gecko/media/libspeex_resampler/sse-detect-runtime.patch
Paul Adenot 17117d7406 Bug 903476 - Update libspeex to opus-tools version, as it is the current upstream. r=ehsan
--HG--
extra : rebase_source : 4dd23aa8f0e7f0919e1b8f37d9efce11e6b8d8cc
2013-08-12 14:40:49 +02:00

221 lines
7.9 KiB
Diff

--- /home/paul/workspace/repositories/opus-tools/src/resample.c 2012-11-21 11:36:59.119430163 +0100
+++ media/libspeex_resampler/src/resample.c 2013-08-09 19:24:39.060236120 +0200
@@ -92,18 +92,28 @@
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
#ifndef NULL
#define NULL 0
#endif
+#include "sse_detect.h"
+
+/* We compile SSE code on x86 all the time, but we only use it if we find at
+ * runtime that the CPU supports it. */
#if defined(FLOATING_POINT) && defined(__SSE__)
+#if defined(_MSC_VER)
+#define inline __inline
+#endif
# include "resample_sse.h"
+#ifdef _MSC_VER
+#undef inline
+#endif
#endif
/* Numer of elements to allocate on the stack */
#ifdef VAR_ARRAYS
#define FIXED_STACK_ALLOC 8192
#else
#define FIXED_STACK_ALLOC 1024
#endif
@@ -340,35 +350,39 @@
const spx_uint32_t den_rate = st->den_rate;
spx_word32_t sum;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
const spx_word16_t *iptr = & in[last_sample];
-#ifndef OVERRIDE_INNER_PRODUCT_SINGLE
+#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
+ if (moz_has_sse()) {
+ sum = inner_product_single(sinct, iptr, N);
+ } else {
+#endif
int j;
sum = 0;
for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]);
/* This code is slower on most DSPs which have only 2 accumulators.
Plus this this forces truncation to 32 bits and you lose the HW guard bits.
I think we can trust the compiler and let it vectorize and/or unroll itself.
spx_word32_t accum[4] = {0,0,0,0};
for(j=0;j<N;j+=4) {
accum[0] += MULT16_16(sinct[j], iptr[j]);
accum[1] += MULT16_16(sinct[j+1], iptr[j+1]);
accum[2] += MULT16_16(sinct[j+2], iptr[j+2]);
accum[3] += MULT16_16(sinct[j+3], iptr[j+3]);
}
sum = accum[0] + accum[1] + accum[2] + accum[3];
*/
-#else
- sum = inner_product_single(sinct, iptr, N);
+#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
+ }
#endif
out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 15), 32767);
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
@@ -397,29 +411,33 @@
const spx_uint32_t den_rate = st->den_rate;
double sum;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
const spx_word16_t *iptr = & in[last_sample];
-#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
- int j;
- double accum[4] = {0,0,0,0};
-
- for(j=0;j<N;j+=4) {
- accum[0] += sinct[j]*iptr[j];
- accum[1] += sinct[j+1]*iptr[j+1];
- accum[2] += sinct[j+2]*iptr[j+2];
- accum[3] += sinct[j+3]*iptr[j+3];
+#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
+ if(moz_has_sse2()) {
+ sum = inner_product_double(sinct, iptr, N);
+ } else {
+#endif
+ int j;
+ double accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j+=4) {
+ accum[0] += sinct[j]*iptr[j];
+ accum[1] += sinct[j+1]*iptr[j+1];
+ accum[2] += sinct[j+2]*iptr[j+2];
+ accum[3] += sinct[j+3]*iptr[j+3];
+ }
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
}
- sum = accum[0] + accum[1] + accum[2] + accum[3];
-#else
- sum = inner_product_double(sinct, iptr, N);
#endif
out[out_stride * out_sample++] = PSHR32(sum, 15);
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
@@ -453,35 +471,38 @@
#ifdef FIXED_POINT
const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
#else
const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
#endif
spx_word16_t interp[4];
-#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
- int j;
- spx_word32_t accum[4] = {0,0,0,0};
-
- for(j=0;j<N;j++) {
- const spx_word16_t curr_in=iptr[j];
- accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
- accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
- accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
- accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+ if (moz_has_sse()) {
+ cubic_coef(frac, interp);
+ sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+ } else {
+#endif
+ int j;
+ spx_word32_t accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j++) {
+ const spx_word16_t curr_in=iptr[j];
+ accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
+ accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
+ accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
+ accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
+ }
+ cubic_coef(frac, interp);
+ sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1));
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
}
-
- cubic_coef(frac, interp);
- sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1));
-#else
- cubic_coef(frac, interp);
- sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
#endif
-
+
out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 14), 32767);
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}
@@ -515,35 +536,38 @@
#ifdef FIXED_POINT
const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
#else
const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
#endif
spx_word16_t interp[4];
-#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+ if (moz_has_sse2()) {
+ cubic_coef(frac, interp);
+ sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+ } else {
+#endif
int j;
double accum[4] = {0,0,0,0};
for(j=0;j<N;j++) {
const double curr_in=iptr[j];
accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
}
cubic_coef(frac, interp);
sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
-#else
- cubic_coef(frac, interp);
- sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
+ }
#endif
-
out[out_stride * out_sample++] = PSHR32(sum,15);
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}