFY */
#include "jsapi.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jsdbgapi.h"
#include "jslock.h"
#include "jsnum.h"
#include "jsscope.h"
#include "jsstr.h"
#include "jsarray.h"
JSScope *
js_GetMutableScope(JSContext *cx, JSObject *obj)
{
JSScope *scope, *newscope;
JSClass *clasp;
uint32 freeslot;
scope = OBJ_SCOPE(obj);
JS_ASSERT(JS_IS_SCOPE_LOCKED(cx, scope));
if (scope->object == obj)
return scope;
newscope = js_NewScope(cx, 0, scope->map.ops, LOCKED_OBJ_GET_CLASS(obj),
obj);
if (!newscope)
return NULL;
JS_LOCK_SCOPE(cx, newscope);
obj->map = js_HoldObjectMap(cx, &newscope->map);
JS_ASSERT(newscope->map.freeslot == JSSLOT_FREE(STOBJ_GET_CLASS(obj)));
clasp = STOBJ_GET_CLASS(obj);
if (clasp->reserveSlots) {
freeslot = JSSLOT_FREE(clasp) + clasp->reserveSlots(cx, obj);
if (freeslot > STOBJ_NSLOTS(obj))
freeslot = STOBJ_NSLOTS(obj);
if (newscope->map.freeslot < freeslot)
newscope->map.freeslot = freeslot;
}
scope = (JSScope *) js_DropObjectMap(cx, &scope->map, obj);
JS_TRANSFER_SCOPE_LOCK(cx, scope, newscope);
return newscope;
}
/*
* JSScope uses multiplicative hashing, _a la_ jsdhash.[ch], but specialized
* to minimize footprint. But if a scope has fewer than SCOPE_HASH_THRESHOLD
* entries, we use linear search and avoid allocating scope->table.
*/
#define SCOPE_HASH_THRESHOLD 6
#define MIN_SCOPE_SIZE_LOG2 4
#define MIN_SCOPE_SIZE JS_BIT(MIN_SCOPE_SIZE_LOG2)
#define SCOPE_TABLE_NBYTES(n) ((n) * sizeof(JSScopeProperty *))
static void
InitMinimalScope(JSScope *scope)
{
scope->shape = 0;
scope->hashShift = JS_DHASH_BITS - MIN_SCOPE_SIZE_LOG2;
scope->entryCount = scope->removedCount = 0;
scope->table = NULL;
scope->lastProp = NULL;
}
static JSBool
CreateScopeTable(JSContext *cx, JSScope *scope, JSBool report)
{
int sizeLog2;
JSScopeProperty *sprop, **spp;
JS_ASSERT(!scope->table);
JS_ASSERT(scope->lastProp);
if (scope->entryCount > SCOPE_HASH_THRESHOLD) {
/*
* Either we're creating a table for a large scope that was populated
* via property cache hit logic under JSOP_INITPROP, JSOP_SETNAME, or
* JSOP_SETPROP; or else calloc failed at least once already. In any
* event, let's try to grow, overallocating to hold at least twice the
* current population.
*/
sizeLog2 = JS_CeilingLog2(2 * scope->entryCount);
scope->hashShift = JS_DHASH_BITS - sizeLog2;
} else {
JS_ASSERT(scope->hashShift == JS_DHASH_BITS - MIN_SCOPE_SIZE_LOG2);
sizeLog2 = MIN_SCOPE_SIZE_LOG2;
}
scope->table = (JSScopeProperty **)
calloc(JS_BIT(sizeLog2), sizeof(JSScopeProperty *));
if (!scope->table) {
if (report)
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
js_UpdateMallocCounter(cx, JS_BIT(sizeLog2) * sizeof(JSScopeProperty *));
scope->hashShift = JS_DHASH_BITS - sizeLog2;
for (sprop = scope->lastProp; sprop; sprop = sprop->parent) {
spp = js_SearchScope(scope, sprop->id, JS_TRUE);
SPROP_STORE_PRESERVING_COLLISION(spp, sprop);
}
return JS_TRUE;
}
JSScope *
js_NewScope(JSContext *cx, jsrefcount nrefs, JSObjectOps *ops, JSClass *clasp,
JSObject *obj)
{
JSScope *scope;
scope = (JSScope *) JS_malloc(cx, sizeof(JSScope));
if (!scope)
return NULL;
js_InitObjectMap(&scope->map, nrefs, ops, clasp);
scope->object = obj;
scope->flags = 0;
InitMinimalScope(scope);
#ifdef JS_THREADSAFE
js_InitTitle(cx, &scope->title);
#endif
JS_RUNTIME_METER(cx->runtime, liveScopes);
JS_RUNTIME_METER(cx->runtime, totalScopes);
return scope;
}
#if defined DEBUG || defined JS_DUMP_PROPTREE_STATS
# include "jsprf.h"
# define LIVE_SCOPE_METER(cx,expr) JS_LOCK_RUNTIME_VOID(cx->runtime,expr)
#else
# define LIVE_SCOPE_METER(cx,expr) /* nothing */
#endif
void
js_DestroyScope(JSContext *cx, JSScope *scope)
{
#ifdef JS_THREADSAFE
js_FinishTitle(cx, &scope->title);
#endif
if (scope->table)
JS_free(cx, scope->table);
LIVE_SCOPE_METER(cx, cx->runtime->liveScopeProps -= scope->entryCount);
JS_RUNTIME_UNMETER(cx->runtime, liveScopes);
JS_free(cx, scope);
}
#ifdef JS_DUMP_PROPTREE_STATS
typedef struct JSScopeStats {
jsrefcount searches;
jsrefcount hits;
jsrefcount misses;
jsrefcount hashes;
jsrefcount steps;
jsrefcount stepHits;
jsrefcount stepMisses;
jsrefcount adds;
jsrefcount redundantAdds;
jsrefcount addFailures;
jsrefcount changeFailures;
jsrefcount compresses;
jsrefcount grows;
jsrefcount removes;
jsrefcount removeFrees;
jsrefcount uselessRemoves;
jsrefcount shrinks;
} JSScopeStats;
JS_FRIEND_DATA(JSScopeStats) js_scope_stats = {0};
# define METER(x) JS_ATOMIC_INCREMENT(&js_scope_stats.x)
#else
# define METER(x) /* nothing */
#endif
JS_STATIC_ASSERT(sizeof(JSHashNumber) == 4);
JS_STATIC_ASSERT(sizeof(jsid) == JS_BYTES_PER_WORD);
#if JS_BYTES_PER_WORD == 4
# define HASH_ID(id) ((JSHashNumber)(id))
#elif JS_BYTES_PER_WORD == 8
# define HASH_ID(id) ((JSHashNumber)(id) ^ (JSHashNumber)((id) >> 32))
#else
# error "Unsupported configuration"
#endif
/*
* Double hashing needs the second hash code to be relatively prime to table
* size, so we simply make hash2 odd. The inputs to multiplicative hash are
* the golden ratio, expressed as a fixed-point 32 bit fraction, and the id
* itself.
*/
#define SCOPE_HASH0(id) (HASH_ID(id) * JS_GOLDEN_RATIO)
#define SCOPE_HASH1(hash0,shift) ((hash0) >> (shift))
#define SCOPE_HASH2(hash0,log2,shift) ((((hash0) << (log2)) >> (shift)) | 1)
JS_FRIEND_API(JSScopeProperty **)
js_SearchScope(JSScope *scope, jsid id, JSBool adding)
{
JSHashNumber hash0, hash1, hash2;
int hashShift, sizeLog2;
JSScopeProperty *stored, *sprop, **spp, **firstRemoved;
uint32 sizeMask;
METER(searches);
if (!scope->table) {
/* Not enough properties to justify hashing: search from lastProp. */
JS_ASSERT(!SCOPE_HAD_MIDDLE_DELETE(scope));
for (spp = &scope->lastProp; (sprop = *spp); spp = &sprop->parent) {
if (sprop->id == id) {
METER(hits);
return spp;
}
}
METER(misses);
return spp;
}
/* Compute the primary hash address. */
METER(hashes);
hash0 = SCOPE_HASH0(id);
hashShift = scope->hashShift;
hash1 = SCOPE_HASH1(hash0, hashShift);
spp = scope->table + hash1;
/* Miss: return space for a new entry. */
stored = *spp;
if (SPROP_IS_FREE(stored)) {
METER(misses);
return spp;
}
/* Hit: return entry. */
sprop = SPROP_CLEAR_COLLISION(stored);
if (sprop && sprop->id == id) {
METER(hits);
return spp;
}
/* Collision: double hash. */
sizeLog2 = JS_DHASH_BITS - hashShift;
hash2 = SCOPE_HASH2(hash0, sizeLog2, hashShift);
sizeMask = JS_BITMASK(sizeLog2);
/* Save the first removed entry pointer so we can recycle it if adding. */
if (SPROP_IS_REMOVED(stored)) {
firstRemoved = spp;
} else {
firstRemoved = NULL;
if (adding && !SPROP_HAD_COLLISION(stored))
SPROP_FLAG_COLLISION(spp, sprop);
}
for (;;) {
METER(steps);
hash1 -= hash2;
hash1 &= sizeMask;
spp = scope->table + hash1;
stored = *spp;
if (SPROP_IS_FREE(stored)) {
METER(stepMisses);
return (adding && firstRemoved) ? firstRemoved : spp;
}
sprop = SPROP_CLEAR_COLLISION(stored);
if (sprop && sprop->id == id) {
METER(stepHits);
return spp;
}
if (SPROP_IS_REMOVED(stored)) {
if (!firstRemoved)
firstRemoved = spp;
} else {
if (adding && !SPROP_HAD_COLLISION(stored))
SPROP_FLAG_COLLISION(spp, sprop);
}
}
/* NOTREACHED */
return NULL;
}
static JSBool
ChangeScope(JSContext *cx, JSScope *scope, int change)
{
int oldlog2, newlog2;
uint32 oldsize, newsize, nbytes;
JSScopeProperty **table, **oldtable, **spp, **oldspp, *sprop;
if (!scope->table)
return CreateScopeTable(cx, scope, JS_TRUE);
/* Grow, shrink, or compress by changing scope->table. */
oldlog2 = JS_DHASH_BITS - scope->hashShift;
newlog2 = oldlog2 + change;
oldsize = JS_BIT(oldlog2);
newsize = JS_BIT(newlog2);
nbytes = SCOPE_TABLE_NBYTES(newsize);
table = (JSScopeProperty **) calloc(nbytes, 1);
if (!table) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
/* Now that we have a new table allocated, update scope members. */
scope->hashShift = JS_DHASH_BITS - newlog2;
scope->removedCount = 0;
oldtable = scope->table;
scope->table = table;
/* Treat the above calloc as a JS_malloc, to match CreateScopeTable. */
cx->runtime->gcMallocBytes += nbytes;
/* Copy only live entries, leaving removed and free ones behind. */
for (oldspp = oldtable; oldsize != 0; oldspp++) {
sprop = SPROP_FETCH(oldspp);
if (sprop) {
spp = js_SearchScope(scope, sprop->id, JS_TRUE);
JS_ASSERT(SPROP_IS_FREE(*spp));
*spp = sprop;
}
oldsize--;
}
/* Finally, free the old table storage. */
JS_free(cx, oldtable);
return JS_TRUE;
}
/*
* Take care to exclude the mark bits in case we're called from the GC.
*/
#define SPROP_FLAGS_NOT_MATCHED (SPROP_MARK | SPROP_FLAG_SHAPE_REGEN)
static JSDHashNumber
js_HashScopeProperty(JSDHashTable *table, const void *key)
{
const JSScopeProperty *sprop = (const JSScopeProperty *)key;
JSDHashNumber hash;
JSPropertyOp gsop;
/* Accumulate from least to most random so the low bits are most random. */
hash = 0;
gsop = sprop->getter;
if (gsop)
hash = JS_ROTATE_LEFT32(hash, 4) ^ (jsword)gsop;
gsop = sprop->setter;
if (gsop)
hash = JS_ROTATE_LEFT32(hash, 4) ^ (jsword)gsop;
hash = JS_ROTATE_LEFT32(hash, 4)
^ (sprop->flags & ~SPROP_FLAGS_NOT_MATCHED);
hash = JS_ROTATE_LEFT32(hash, 4) ^ sprop->attrs;
hash = JS_ROTATE_LEFT32(hash, 4) ^ sprop->shortid;
hash = JS_ROTATE_LEFT32(hash, 4) ^ sprop->slot;
hash = JS_ROTATE_LEFT32(hash, 4) ^ sprop->id;
return hash;
}
#define SPROP_MATCH(sprop, child) \
SPROP_MATCH_PARAMS(sprop, (child)->id, (child)->getter, (child)->setter, \
(child)->slot, (child)->attrs, (child)->flags, \
(child)->shortid)
#define SPROP_MATCH_PARAMS(sprop, aid, agetter, asetter, aslot, aattrs, \
aflags, ashortid) \
((sprop)->id == (aid) && \
SPROP_MATCH_PARAMS_AFTER_ID(sprop, agetter, asetter, aslot, aattrs, \
aflags, ashortid))
#define SPROP_MATCH_PARAMS_AFTER_ID(sprop, agetter, asetter, aslot, aattrs, \
aflags, ashortid) \
((sprop)->getter == (agetter) && \
(sprop)->setter == (asetter) && \
(sprop)->slot == (aslot) && \
(sprop)->attrs == (aattrs) && \
(((sprop)->flags ^ (aflags)) & ~SPROP_FLAGS_NOT_MATCHED) == 0 && \
(sprop)->shortid == (ashortid))
static JSBool
js_MatchScopeProperty(JSDHashTable *table,
const JSDHashEntryHdr *hdr,
const void *key)
{
const JSPropertyTreeEntry *entry = (const JSPropertyTreeEntry *)hdr;
const JSScopeProperty *sprop = entry->child;
const JSScopeProperty *kprop = (const JSScopeProperty *)key;
return SPROP_MATCH(sprop, kprop);
}
static const JSDHashTableOps PropertyTreeHashOps = {
JS_DHashAllocTable,
JS_DHashFreeTable,
js_HashScopeProperty,
js_MatchScopeProperty,
JS_DHashMoveEntryStub,
JS_DHashClearEntryStub,
JS_DHashFinalizeStub,
NULL
};
/*
* A property tree node on rt->propertyFreeList overlays the following prefix
* struct on JSScopeProperty.
*/
typedef struct FreeNode {
jsid id;
JSScopeProperty *next;
JSScopeProperty **prevp;
} FreeNode;
#define FREENODE(sprop) ((FreeNode *) (sprop))
#define FREENODE_INSERT(list, sprop) \
JS_BEGIN_MACRO \
FREENODE(sprop)->next = (list); \
FREENODE(sprop)->prevp = &(list); \
if (list) \
FREENODE(list)->prevp = &FREENODE(sprop)->next; \
(list) = (sprop); \
JS_END_MACRO
#define FREENODE_REMOVE(sprop) \
JS_BEGIN_MACRO \
*FREENODE(sprop)->prevp = FREENODE(sprop)->next; \
if (FREENODE(sprop)->next) \
FREENODE(FREENODE(sprop)->next)->prevp = FREENODE(sprop)->prevp; \
JS_END_MACRO
/* NB: Called with rt->gcLock held. */
static JSScopeProperty *
NewScopeProperty(JSRuntime *rt)
{
JSScopeProperty *sprop;
sprop = rt->propertyFreeList;
if (sprop) {
FREENODE_REMOVE(sprop);
} else {
JS_ARENA_ALLOCATE_CAST(sprop, JSScopeProperty *,
&rt->propertyArenaPool,
sizeof(JSScopeProperty));
if (!sprop)
return NULL;
}
JS_RUNTIME_METER(rt, livePropTreeNodes);
JS_RUNTIME_METER(rt, totalPropTreeNodes);
return sprop;
}
#define CHUNKY_KIDS_TAG ((jsuword)1)
#define KIDS_IS_CHUNKY(kids) ((jsuword)(kids) & CHUNKY_KIDS_TAG)
#define KIDS_TO_CHUNK(kids) ((PropTreeKidsChunk *) \
((jsuword)(kids) & ~CHUNKY_KIDS_TAG))
#define CHUNK_TO_KIDS(chunk) ((JSScopeProperty *) \
((jsuword)(chunk) | CHUNKY_KIDS_TAG))
#define MAX_KIDS_PER_CHUNK 10
#define CHUNK_HASH_THRESHOLD 30
typedef struct PropTreeKidsChunk PropTreeKidsChunk;
struct PropTreeKidsChunk {
JSScopeProperty *kids[MAX_KIDS_PER_CHUNK];
JSDHashTable *table;
PropTreeKidsChunk *next;
};
static PropTreeKidsChunk *
NewPropTreeKidsChunk(JSRuntime *rt)
{
PropTreeKidsChunk *chunk;
chunk = (PropTreeKidsChunk *) calloc(1, sizeof *chunk);
if (!chunk)
return NULL;
JS_ASSERT(((jsuword)chunk & CHUNKY_KIDS_TAG) == 0);
JS_RUNTIME_METER(rt, propTreeKidsChunks);
return chunk;
}
static void
DestroyPropTreeKidsChunk(JSRuntime *rt, PropTreeKidsChunk *chunk)
{
JS_RUNTIME_UNMETER(rt, propTreeKidsChunks);
if (chunk->table)
JS_DHashTableDestroy(chunk->table);
free(chunk);
}
/* NB: Called with rt->gcLock held. */
static JSBool
InsertPropertyTreeChild(JSRuntime *rt, JSScopeProperty *parent,
JSScopeProperty *child, PropTreeKidsChunk *sweptChunk)
{
JSDHashTable *table;
JSPropertyTreeEntry *entry;
JSScopeProperty **childp, *kids, *sprop;
PropTreeKidsChunk *chunk, **chunkp;
uintN i;
JS_ASSERT(!parent || child->parent != parent);
if (!parent) {
table = &rt->propertyTreeHash;
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(table, child, JS_DHASH_ADD);
if (!entry)
return JS_FALSE;
childp = &entry->child;
sprop = *childp;
if (!sprop) {
*childp = child;
} else {
/*
* A "Duplicate child" case.
*
* We can't do away with child, as at least one live scope entry
* still points at it. What's more, that scope's lastProp chains
* through an ancestor line to reach child, and js_Enumerate and
* others count on this linkage. We must leave child out of the
* hash table, and not require it to be there when we eventually
* GC it (see RemovePropertyTreeChild, below).
*
* It is necessary to leave the duplicate child out of the hash
* table to preserve entry uniqueness. It is safe to leave the
* child out of the hash table (unlike the duplicate child cases
* below), because the child's parent link will be null, which
* can't dangle.
*/
JS_ASSERT(sprop != child && SPROP_MATCH(sprop, child));
JS_RUNTIME_METER(rt, duplicatePropTreeNodes);
}
} else {
childp = &parent->kids;
kids = *childp;
if (kids) {
if (KIDS_IS_CHUNKY(kids)) {
chunk = KIDS_TO_CHUNK(kids);
table = chunk->table;
if (table) {
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(table, child, JS_DHASH_ADD);
if (!entry)
return JS_FALSE;
if (!entry->child) {
entry->child = child;
while (chunk->next)
chunk = chunk->next;
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
childp = &chunk->kids[i];
sprop = *childp;
if (!sprop)
goto insert;
}
chunkp = &chunk->next;
goto new_chunk;
}
}
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
childp = &chunk->kids[i];
sprop = *childp;
if (!sprop)
goto insert;
JS_ASSERT(sprop != child);
if (SPROP_MATCH(sprop, child)) {
/*
* Duplicate child, see comment above. In this
* case, we must let the duplicate be inserted at
* this level in the tree, so we keep iterating,
* looking for an empty slot in which to insert.
*/
JS_ASSERT(sprop != child);
JS_RUNTIME_METER(rt, duplicatePropTreeNodes);
}
}
chunkp = &chunk->next;
} while ((chunk = *chunkp) != NULL);
new_chunk:
if (sweptChunk) {
chunk = sweptChunk;
} else {
chunk = NewPropTreeKidsChunk(rt);
if (!chunk)
return JS_FALSE;
}
*chunkp = chunk;
childp = &chunk->kids[0];
} else {
sprop = kids;
JS_ASSERT(sprop != child);
if (SPROP_MATCH(sprop, child)) {
/*
* Duplicate child, see comment above. Once again, we
* must let duplicates created by deletion pile up in a
* kids-chunk-list, in order to find them when sweeping
* and thereby avoid dangling parent pointers.
*/
JS_RUNTIME_METER(rt, duplicatePropTreeNodes);
}
if (sweptChunk) {
chunk = sweptChunk;
} else {
chunk = NewPropTreeKidsChunk(rt);
if (!chunk)
return JS_FALSE;
}
parent->kids = CHUNK_TO_KIDS(chunk);
chunk->kids[0] = sprop;
childp = &chunk->kids[1];
}
}
insert:
*childp = child;
}
child->parent = parent;
return JS_TRUE;
}
/* NB: Called with rt->gcLock held. */
static PropTreeKidsChunk *
RemovePropertyTreeChild(JSRuntime *rt, JSScopeProperty *child)
{
PropTreeKidsChunk *freeChunk;
JSScopeProperty *parent, *kids, *kid;
JSDHashTable *table;
PropTreeKidsChunk *list, *chunk, **chunkp, *lastChunk;
uintN i, j;
JSPropertyTreeEntry *entry;
freeChunk = NULL;
parent = child->parent;
if (!parent) {
/*
* Don't remove child if it is not in rt->propertyTreeHash, but only
* matches a root child in the table that has compatible members. See
* the "Duplicate child" comments in InsertPropertyTreeChild, above.
*/
table = &rt->propertyTreeHash;
} else {
kids = parent->kids;
if (KIDS_IS_CHUNKY(kids)) {
list = chunk = KIDS_TO_CHUNK(kids);
chunkp = &list;
table = chunk->table;
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
if (chunk->kids[i] == child) {
lastChunk = chunk;
if (!lastChunk->next) {
j = i + 1;
} else {
j = 0;
do {
chunkp = &lastChunk->next;
lastChunk = *chunkp;
} while (lastChunk->next);
}
for (; j < MAX_KIDS_PER_CHUNK; j++) {
if (!lastChunk->kids[j])
break;
}
--j;
if (chunk != lastChunk || j > i)
chunk->kids[i] = lastChunk->kids[j];
lastChunk->kids[j] = NULL;
if (j == 0) {
*chunkp = NULL;
if (!list)
parent->kids = NULL;
freeChunk = lastChunk;
}
goto out;
}
}
chunkp = &chunk->next;
} while ((chunk = *chunkp) != NULL);
} else {
table = NULL;
kid = kids;
if (kid == child)
parent->kids = NULL;
}
}
out:
if (table) {
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(table, child, JS_DHASH_LOOKUP);
if (entry->child == child)
JS_DHashTableRawRemove(table, &entry->hdr);
}
return freeChunk;
}
static JSDHashTable *
HashChunks(PropTreeKidsChunk *chunk, uintN n)
{
JSDHashTable *table;
uintN i;
JSScopeProperty *sprop;
JSPropertyTreeEntry *entry;
table = JS_NewDHashTable(&PropertyTreeHashOps, NULL,
sizeof(JSPropertyTreeEntry),
JS_DHASH_DEFAULT_CAPACITY(n + 1));
if (!table)
return NULL;
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
sprop = chunk->kids[i];
if (!sprop)
break;
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(table, sprop, JS_DHASH_ADD);
entry->child = sprop;
}
} while ((chunk = chunk->next) != NULL);
return table;
}
/*
* Called without cx->runtime->gcLock held. This function acquires that lock
* only when inserting a new child. Thus there may be races to find or add a
* node that result in duplicates. We expect such races to be rare!
*
* We use rt->gcLock, not rt->rtLock, to allow the GC potentially to nest here
* under js_GenerateShape.
*/
static JSScopeProperty *
GetPropertyTreeChild(JSContext *cx, JSScopeProperty *parent,
JSScopeProperty *child)
{
JSRuntime *rt;
JSDHashTable *table;
JSPropertyTreeEntry *entry;
JSScopeProperty *sprop;
PropTreeKidsChunk *chunk;
uintN i, n;
uint32 shape;
rt = cx->runtime;
if (!parent) {
JS_LOCK_GC(rt);
table = &rt->propertyTreeHash;
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(table, child, JS_DHASH_ADD);
if (!entry)
goto out_of_memory;
sprop = entry->child;
if (sprop)
goto out;
} else {
/*
* Because chunks are appended at the end and never deleted except by
* the GC, we can search without taking the runtime's GC lock. We may
* miss a matching sprop added by another thread, and make a duplicate
* one, but that is an unlikely, therefore small, cost. The property
* tree has extremely low fan-out below its root in popular embeddings
* with real-world workloads.
*
* Patterns such as defining closures that capture a constructor's
* environment as getters or setters on the new object that is passed
* in as |this| can significantly increase fan-out below the property
* tree root -- see bug 335700 for details.
*/
entry = NULL;
sprop = parent->kids;
if (sprop) {
if (KIDS_IS_CHUNKY(sprop)) {
chunk = KIDS_TO_CHUNK(sprop);
table = chunk->table;
if (table) {
JS_LOCK_GC(rt);
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(table, child, JS_DHASH_LOOKUP);
sprop = entry->child;
if (sprop) {
JS_UNLOCK_GC(rt);
return sprop;
}
goto locked_not_found;
}
n = 0;
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
sprop = chunk->kids[i];
if (!sprop) {
n += i;
if (n >= CHUNK_HASH_THRESHOLD) {
chunk = KIDS_TO_CHUNK(parent->kids);
if (!chunk->table) {
table = HashChunks(chunk, n);
JS_LOCK_GC(rt);
if (!table)
goto out_of_memory;
if (chunk->table)
JS_DHashTableDestroy(table);
else
chunk->table = table;
goto locked_not_found;
}
}
goto not_found;
}
if (SPROP_MATCH(sprop, child))
return sprop;
}
n += MAX_KIDS_PER_CHUNK;
} while ((chunk = chunk->next) != NULL);
} else {
if (SPROP_MATCH(sprop, child))
return sprop;
}
}
not_found:
JS_LOCK_GC(rt);
}
locked_not_found:
/*
* Call js_GenerateShape before the allocation to prevent collecting the
* new property when the shape generation triggers the GC.
*/
shape = js_GenerateShape(cx, JS_TRUE, NULL);
sprop = NewScopeProperty(rt);
if (!sprop)
goto out_of_memory;
sprop->id = child->id;
sprop->getter = child->getter;
sprop->setter = child->setter;
sprop->slot = child->slot;
sprop->attrs = child->attrs;
sprop->flags = child->flags;
sprop->shortid = child->shortid;
sprop->parent = sprop->kids = NULL;
sprop->shape = shape;
if (!parent) {
entry->child = sprop;
} else {
if (!InsertPropertyTreeChild(rt, parent, sprop, NULL))
goto out_of_memory;
}
out:
JS_UNLOCK_GC(rt);
return sprop;
out_of_memory:
JS_UNLOCK_GC(rt);
JS_ReportOutOfMemory(cx);
return NULL;
}
#ifdef DEBUG_notbrendan
#define CHECK_ANCESTOR_LINE(scope, sparse) \
JS_BEGIN_MACRO \
if ((scope)->table) CheckAncestorLine(scope, sparse); \
JS_END_MACRO
static void
CheckAncestorLine(JSScope *scope, JSBool sparse)
{
uint32 size;
JSScopeProperty **spp, **start, **end, *ancestorLine, *sprop, *aprop;
uint32 entryCount, ancestorCount;
ancestorLine = SCOPE_LAST_PROP(scope);
if (ancestorLine)
JS_ASSERT(SCOPE_HAS_PROPERTY(scope, ancestorLine));
entryCount = 0;
size = SCOPE_CAPACITY(scope);
start = scope->table;
for (spp = start, end = start + size; spp < end; spp++) {
sprop = SPROP_FETCH(spp);
if (sprop) {
entryCount++;
for (aprop = ancestorLine; aprop; aprop = aprop->parent) {
if (aprop == sprop)
break;
}
JS_ASSERT(aprop);
}
}
JS_ASSERT(entryCount == scope->entryCount);
ancestorCount = 0;
for (sprop = ancestorLine; sprop; sprop = sprop->parent) {
if (SCOPE_HAD_MIDDLE_DELETE(scope) &&
!SCOPE_HAS_PROPERTY(scope, sprop)) {
JS_ASSERT(sparse);
continue;
}
ancestorCount++;
}
JS_ASSERT(ancestorCount == scope->entryCount);
}
#else
#define CHECK_ANCESTOR_LINE(scope, sparse) /* nothing */
#endif
static void
ReportReadOnlyScope(JSContext *cx, JSScope *scope)
{
JSString *str;
const char *bytes;
str = js_ValueToString(cx, OBJECT_TO_JSVAL(scope->object));
if (!str)
return;
bytes = js_GetStringBytes(cx, str);
if (!bytes)
return;
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_READ_ONLY, bytes);
}
JSScopeProperty *
js_AddScopeProperty(JSContext *cx, JSScope *scope, jsid id,
JSPropertyOp getter, JSPropertyOp setter, uint32 slot,
uintN attrs, uintN flags, intN shortid)
{
JSScopeProperty **spp, *sprop, *overwriting, **spvec, **spp2, child;
uint32 size, splen, i;
int change;
JSTempValueRooter tvr;
JS_ASSERT(JS_IS_SCOPE_LOCKED(cx, scope));
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
/*
* You can't add properties to a sealed scope. But note well that you can
* change property attributes in a sealed scope, even though that replaces
* a JSScopeProperty * in the scope's hash table -- but no id is added, so
* the scope remains sealed.
*/
if (SCOPE_IS_SEALED(scope)) {
ReportReadOnlyScope(cx, scope);
return NULL;
}
/*
* Normalize stub getter and setter values for faster is-stub testing in
* the SPROP_CALL_[GS]ETTER macros.
*/
if (getter == JS_PropertyStub)
getter = NULL;
if (setter == JS_PropertyStub)
setter = NULL;
/*
* Search for id in order to claim its entry, allocating a property tree
* node if one doesn't already exist for our parameters.
*/
spp = js_SearchScope(scope, id, JS_TRUE);
sprop = overwriting = SPROP_FETCH(spp);
if (!sprop) {
/* Check whether we need to grow, if the load factor is >= .75. */
size = SCOPE_CAPACITY(scope);
if (scope->entryCount + scope->removedCount >= size - (size >> 2)) {
if (scope->removedCount >= size >> 2) {
METER(compresses);
change = 0;
} else {
METER(grows);
change = 1;
}
if (!ChangeScope(cx, scope, change) &&
scope->entryCount + scope->removedCount == size - 1) {
METER(addFailures);
return NULL;
}
spp = js_SearchScope(scope, id, JS_TRUE);
JS_ASSERT(!SPROP_FETCH(spp));
}
} else {
/* Property exists: js_SearchScope must have returned a valid entry. */
JS_ASSERT(!SPROP_IS_REMOVED(*spp));
/*
* If all property members match, this is a redundant add and we can
* return early. If the caller wants to allocate a slot, but doesn't
* care which slot, copy sprop->slot into slot so we can match sprop,
* if all other members match.
*/
if (!(attrs & JSPROP_SHARED) &&
slot == SPROP_INVALID_SLOT &&
SPROP_HAS_VALID_SLOT(sprop, scope)) {
slot = sprop->slot;
}
if (SPROP_MATCH_PARAMS_AFTER_ID(sprop, getter, setter, slot, attrs,
flags, shortid)) {
METER(redundantAdds);
return sprop;
}
/*
* If we are clearing sprop to force an existing property to be
* overwritten (apart from a duplicate formal parameter), we must
* unlink it from the ancestor line at scope->lastProp, lazily if
* sprop is not lastProp. And we must remove the entry at *spp,
* precisely so the lazy "middle delete" fixup code further below
* won't find sprop in scope->table, in spite of sprop being on
* the ancestor line.
*
* When we finally succeed in finding or creating a new sprop
* and storing its pointer at *spp, we'll use the |overwriting|
* local saved when we first looked up id to decide whether we're
* indeed creating a new entry, or merely overwriting an existing
* property.
*/
if (sprop == SCOPE_LAST_PROP(scope)) {
do {
SCOPE_REMOVE_LAST_PROP(scope);
if (!SCOPE_HAD_MIDDLE_DELETE(scope))
break;
sprop = SCOPE_LAST_PROP(scope);
} while (sprop && !SCOPE_HAS_PROPERTY(scope, sprop));
} else if (!SCOPE_HAD_MIDDLE_DELETE(scope)) {
/*
* If we have no hash table yet, we need one now. The middle
* delete code is simple-minded that way!
*/
if (!scope->table) {
if (!CreateScopeTable(cx, scope, JS_TRUE))
return NULL;
spp = js_SearchScope(scope, id, JS_TRUE);
sprop = overwriting = SPROP_FETCH(spp);
}
SCOPE_SET_MIDDLE_DELETE(scope);
}
SCOPE_MAKE_UNIQUE_SHAPE(cx, scope);
/*
* If we fail later on trying to find or create a new sprop, we will
* goto fail_overwrite and restore *spp from |overwriting|. Note that
* we don't bother to keep scope->removedCount in sync, because we'll
* fix up *spp and scope->entryCount shortly, no matter how control
* flow returns from this function.
*/
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, NULL);
scope->entryCount--;
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
sprop = NULL;
}
if (!sprop) {
/*
* If properties were deleted from the middle of the list starting at
* scope->lastProp, we may need to fork the property tree and squeeze
* all deleted properties out of scope's ancestor line. Otherwise we
* risk adding a node with the same id as a "middle" node, violating
* the rule that properties along an ancestor line have distinct ids.
*/
if (SCOPE_HAD_MIDDLE_DELETE(scope)) {
JS_ASSERT(scope->table);
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
splen = scope->entryCount;
if (splen == 0) {
JS_ASSERT(scope->lastProp == NULL);
} else {
/*
* Enumerate live entries in scope->table using a temporary
* vector, by walking the (possibly sparse, due to deletions)
* ancestor line from scope->lastProp.
*/
spvec = (JSScopeProperty **)
JS_malloc(cx, SCOPE_TABLE_NBYTES(splen));
if (!spvec)
goto fail_overwrite;
i = splen;
sprop = SCOPE_LAST_PROP(scope);
JS_ASSERT(sprop);
do {
/*
* NB: test SCOPE_GET_PROPERTY, not SCOPE_HAS_PROPERTY --
* the latter insists that sprop->id maps to sprop, while
* the former simply tests whether sprop->id is bound in
* scope. We must allow for duplicate formal parameters
* along the ancestor line, and fork them as needed.
*/
if (!SCOPE_GET_PROPERTY(scope, sprop->id))
continue;
JS_ASSERT(sprop != overwriting);
if (i == 0) {
/*
* If our original splen estimate, scope->entryCount,
* is less than the ancestor line height, there must
* be duplicate formal parameters in this (function
* object) scope. Count remaining ancestors in order
* to realloc spvec.
*/
JSScopeProperty *tmp = sprop;
do {
if (SCOPE_GET_PROPERTY(scope, tmp->id))
i++;
} while ((tmp = tmp->parent) != NULL);
spp2 = (JSScopeProperty **)
JS_realloc(cx, spvec, SCOPE_TABLE_NBYTES(splen+i));
if (!spp2) {
JS_free(cx, spvec);
goto fail_overwrite;
}
spvec = spp2;
memmove(spvec + i, spvec, SCOPE_TABLE_NBYTES(splen));
splen += i;
}
spvec[--i] = sprop;
} while ((sprop = sprop->parent) != NULL);
JS_ASSERT(i == 0);
/*
* Now loop forward through spvec, forking the property tree
* whenever we see a "parent gap" due to deletions from scope.
* NB: sprop is null on first entry to the loop body.
*/
do {
if (spvec[i]->parent == sprop) {
sprop = spvec[i];
} else {
sprop = GetPropertyTreeChild(cx, sprop, spvec[i]);
if (!sprop) {
JS_free(cx, spvec);
goto fail_overwrite;
}
spp2 = js_SearchScope(scope, sprop->id, JS_FALSE);
JS_ASSERT(SPROP_FETCH(spp2) == spvec[i]);
SPROP_STORE_PRESERVING_COLLISION(spp2, sprop);
}
} while (++i < splen);
JS_free(cx, spvec);
/*
* Now sprop points to the last property in scope, where the
* ancestor line from sprop to the root is dense w.r.t. scope:
* it contains no nodes not mapped by scope->table, apart from
* any stinking ECMA-mandated duplicate formal parameters.
*/
scope->lastProp = sprop;
CHECK_ANCESTOR_LINE(scope, JS_FALSE);
JS_RUNTIME_METER(cx->runtime, middleDeleteFixups);
}
SCOPE_CLR_MIDDLE_DELETE(scope);
}
/*
* Aliases share another property's slot, passed in the |slot| param.
* Shared properties have no slot. Unshared properties that do not
* alias another property's slot get one here, but may lose it due to
* a JS_ClearScope call.
*/
if (!(flags & SPROP_IS_ALIAS)) {
if (attrs & JSPROP_SHARED) {
slot = SPROP_INVALID_SLOT;
} else {
/*
* We may have set slot from a nearly-matching sprop, above.
* If so, we're overwriting that nearly-matching sprop, so we
* can reuse its slot -- we don't need to allocate a new one.
* Similarly, we use a specific slot if provided by the caller.
*/
if (slot == SPROP_INVALID_SLOT &&
!js_AllocSlot(cx, scope->object, &slot)) {
goto fail_overwrite;
}
}
}
/*
* Check for a watchpoint on a deleted property; if one exists, change
* setter to js_watch_set.
* XXXbe this could get expensive with lots of watchpoints...
*/
if (!JS_CLIST_IS_EMPTY(&cx->runtime->watchPointList) &&
js_FindWatchPoint(cx->runtime, scope, id)) {
if (overwriting)
JS_PUSH_TEMP_ROOT_SPROP(cx, overwriting, &tvr);
setter = js_WrapWatchedSetter(cx, id, attrs, setter);
if (overwriting)
JS_POP_TEMP_ROOT(cx, &tvr);
if (!setter)
goto fail_overwrite;
}
/* Find or create a property tree node labeled by our arguments. */
child.id = id;
child.getter = getter;
child.setter = setter;
child.slot = slot;
child.attrs = attrs;
child.flags = flags;
child.shortid = shortid;
sprop = GetPropertyTreeChild(cx, scope->lastProp, &child);
if (!sprop)
goto fail_overwrite;
/*
* The scope's shape defaults to its last property's shape, but may
* be regenerated later as the scope diverges (from the property cache
* point of view) from the structural type associated with sprop.
*/
SCOPE_EXTEND_SHAPE(cx, scope, sprop);
/* Store the tree node pointer in the table entry for id. */
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, sprop);
scope->entryCount++;
scope->lastProp = sprop;
CHECK_ANCESTOR_LINE(scope, JS_FALSE);
#ifdef DEBUG
if (!overwriting) {
LIVE_SCOPE_METER(cx, ++cx->runtime->liveScopeProps);
JS_RUNTIME_METER(cx->runtime, totalScopeProps);
}
#endif
/*
* If we reach the hashing threshold, try to allocate scope->table.
* If we can't (a rare event, preceded by swapping to death on most
* modern OSes), stick with linear search rather than whining about
* this little set-back. Therefore we must test !scope->table and
* scope->entryCount >= SCOPE_HASH_THRESHOLD, not merely whether the
* entry count just reached the threshold.
*/
if (!scope->table && scope->entryCount >= SCOPE_HASH_THRESHOLD)
(void) CreateScopeTable(cx, scope, JS_FALSE);
}
jsuint index;
if (js_IdIsIndex(sprop->id, &index))
SCOPE_SET_INDEXED_PROPERTIES(scope);
METER(adds);
return sprop;
fail_overwrite:
if (overwriting) {
/*
* We may or may not have forked overwriting out of scope's ancestor
* line, so we must check (the alternative is to set a flag above, but
* that hurts the common, non-error case). If we did fork overwriting
* out, we'll add it back at scope->lastProp. This means enumeration
* order can change due to a failure to overwrite an id.
* XXXbe very minor incompatibility
*/
for (sprop = SCOPE_LAST_PROP(scope); ; sprop = sprop->parent) {
if (!sprop) {
sprop = SCOPE_LAST_PROP(scope);
if (overwriting->parent == sprop) {
scope->lastProp = overwriting;
} else {
sprop = GetPropertyTreeChild(cx, sprop, overwriting);
if (sprop) {
JS_ASSERT(sprop != overwriting);
scope->lastProp = sprop;
}
overwriting = sprop;
}
break;
}
if (sprop == overwriting)
break;
}
if (overwriting) {
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, overwriting);
scope->entryCount++;
}
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
}
METER(addFailures);
return NULL;
}
JSScopeProperty *
js_ChangeScopePropertyAttrs(JSContext *cx, JSScope *scope,
JSScopeProperty *sprop, uintN attrs, uintN mask,
JSPropertyOp getter, JSPropertyOp setter)
{
JSScopeProperty child, *newsprop, **spp;
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
/* Allow only shared (slot-less) => unshared (slot-full) transition. */
attrs |= sprop->attrs & mask;
JS_ASSERT(!((attrs ^ sprop->attrs) & JSPROP_SHARED) ||
!(attrs & JSPROP_SHARED));
if (getter == JS_PropertyStub)
getter = NULL;
if (setter == JS_PropertyStub)
setter = NULL;
if (sprop->attrs == attrs &&
sprop->getter == getter &&
sprop->setter == setter) {
return sprop;
}
child.id = sprop->id;
child.getter = getter;
child.setter = setter;
child.slot = sprop->slot;
child.attrs = attrs;
child.flags = sprop->flags;
child.shortid = sprop->shortid;
if (SCOPE_LAST_PROP(scope) == sprop) {
/*
* Optimize the case where the last property added to scope is changed
* to have a different attrs, getter, or setter. In the last property
* case, we need not fork the property tree. But since we do not call
* js_AddScopeProperty, we may need to allocate a new slot directly.
*/
if ((sprop->attrs & JSPROP_SHARED) && !(attrs & JSPROP_SHARED)) {
JS_ASSERT(child.slot == SPROP_INVALID_SLOT);
if (!js_AllocSlot(cx, scope->object, &child.slot))
return NULL;
}
newsprop = GetPropertyTreeChild(cx, sprop->parent, &child);
if (newsprop) {
spp = js_SearchScope(scope, sprop->id, JS_FALSE);
JS_ASSERT(SPROP_FETCH(spp) == sprop);
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, newsprop);
scope->lastProp = newsprop;
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
}
} else {
/*
* Let js_AddScopeProperty handle this |overwriting| case, including
* the conservation of sprop->slot (if it's valid). We must not call
* js_RemoveScopeProperty here, it will free a valid sprop->slot and
* js_AddScopeProperty won't re-allocate it.
*/
newsprop = js_AddScopeProperty(cx, scope, child.id,
child.getter, child.setter, child.slot,
child.attrs, child.flags, child.shortid);
}
if (newsprop) {
if (scope->shape == sprop->shape)
scope->shape = newsprop->shape;
else
SCOPE_MAKE_UNIQUE_SHAPE(cx, scope);
}
#ifdef JS_DUMP_PROPTREE_STATS
else
METER(changeFailures);
#endif
return newsprop;
}
JSBool
js_RemoveScopeProperty(JSContext *cx, JSScope *scope, jsid id)
{
JSScopeProperty **spp, *stored, *sprop;
uint32 size;
JS_ASSERT(JS_IS_SCOPE_LOCKED(cx, scope));
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
if (SCOPE_IS_SEALED(scope)) {
ReportReadOnlyScope(cx, scope);
return JS_FALSE;
}
METER(removes);
spp = js_SearchScope(scope, id, JS_FALSE);
stored = *spp;
sprop = SPROP_CLEAR_COLLISION(stored);
if (!sprop) {
METER(uselessRemoves);
return JS_TRUE;
}
/* Convert from a list to a hash so we can handle "middle deletes". */
if (!scope->table && sprop != scope->lastProp) {
if (!CreateScopeTable(cx, scope, JS_TRUE))
return JS_FALSE;
spp = js_SearchScope(scope, id, JS_FALSE);
stored = *spp;
sprop = SPROP_CLEAR_COLLISION(stored);
}
/* First, if sprop is unshared and not cleared, free its slot number. */
if (SPROP_HAS_VALID_SLOT(sprop, scope)) {
js_FreeSlot(cx, scope->object, sprop->slot);
JS_ATOMIC_INCREMENT(&cx->runtime->propertyRemovals);
}
/* Next, remove id by setting its entry to a removed or free sentinel. */
if (SPROP_HAD_COLLISION(stored)) {
JS_ASSERT(scope->table);
*spp = SPROP_REMOVED;
scope->removedCount++;
} else {
METER(removeFrees);
if (scope->table)
*spp = NULL;
}
scope->entryCount--;
LIVE_SCOPE_METER(cx, --cx->runtime->liveScopeProps);
/* Update scope->lastProp directly, or set its deferred update flag. */
if (sprop == SCOPE_LAST_PROP(scope)) {
do {
SCOPE_REMOVE_LAST_PROP(scope);
if (!SCOPE_HAD_MIDDLE_DELETE(scope))
break;
sprop = SCOPE_LAST_PROP(scope);
} while (sprop && !SCOPE_HAS_PROPERTY(scope, sprop));
} else if (!SCOPE_HAD_MIDDLE_DELETE(scope)) {
SCOPE_SET_MIDDLE_DELETE(scope);
}
SCOPE_MAKE_UNIQUE_SHAPE(cx, scope);
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
/* Last, consider shrinking scope's table if its load factor is <= .25. */
size = SCOPE_CAPACITY(scope);
if (size > MIN_SCOPE_SIZE && scope->entryCount <= size >> 2) {
METER(shrinks);
(void) ChangeScope(cx, scope, -1);
}
return JS_TRUE;
}
void
js_ClearScope(JSContext *cx, JSScope *scope)
{
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
LIVE_SCOPE_METER(cx, cx->runtime->liveScopeProps -= scope->entryCount);
if (scope->table)
free(scope->table);
SCOPE_CLR_MIDDLE_DELETE(scope);
InitMinimalScope(scope);
JS_ATOMIC_INCREMENT(&cx->runtime->propertyRemovals);
}
void
js_TraceId(JSTracer *trc, jsid id)
{
jsval v;
v = ID_TO_VALUE(id);
JS_CALL_VALUE_TRACER(trc, v, "id");
}
#ifdef DEBUG
static void
PrintPropertyGetterOrSetter(JSTracer *trc, char *buf, size_t bufsize)
{
JSScopeProperty *sprop;
jsid id;
size_t n;
const char *name;
JS_ASSERT(trc->debugPrinter == PrintPropertyGetterOrSetter);
sprop = (JSScopeProperty *)trc->debugPrintArg;
id = sprop->id;
name = trc->debugPrintIndex ? js_setter_str : js_getter_str;
if (JSID_IS_ATOM(id)) {
n = js_PutEscapedString(buf, bufsize - 1,
ATOM_TO_STRING(JSID_TO_ATOM(id)), 0);
if (n < bufsize - 1)
JS_snprintf(buf + n, bufsize - n, " %s", name);
} else if (JSID_IS_INT(sprop->id)) {
JS_snprintf(buf, bufsize, "%d %s", JSID_TO_INT(id), name);
} else {
JS_snprintf(buf, bufsize, "<object> %s", name);
}
}
#endif
void
js_TraceScopeProperty(JSTracer *trc, JSScopeProperty *sprop)
{
if (IS_GC_MARKING_TRACER(trc))
sprop->flags |= SPROP_MARK;
TRACE_ID(trc, sprop->id);
#if JS_HAS_GETTER_SETTER
if (sprop->attrs & (JSPROP_GETTER | JSPROP_SETTER)) {
if (sprop->attrs & JSPROP_GETTER) {
JS_SET_TRACING_DETAILS(trc, PrintPropertyGetterOrSetter, sprop, 0);
JS_CallTracer(trc, js_CastAsObject(sprop->getter), JSTRACE_OBJECT);
}
if (sprop->attrs & JSPROP_SETTER) {
JS_SET_TRACING_DETAILS(trc, PrintPropertyGetterOrSetter, sprop, 1);
JS_CallTracer(trc, js_CastAsObject(sprop->setter), JSTRACE_OBJECT);
}
}
#endif /* JS_HAS_GETTER_SETTER */
}
#ifdef JS_DUMP_PROPTREE_STATS
#include <stdio.h>
static void
MeterKidCount(JSBasicStats *bs, uintN nkids)
{
JS_BASIC_STATS_ACCUM(bs, nkids);
bs->hist[JS_MIN(nkids, 10)]++;
}
static void
MeterPropertyTree(JSBasicStats *bs, JSScopeProperty *node)
{
uintN i, nkids;
JSScopeProperty *kids, *kid;
PropTreeKidsChunk *chunk;
nkids = 0;
kids = node->kids;
if (kids) {
if (KIDS_IS_CHUNKY(kids)) {
for (chunk = KIDS_TO_CHUNK(kids); chunk; chunk = chunk->next) {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
kid = chunk->kids[i];
if (!kid)
break;
MeterPropertyTree(bs, kid);
nkids++;
}
}
} else {
MeterPropertyTree(bs, kids);
nkids = 1;
}
}
MeterKidCount(bs, nkids);
}
static JSDHashOperator
js_MeterPropertyTree(JSDHashTable *table, JSDHashEntryHdr *hdr, uint32 number,
void *arg)
{
JSPropertyTreeEntry *entry = (JSPropertyTreeEntry *)hdr;
JSBasicStats *bs = (JSBasicStats *)arg;
MeterPropertyTree(bs, entry->child);
return JS_DHASH_NEXT;
}
static void
DumpSubtree(JSContext *cx, JSScopeProperty *sprop, int level, FILE *fp)
{
jsval v;
JSString *str;
JSScopeProperty *kids, *kid;
PropTreeKidsChunk *chunk;
uintN i;
fprintf(fp, "%*sid ", level, "");
v = ID_TO_VALUE(sprop->id);
if (JSID_IS_INT(sprop->id)) {
fprintf(fp, "%d", JSVAL_TO_INT(v));
} else {
if (JSID_IS_ATOM(sprop->id)) {
str = JSVAL_TO_STRING(v);
} else {
JS_ASSERT(JSID_IS_OBJECT(sprop->id));
str = js_ValueToString(cx, v);
fputs("object ", fp);
}
if (!str)
fputs("<error>", fp);
else
js_FileEscapedString(fp, str, '"');
}
fprintf(fp, " g/s %p/%p slot %u attrs %x flags %x shortid %d\n",
(void *) sprop->getter, (void *) sprop->setter, sprop->slot,
sprop->attrs, sprop->flags, sprop->shortid);
kids = sprop->kids;
if (kids) {
++level;
if (KIDS_IS_CHUNKY(kids)) {
chunk = KIDS_TO_CHUNK(kids);
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
kid = chunk->kids[i];
if (!kid)
break;
JS_ASSERT(kid->parent == sprop);
DumpSubtree(cx, kid, level, fp);
}
} while ((chunk = chunk->next) != NULL);
} else {
kid = kids;
DumpSubtree(cx, kid, level, fp);
}
}
}
#endif /* JS_DUMP_PROPTREE_STATS */
void
js_SweepScopeProperties(JSContext *cx)
{
JSRuntime *rt = cx->runtime;
JSArena **ap, *a;
JSScopeProperty *limit, *sprop, *parent, *kids, *kid;
uintN liveCount;
PropTreeKidsChunk *chunk, *nextChunk, *freeChunk;
uintN i;
#ifdef JS_DUMP_PROPTREE_STATS
JSBasicStats bs;
uint32 livePropCapacity = 0, totalLiveCount = 0;
static FILE *logfp;
if (!logfp)
logfp = fopen("/tmp/proptree.stats", "w");
JS_BASIC_STATS_INIT(&bs);
MeterKidCount(&bs, rt->propertyTreeHash.entryCount);
JS_DHashTableEnumerate(&rt->propertyTreeHash, js_MeterPropertyTree, &bs);
{
double props, nodes, mean, sigma;
props = rt->liveScopePropsPreSweep;
nodes = rt->livePropTreeNodes;
JS_ASSERT(nodes == bs.sum);
mean = JS_MeanAndStdDevBS(&bs, &sigma);
fprintf(logfp,
"props %g nodes %g beta %g meankids %g sigma %g max %u\n",
props, nodes, nodes / props, mean, sigma, bs.max);
}
JS_DumpHistogram(&bs, logfp);
#endif
ap = &rt->propertyArenaPool.first.next;
while ((a = *ap) != NULL) {
limit = (JSScopeProperty *) a->avail;
liveCount = 0;
for (sprop = (JSScopeProperty *) a->base; sprop < limit; sprop++) {
/* If the id is null, sprop is already on the freelist. */
if (sprop->id == JSVAL_NULL)
continue;
/*
* If the mark bit is set, sprop is alive, so clear the mark bit
* and continue the while loop.
*
* Regenerate sprop->shape if it hasn't already been refreshed
* during the mark phase, when live scopes' lastProp members are
* followed to update both scope->shape and lastProp->shape.
*/
if (sprop->flags & SPROP_MARK) {
sprop->flags &= ~SPROP_MARK;
if (sprop->flags & SPROP_FLAG_SHAPE_REGEN) {
sprop->flags &= ~SPROP_FLAG_SHAPE_REGEN;
} else {
sprop->shape = ++cx->runtime->shapeGen;
JS_ASSERT(sprop->shape != 0);
}
liveCount++;
continue;
}
/* Ok, sprop is garbage to collect: unlink it from its parent. */
freeChunk = RemovePropertyTreeChild(rt, sprop);
/*
* Take care to reparent all sprop's kids to their grandparent.
* InsertPropertyTreeChild can potentially fail for two reasons:
*
* 1. If parent is null, insertion into the root property hash
* table may fail. We are forced to leave the kid out of the
* table (as can already happen with duplicates) but ensure
* that the kid's parent pointer is set to null.
*
* 2. If parent is non-null, allocation of a new KidsChunk can
* fail. To prevent this from happening, we allow sprops's own
* chunks to be reused by the grandparent, which removes the
* need for InsertPropertyTreeChild to malloc a new KidsChunk.
*
* If sprop does not have chunky kids, then we rely on the
* RemovePropertyTreeChild call above (which removed sprop from
* its parent) either leaving one free entry, or else returning
* the now-unused chunk to us so we can reuse it.
*
* We also require the grandparent to have either no kids or else
* chunky kids. A single non-chunky kid would force a new chunk to
* be malloced in some cases (if sprop had a single non-chunky
* kid, or a multiple of MAX_KIDS_PER_CHUNK kids). Note that
* RemovePropertyTreeChild never converts a single-entry chunky
* kid back to a non-chunky kid, so we are assured of correct
* behaviour.
*/
kids = sprop->kids;
if (kids) {
sprop->kids = NULL;
parent = sprop->parent;
/* Assert that grandparent has no kids or chunky kids. */
JS_ASSERT(!parent || !parent->kids ||
KIDS_IS_CHUNKY(parent->kids));
if (KIDS_IS_CHUNKY(kids)) {
chunk = KIDS_TO_CHUNK(kids);
do {
nextChunk = chunk->next;
chunk->next = NULL;
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
kid = chunk->kids[i];
if (!kid)
break;
JS_ASSERT(kid->parent == sprop);
/*
* Clear a space in the kids array for possible
* re-use by InsertPropertyTreeChild.
*/
chunk->kids[i] = NULL;
if (!InsertPropertyTreeChild(rt, parent, kid,
chunk)) {
/*
* This can happen only if we failed to add an
* entry to the root property hash table.
*/
JS_ASSERT(!parent);
kid->parent = NULL;
}
}
if (!chunk->kids[0]) {
/* The chunk wasn't reused, so we must free it. */
DestroyPropTreeKidsChunk(rt, chunk);
}
} while ((chunk = nextChunk) != NULL);
} else {
kid = kids;
if (!InsertPropertyTreeChild(rt, parent, kid, freeChunk)) {
/*
* This can happen only if we failed to add an entry
* to the root property hash table.
*/
JS_ASSERT(!parent);
kid->parent = NULL;
}
}
}
if (freeChunk && !freeChunk->kids[0]) {
/* The chunk wasn't reused, so we must free it. */
DestroyPropTreeKidsChunk(rt, freeChunk);
}
/* Clear id so we know (above) that sprop is on the freelist. */
sprop->id = JSVAL_NULL;
FREENODE_INSERT(rt->propertyFreeList, sprop);
JS_RUNTIME_UNMETER(rt, livePropTreeNodes);
}
/* If a contains no live properties, return it to the malloc heap. */
if (liveCount == 0) {
for (sprop = (JSScopeProperty *) a->base; sprop < limit; sprop++)
FREENODE_REMOVE(sprop);
JS_ARENA_DESTROY(&rt->propertyArenaPool, a, ap);
} else {
#ifdef JS_DUMP_PROPTREE_STATS
livePropCapacity += limit - (JSScopeProperty *) a->base;
totalLiveCount += liveCount;
#endif
ap = &a->next;
}
}
#ifdef JS_DUMP_PROPTREE_STATS
fprintf(logfp, "arenautil %g%%\n",
(totalLiveCount && livePropCapacity)
? (totalLiveCount * 100.0) / livePropCapacity
: 0.0);
#define RATE(f1, f2) (((double)js_scope_stats.f1 / js_scope_stats.f2) * 100.0)
fprintf(logfp, "Scope search stats:\n"
" searches: %6u\n"
" hits: %6u %5.2f%% of searches\n"
" misses: %6u %5.2f%%\n"
" hashes: %6u %5.2f%%\n"
" steps: %6u %5.2f%% %5.2f%% of hashes\n"
" stepHits: %6u %5.2f%% %5.2f%%\n"
" stepMisses: %6u %5.2f%% %5.2f%%\n"
" adds: %6u\n"
" redundantAdds: %6u\n"
" addFailures: %6u\n"
" changeFailures: %6u\n"
" compresses: %6u\n"
" grows: %6u\n"
" removes: %6u\n"
" removeFrees: %6u\n"
" uselessRemoves: %6u\n"
" shrinks: %6u\n",
js_scope_stats.searches,
js_scope_stats.hits, RATE(hits, searches),
js_scope_stats.misses, RATE(misses, searches),
js_scope_stats.hashes, RATE(hashes, searches),
js_scope_stats.steps, RATE(steps, searches), RATE(steps, hashes),
js_scope_stats.stepHits,
RATE(stepHits, searches), RATE(stepHits, hashes),
js_scope_stats.stepMisses,
RATE(stepMisses, searches), RATE(stepMisses, hashes),
js_scope_stats.adds,
js_scope_stats.redundantAdds,
js_scope_stats.addFailures,
js_scope_stats.changeFailures,
js_scope_stats.compresses,
js_scope_stats.grows,
js_scope_stats.removes,
js_scope_stats.removeFrees,
js_scope_stats.uselessRemoves,
js_scope_stats.shrinks);
#undef RATE
fflush(logfp);
#endif
#ifdef DUMP_PROPERTY_TREE
{
FILE *dumpfp = fopen("/tmp/proptree.dump", "w");
if (dumpfp) {
JSPropertyTreeEntry *pte, *end;
pte = (JSPropertyTreeEntry *) rt->propertyTreeHash.entryStore;
end = pte + JS_DHASH_TABLE_SIZE(&rt->propertyTreeHash);
while (pte < end) {
if (pte->child)
DumpSubtree(cx, pte->child, 0, dumpfp);
pte++;
}
fclose(dumpfp);
}
}
#endif
}
JSBool
js_InitPropertyTree(JSRuntime *rt)
{
if (!JS_DHashTableInit(&rt->propertyTreeHash, &PropertyTreeHashOps, NULL,
sizeof(JSPropertyTreeEntry), JS_DHASH_MIN_SIZE)) {
rt->propertyTreeHash.ops = NULL;
return JS_FALSE;
}
JS_INIT_ARENA_POOL(&rt->propertyArenaPool, "properties",
256 * sizeof(JSScopeProperty), sizeof(void *), NULL);
return JS_TRUE;
}
void
js_FinishPropertyTree(JSRuntime *rt)
{
if (rt->propertyTreeHash.ops) {
JS_DHashTableFinish(&rt->propertyTreeHash);
rt->propertyTreeHash.ops = NULL;
}
JS_FinishArenaPool(&rt->propertyArenaPool);
}