mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
260debb621
Changes to use gecko infrastructure.
298 lines
11 KiB
C++
298 lines
11 KiB
C++
/*
|
|
* Copyright (C) 2012 Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "PeriodicWave.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include "mozilla/FFTBlock.h"
|
|
|
|
const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
|
|
const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
|
|
const float CentsPerRange = 1200 / 3; // 1/3 Octave.
|
|
|
|
using namespace mozilla;
|
|
using mozilla::dom::OscillatorType;
|
|
|
|
namespace WebCore {
|
|
|
|
PeriodicWave* PeriodicWave::create(float sampleRate,
|
|
const float* real,
|
|
const float* imag,
|
|
size_t numberOfComponents)
|
|
{
|
|
bool isGood = real && imag && numberOfComponents > 0 &&
|
|
numberOfComponents <= PeriodicWaveSize;
|
|
MOZ_ASSERT(isGood);
|
|
if (isGood) {
|
|
PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
|
|
periodicWave->createBandLimitedTables(real, imag, numberOfComponents);
|
|
return periodicWave;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
PeriodicWave* PeriodicWave::createSine(float sampleRate)
|
|
{
|
|
PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
|
|
periodicWave->generateBasicWaveform(OscillatorType::Sine);
|
|
return periodicWave;
|
|
}
|
|
|
|
PeriodicWave* PeriodicWave::createSquare(float sampleRate)
|
|
{
|
|
PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
|
|
periodicWave->generateBasicWaveform(OscillatorType::Square);
|
|
return periodicWave;
|
|
}
|
|
|
|
PeriodicWave* PeriodicWave::createSawtooth(float sampleRate)
|
|
{
|
|
PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
|
|
periodicWave->generateBasicWaveform(OscillatorType::Sawtooth);
|
|
return periodicWave;
|
|
}
|
|
|
|
PeriodicWave* PeriodicWave::createTriangle(float sampleRate)
|
|
{
|
|
PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
|
|
periodicWave->generateBasicWaveform(OscillatorType::Triangle);
|
|
return periodicWave;
|
|
}
|
|
|
|
PeriodicWave::PeriodicWave(float sampleRate)
|
|
: m_sampleRate(sampleRate)
|
|
, m_periodicWaveSize(PeriodicWaveSize)
|
|
, m_numberOfRanges(NumberOfRanges)
|
|
, m_centsPerRange(CentsPerRange)
|
|
{
|
|
float nyquist = 0.5 * m_sampleRate;
|
|
m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
|
|
m_rateScale = m_periodicWaveSize / m_sampleRate;
|
|
}
|
|
|
|
void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
|
|
{
|
|
// Negative frequencies are allowed, in which case we alias
|
|
// to the positive frequency.
|
|
fundamentalFrequency = fabsf(fundamentalFrequency);
|
|
|
|
// Calculate the pitch range.
|
|
float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
|
|
float centsAboveLowestFrequency = logf(ratio)/logf(2.0f) * 1200;
|
|
|
|
// Add one to round-up to the next range just in time to truncate
|
|
// partials before aliasing occurs.
|
|
float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
|
|
|
|
pitchRange = std::max(pitchRange, 0.0f);
|
|
pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
|
|
|
|
// The words "lower" and "higher" refer to the table data having
|
|
// the lower and higher numbers of partials. It's a little confusing
|
|
// since the range index gets larger the more partials we cull out.
|
|
// So the lower table data will have a larger range index.
|
|
unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
|
|
unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
|
|
|
|
lowerWaveData = m_bandLimitedTables[rangeIndex2]->Elements();
|
|
higherWaveData = m_bandLimitedTables[rangeIndex1]->Elements();
|
|
|
|
// Ranges from 0 -> 1 to interpolate between lower -> higher.
|
|
tableInterpolationFactor = pitchRange - rangeIndex1;
|
|
}
|
|
|
|
unsigned PeriodicWave::maxNumberOfPartials() const
|
|
{
|
|
return m_periodicWaveSize / 2;
|
|
}
|
|
|
|
unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
|
|
{
|
|
// Number of cents below nyquist where we cull partials.
|
|
float centsToCull = rangeIndex * m_centsPerRange;
|
|
|
|
// A value from 0 -> 1 representing what fraction of the partials to keep.
|
|
float cullingScale = pow(2, -centsToCull / 1200);
|
|
|
|
// The very top range will have all the partials culled.
|
|
unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
|
|
|
|
return numberOfPartials;
|
|
}
|
|
|
|
// Convert into time-domain wave buffers.
|
|
// One table is created for each range for non-aliasing playback
|
|
// at different playback rates. Thus, higher ranges have more
|
|
// high-frequency partials culled out.
|
|
void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
|
|
{
|
|
float normalizationScale = 1;
|
|
|
|
unsigned fftSize = m_periodicWaveSize;
|
|
unsigned halfSize = fftSize / 2 + 1;
|
|
unsigned i;
|
|
|
|
numberOfComponents = std::min(numberOfComponents, halfSize);
|
|
|
|
m_bandLimitedTables.SetCapacity(m_numberOfRanges);
|
|
|
|
for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
|
|
// This FFTBlock is used to cull partials (represented by frequency bins).
|
|
FFTBlock frame(fftSize);
|
|
float* realP = new float[halfSize];
|
|
float* imagP = new float[halfSize];
|
|
|
|
// Copy from loaded frequency data and scale.
|
|
float scale = fftSize;
|
|
AudioBufferCopyWithScale(realData, scale, realP, numberOfComponents);
|
|
AudioBufferCopyWithScale(imagData, scale, imagP, numberOfComponents);
|
|
|
|
// If fewer components were provided than 1/2 FFT size,
|
|
// then clear the remaining bins.
|
|
for (i = numberOfComponents; i < halfSize; ++i) {
|
|
realP[i] = 0;
|
|
imagP[i] = 0;
|
|
}
|
|
|
|
// Generate complex conjugate because of the way the
|
|
// inverse FFT is defined.
|
|
float minusOne = -1;
|
|
AudioBufferInPlaceScale(imagP, 1, minusOne, halfSize);
|
|
|
|
// Find the starting bin where we should start culling.
|
|
// We need to clear out the highest frequencies to band-limit
|
|
// the waveform.
|
|
unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
|
|
|
|
// Cull the aliasing partials for this pitch range.
|
|
for (i = numberOfPartials + 1; i < halfSize; ++i) {
|
|
realP[i] = 0;
|
|
imagP[i] = 0;
|
|
}
|
|
// Clear nyquist if necessary.
|
|
if (numberOfPartials < halfSize)
|
|
realP[halfSize-1] = 0;
|
|
|
|
// Clear any DC-offset.
|
|
realP[0] = 0;
|
|
|
|
// Clear values which have no effect.
|
|
imagP[0] = 0;
|
|
imagP[halfSize-1] = 0;
|
|
|
|
// Create the band-limited table.
|
|
AudioFloatArray* table = new AudioFloatArray(m_periodicWaveSize);
|
|
m_bandLimitedTables.AppendElement(table);
|
|
|
|
// Apply an inverse FFT to generate the time-domain table data.
|
|
float* data = m_bandLimitedTables[rangeIndex]->Elements();
|
|
frame.PerformInverseFFT(realP, imagP, data);
|
|
|
|
// For the first range (which has the highest power), calculate
|
|
// its peak value then compute normalization scale.
|
|
if (!rangeIndex) {
|
|
float maxValue;
|
|
maxValue = AudioBufferPeakValue(data, m_periodicWaveSize);
|
|
|
|
if (maxValue)
|
|
normalizationScale = 1.0f / maxValue;
|
|
}
|
|
|
|
// Apply normalization scale.
|
|
AudioBufferInPlaceScale(data, 1, normalizationScale, m_periodicWaveSize);
|
|
}
|
|
}
|
|
|
|
void PeriodicWave::generateBasicWaveform(OscillatorType shape)
|
|
{
|
|
const float piFloat = M_PI;
|
|
unsigned fftSize = periodicWaveSize();
|
|
unsigned halfSize = fftSize / 2 + 1;
|
|
|
|
AudioFloatArray real(halfSize);
|
|
AudioFloatArray imag(halfSize);
|
|
float* realP = real.Elements();
|
|
float* imagP = imag.Elements();
|
|
|
|
// Clear DC and Nyquist.
|
|
realP[0] = 0;
|
|
imagP[0] = 0;
|
|
realP[halfSize-1] = 0;
|
|
imagP[halfSize-1] = 0;
|
|
|
|
for (unsigned n = 1; n < halfSize; ++n) {
|
|
float omega = 2 * piFloat * n;
|
|
float invOmega = 1 / omega;
|
|
|
|
// Fourier coefficients according to standard definition.
|
|
float a; // Coefficient for cos().
|
|
float b; // Coefficient for sin().
|
|
|
|
// Calculate Fourier coefficients depending on the shape.
|
|
// Note that the overall scaling (magnitude) of the waveforms
|
|
// is normalized in createBandLimitedTables().
|
|
switch (shape) {
|
|
case OscillatorType::Sine:
|
|
// Standard sine wave function.
|
|
a = 0;
|
|
b = (n == 1) ? 1 : 0;
|
|
break;
|
|
case OscillatorType::Square:
|
|
// Square-shaped waveform with the first half its maximum value
|
|
// and the second half its minimum value.
|
|
a = 0;
|
|
b = invOmega * ((n & 1) ? 2 : 0);
|
|
break;
|
|
case OscillatorType::Sawtooth:
|
|
// Sawtooth-shaped waveform with the first half ramping from
|
|
// zero to maximum and the second half from minimum to zero.
|
|
a = 0;
|
|
b = -invOmega * cos(0.5 * omega);
|
|
break;
|
|
case OscillatorType::Triangle:
|
|
// Triangle-shaped waveform going from its maximum value to
|
|
// its minimum value then back to the maximum value.
|
|
a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat);
|
|
b = 0;
|
|
break;
|
|
default:
|
|
NS_NOTREACHED("invalid oscillator type");
|
|
a = 0;
|
|
b = 0;
|
|
break;
|
|
}
|
|
|
|
realP[n] = a;
|
|
imagP[n] = b;
|
|
}
|
|
|
|
createBandLimitedTables(realP, imagP, halfSize);
|
|
}
|
|
|
|
} // namespace WebCore
|