gecko/tools/profiler/UnwinderThread2.cpp

2049 lines
67 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#ifdef MOZ_VALGRIND
# include <valgrind/helgrind.h>
# include <valgrind/memcheck.h>
#else
# define VALGRIND_HG_MUTEX_LOCK_PRE(_mx,_istry) /* */
# define VALGRIND_HG_MUTEX_LOCK_POST(_mx) /* */
# define VALGRIND_HG_MUTEX_UNLOCK_PRE(_mx) /* */
# define VALGRIND_HG_MUTEX_UNLOCK_POST(_mx) /* */
# define VALGRIND_MAKE_MEM_DEFINED(_addr,_len) ((void)0)
# define VALGRIND_MAKE_MEM_UNDEFINED(_addr,_len) ((void)0)
#endif
#include "mozilla/arm.h"
#include <stdint.h>
#include "PlatformMacros.h"
#include "platform.h"
#include <ostream>
#include "ProfileEntry.h"
#include "UnwinderThread2.h"
#if !defined(SPS_OS_windows)
# include <sys/time.h>
# include <unistd.h>
# include <pthread.h>
// mmap
# include <sys/mman.h>
#endif
#if defined(SPS_OS_android)
# include "android-signal-defs.h"
#endif
#include "shared-libraries.h"
/* Verbosity of this module, for debugging:
0 silent
1 adds info about debuginfo load success/failure
2 adds slow-summary stats for buffer fills/misses (RECOMMENDED)
3 adds per-sample summary lines
4 adds per-sample frame listing
Note that level 3 and above produces risk of deadlock, and
are not recommended for extended use.
*/
#define LOGLEVEL 2
// The 'else' of this covers the entire rest of the file
#if defined(SPS_OS_windows)
//////////////////////////////////////////////////////////
//// BEGIN externally visible functions (WINDOWS STUBS)
// On Windows this will all need reworking. GeckoProfilerImpl.h
// will ensure these functions are never actually called,
// so just provide no-op stubs for now.
void uwt__init()
{
}
void uwt__stop()
{
}
void uwt__deinit()
{
}
void uwt__register_thread_for_profiling ( void* stackTop )
{
}
void uwt__unregister_thread_for_profiling()
{
}
// RUNS IN SIGHANDLER CONTEXT
UnwinderThreadBuffer* uwt__acquire_empty_buffer()
{
return NULL;
}
// RUNS IN SIGHANDLER CONTEXT
void
uwt__release_full_buffer(ThreadProfile* aProfile,
UnwinderThreadBuffer* utb,
void* /* ucontext_t*, really */ ucV )
{
}
// RUNS IN SIGHANDLER CONTEXT
void
utb__addEntry(/*MODIFIED*/UnwinderThreadBuffer* utb, ProfileEntry ent)
{
}
//// END externally visible functions (WINDOWS STUBS)
//////////////////////////////////////////////////////////
#else // a supported target
//////////////////////////////////////////////////////////
//// BEGIN externally visible functions
// Forward references
// the unwinder thread ID, its fn, and a stop-now flag
static void* unwind_thr_fn ( void* exit_nowV );
static pthread_t unwind_thr;
static int unwind_thr_exit_now = 0; // RACED ON
// Threads must be registered with this file before they can be
// sampled. So that we know the max safe stack address for each
// registered thread.
static void thread_register_for_profiling ( void* stackTop );
// Unregister a thread.
static void thread_unregister_for_profiling();
// Frees some memory when the unwinder thread is shut down.
static void do_breakpad_unwind_Buffer_free_singletons();
// RUNS IN SIGHANDLER CONTEXT
// Acquire an empty buffer and mark it as FILLING
static UnwinderThreadBuffer* acquire_empty_buffer();
// RUNS IN SIGHANDLER CONTEXT
// Put this buffer in the queue of stuff going to the unwinder
// thread, and mark it as FULL. Before doing that, fill in stack
// chunk and register fields if a native unwind is requested.
// APROFILE is where the profile data should be added to. UTB
// is the partially-filled-in buffer, containing ProfileEntries.
// UCV is the ucontext_t* from the signal handler. If non-NULL, is
// taken as a cue to request native unwind.
static void release_full_buffer(ThreadProfile* aProfile,
UnwinderThreadBuffer* utb,
void* /* ucontext_t*, really */ ucV );
// RUNS IN SIGHANDLER CONTEXT
static void utb_add_prof_ent(UnwinderThreadBuffer* utb, ProfileEntry ent);
// Do a store memory barrier.
static void do_MBAR();
void uwt__init()
{
// Create the unwinder thread.
MOZ_ASSERT(unwind_thr_exit_now == 0);
int r = pthread_create( &unwind_thr, NULL,
unwind_thr_fn, (void*)&unwind_thr_exit_now );
MOZ_ALWAYS_TRUE(r==0);
}
void uwt__stop()
{
// Shut down the unwinder thread.
MOZ_ASSERT(unwind_thr_exit_now == 0);
unwind_thr_exit_now = 1;
do_MBAR();
int r = pthread_join(unwind_thr, NULL); MOZ_ALWAYS_TRUE(r==0);
}
void uwt__deinit()
{
do_breakpad_unwind_Buffer_free_singletons();
}
void uwt__register_thread_for_profiling(void* stackTop)
{
thread_register_for_profiling(stackTop);
}
void uwt__unregister_thread_for_profiling()
{
thread_unregister_for_profiling();
}
// RUNS IN SIGHANDLER CONTEXT
UnwinderThreadBuffer* uwt__acquire_empty_buffer()
{
return acquire_empty_buffer();
}
// RUNS IN SIGHANDLER CONTEXT
void
uwt__release_full_buffer(ThreadProfile* aProfile,
UnwinderThreadBuffer* utb,
void* /* ucontext_t*, really */ ucV )
{
release_full_buffer( aProfile, utb, ucV );
}
// RUNS IN SIGHANDLER CONTEXT
void
utb__addEntry(/*MODIFIED*/UnwinderThreadBuffer* utb, ProfileEntry ent)
{
utb_add_prof_ent(utb, ent);
}
//// END externally visible functions
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
//// BEGIN type UnwindThreadBuffer
static_assert(sizeof(uint32_t) == 4, "uint32_t size incorrect");
static_assert(sizeof(uint64_t) == 8, "uint64_t size incorrect");
static_assert(sizeof(uintptr_t) == sizeof(void*),
"uintptr_t size incorrect");
typedef
struct {
uint64_t rsp;
uint64_t rbp;
uint64_t rip;
}
AMD64Regs;
typedef
struct {
uint32_t r15;
uint32_t r14;
uint32_t r13;
uint32_t r12;
uint32_t r11;
uint32_t r7;
}
ARMRegs;
typedef
struct {
uint32_t esp;
uint32_t ebp;
uint32_t eip;
}
X86Regs;
#if defined(SPS_ARCH_amd64)
typedef AMD64Regs ArchRegs;
#elif defined(SPS_ARCH_arm)
typedef ARMRegs ArchRegs;
#elif defined(SPS_ARCH_x86)
typedef X86Regs ArchRegs;
#else
# error "Unknown plat"
#endif
#if defined(SPS_ARCH_amd64) || defined(SPS_ARCH_arm) || defined(SPS_ARCH_x86)
# define SPS_PAGE_SIZE 4096
#else
# error "Unknown plat"
#endif
typedef enum { S_EMPTY, S_FILLING, S_EMPTYING, S_FULL } State;
typedef struct { uintptr_t val; } SpinLock;
/* CONFIGURABLE */
/* The maximum number of bytes in a stack snapshot */
#define N_STACK_BYTES 32768
/* CONFIGURABLE */
/* The number of fixed ProfileEntry slots. If more are required, they
are placed in mmap'd pages. */
#define N_FIXED_PROF_ENTS 20
/* CONFIGURABLE */
/* The number of extra pages of ProfileEntries. If (on arm) each
ProfileEntry is 8 bytes, then a page holds 512, and so 100 pages
is enough to hold 51200. */
#define N_PROF_ENT_PAGES 100
/* DERIVATIVE */
#define N_PROF_ENTS_PER_PAGE (SPS_PAGE_SIZE / sizeof(ProfileEntry))
/* A page of ProfileEntrys. This might actually be slightly smaller
than a page if SPS_PAGE_SIZE is not an exact multiple of
sizeof(ProfileEntry). */
typedef
struct { ProfileEntry ents[N_PROF_ENTS_PER_PAGE]; }
ProfEntsPage;
#define ProfEntsPage_INVALID ((ProfEntsPage*)1)
/* Fields protected by the spinlock are marked SL */
struct _UnwinderThreadBuffer {
/*SL*/ State state;
/* The rest of these are protected, in some sense, by ::state. If
::state is S_FILLING, they are 'owned' by the sampler thread
that set the state to S_FILLING. If ::state is S_EMPTYING,
they are 'owned' by the unwinder thread that set the state to
S_EMPTYING. If ::state is S_EMPTY or S_FULL, the buffer isn't
owned by any thread, and so no thread may access these
fields. */
/* Sample number, needed to process samples in order */
uint64_t seqNo;
/* The ThreadProfile into which the results are eventually to be
dumped. */
ThreadProfile* aProfile;
/* Pseudostack and other info, always present */
ProfileEntry entsFixed[N_FIXED_PROF_ENTS];
ProfEntsPage* entsPages[N_PROF_ENT_PAGES];
uintptr_t entsUsed;
/* Do we also have data to do a native unwind? */
bool haveNativeInfo;
/* If so, here is the register state and stack. Unset if
.haveNativeInfo is false. */
ArchRegs regs;
unsigned char stackImg[N_STACK_BYTES];
unsigned int stackImgUsed;
void* stackImgAddr; /* VMA corresponding to stackImg[0] */
void* stackMaxSafe; /* VMA for max safe stack reading */
};
/* Indexing scheme for ents:
0 <= i < N_FIXED_PROF_ENTS
is at entsFixed[i]
i >= N_FIXED_PROF_ENTS
is at let j = i - N_FIXED_PROF_ENTS
in entsPages[j / N_PROFENTS_PER_PAGE]
->ents[j % N_PROFENTS_PER_PAGE]
entsPages[] are allocated on demand. Because zero can
theoretically be a valid page pointer, use
ProfEntsPage_INVALID == (ProfEntsPage*)1 to mark invalid pages.
It follows that the max entsUsed value is N_FIXED_PROF_ENTS +
N_PROFENTS_PER_PAGE * N_PROFENTS_PAGES, and at that point no more
ProfileEntries can be storedd.
*/
typedef
struct {
pthread_t thrId;
void* stackTop;
uint64_t nSamples;
}
StackLimit;
/* Globals -- the buffer array */
#define N_UNW_THR_BUFFERS 10
/*SL*/ static UnwinderThreadBuffer** g_buffers = NULL;
/*SL*/ static uint64_t g_seqNo = 0;
/*SL*/ static SpinLock g_spinLock = { 0 };
/* Globals -- the thread array. The array is dynamically expanded on
demand. The spinlock must be held when accessing g_stackLimits,
g_stackLimits[some index], g_stackLimitsUsed and g_stackLimitsSize.
However, the spinlock must not be held when calling malloc to
allocate or expand the array, as that would risk deadlock against a
sampling thread that holds the malloc lock and is trying to acquire
the spinlock. */
/*SL*/ static StackLimit* g_stackLimits = NULL;
/*SL*/ static size_t g_stackLimitsUsed = 0;
/*SL*/ static size_t g_stackLimitsSize = 0;
/* Stats -- atomically incremented, no lock needed */
static uintptr_t g_stats_totalSamples = 0; // total # sample attempts
static uintptr_t g_stats_noBuffAvail = 0; // # failed due to no buffer avail
static uintptr_t g_stats_thrUnregd = 0; // # failed due to unregistered thr
/* We must be VERY CAREFUL what we do with the spinlock held. The
only thing it is safe to do with it held is modify (viz, read or
write) g_buffers, g_buffers[], g_seqNo, g_buffers[]->state,
g_stackLimits, g_stackLimits[], g_stackLimitsUsed and
g_stackLimitsSize. No arbitrary computations, no syscalls, no
printfs, no file IO, and absolutely no dynamic memory allocation
(else we WILL eventually deadlock).
This applies both to the signal handler and to the unwinder thread.
*/
//// END type UnwindThreadBuffer
//////////////////////////////////////////////////////////
// fwds
// the interface to breakpad
typedef struct { u_int64_t pc; u_int64_t sp; } PCandSP;
static
void do_breakpad_unwind_Buffer(/*OUT*/PCandSP** pairs,
/*OUT*/unsigned int* nPairs,
UnwinderThreadBuffer* buff,
int buffNo /* for debug printing only */);
static bool is_page_aligned(void* v)
{
uintptr_t w = (uintptr_t) v;
return (w & (SPS_PAGE_SIZE-1)) == 0 ? true : false;
}
/* Implement machine-word sized atomic compare-and-swap. Returns true
if success, false if failure. */
static bool do_CASW(uintptr_t* addr, uintptr_t expected, uintptr_t nyu)
{
#if defined(__GNUC__)
return __sync_bool_compare_and_swap(addr, expected, nyu);
#else
# error "Unhandled compiler"
#endif
}
/* Hint to the CPU core that we are in a spin-wait loop, and that
other processors/cores/threads-running-on-the-same-core should be
given priority on execute resources, if that is possible. Not
critical if this is a no-op on some targets. */
static void do_SPINLOOP_RELAX()
{
#if (defined(SPS_ARCH_amd64) || defined(SPS_ARCH_x86)) && defined(__GNUC__)
__asm__ __volatile__("rep; nop");
#elif defined(SPS_PLAT_arm_android) && MOZILLA_ARM_ARCH >= 7
__asm__ __volatile__("wfe");
#endif
}
/* Tell any cores snoozing in spin loops to wake up. */
static void do_SPINLOOP_NUDGE()
{
#if (defined(SPS_ARCH_amd64) || defined(SPS_ARCH_x86)) && defined(__GNUC__)
/* this is a no-op */
#elif defined(SPS_PLAT_arm_android) && MOZILLA_ARM_ARCH >= 7
__asm__ __volatile__("sev");
#endif
}
/* Perform a full memory barrier. */
static void do_MBAR()
{
#if defined(__GNUC__)
__sync_synchronize();
#else
# error "Unhandled compiler"
#endif
}
static void spinLock_acquire(SpinLock* sl)
{
uintptr_t* val = &sl->val;
VALGRIND_HG_MUTEX_LOCK_PRE(sl, 0/*!isTryLock*/);
while (1) {
bool ok = do_CASW( val, 0, 1 );
if (ok) break;
do_SPINLOOP_RELAX();
}
do_MBAR();
VALGRIND_HG_MUTEX_LOCK_POST(sl);
}
static void spinLock_release(SpinLock* sl)
{
uintptr_t* val = &sl->val;
VALGRIND_HG_MUTEX_UNLOCK_PRE(sl);
do_MBAR();
bool ok = do_CASW( val, 1, 0 );
/* This must succeed at the first try. To fail would imply that
the lock was unheld. */
MOZ_ALWAYS_TRUE(ok);
do_SPINLOOP_NUDGE();
VALGRIND_HG_MUTEX_UNLOCK_POST(sl);
}
static void sleep_ms(unsigned int ms)
{
struct timespec req;
req.tv_sec = ((time_t)ms) / 1000;
req.tv_nsec = 1000 * 1000 * (((unsigned long)ms) % 1000);
nanosleep(&req, NULL);
}
/* Use CAS to implement standalone atomic increment. */
static void atomic_INC(uintptr_t* loc)
{
while (1) {
uintptr_t old = *loc;
uintptr_t nyu = old + 1;
bool ok = do_CASW( loc, old, nyu );
if (ok) break;
}
}
// Registers a thread for profiling. Detects and ignores duplicate
// registration.
static void thread_register_for_profiling(void* stackTop)
{
pthread_t me = pthread_self();
spinLock_acquire(&g_spinLock);
// tmp copy of g_stackLimitsUsed, to avoid racing in message printing
int n_used;
// Ignore spurious calls which aren't really registering anything.
if (stackTop == NULL) {
n_used = g_stackLimitsUsed;
spinLock_release(&g_spinLock);
LOGF("BPUnw: [%d total] thread_register_for_profiling"
"(me=%p, stacktop=NULL) (IGNORED)", n_used, (void*)me);
return;
}
/* Minimal sanity check on stackTop */
MOZ_ASSERT((void*)&n_used/*any auto var will do*/ < stackTop);
bool is_dup = false;
for (size_t i = 0; i < g_stackLimitsUsed; i++) {
if (g_stackLimits[i].thrId == me) {
is_dup = true;
break;
}
}
if (is_dup) {
/* It's a duplicate registration. Ignore it: drop the lock and
return. */
n_used = g_stackLimitsUsed;
spinLock_release(&g_spinLock);
LOGF("BPUnw: [%d total] thread_register_for_profiling"
"(me=%p, stacktop=%p) (DUPLICATE)", n_used, (void*)me, stackTop);
return;
}
/* Make sure the g_stackLimits array is large enough to accommodate
this new entry. This is tricky. If it isn't large enough, we
can malloc a larger version, but we have to do that without
holding the spinlock, else we risk deadlock. The deadlock
scenario is:
Some other thread that is being sampled
This thread
call malloc call this function
acquire malloc lock acquire the spinlock
(sampling signal) discover thread array not big enough,
call uwt__acquire_empty_buffer call malloc to make it larger
acquire the spinlock acquire malloc lock
This gives an inconsistent lock acquisition order on the malloc
lock and spinlock, hence risk of deadlock.
Allocating more space for the array without holding the spinlock
implies tolerating races against other thread(s) who are also
trying to expand the array. How can we detect if we have been
out-raced? Every successful expansion of g_stackLimits[] results
in an increase in g_stackLimitsSize. Hence we can detect if we
got out-raced by remembering g_stackLimitsSize before we dropped
the spinlock and checking if it has changed after the spinlock is
reacquired. */
MOZ_ASSERT(g_stackLimitsUsed <= g_stackLimitsSize);
if (g_stackLimitsUsed == g_stackLimitsSize) {
/* g_stackLimits[] is full; resize it. */
size_t old_size = g_stackLimitsSize;
size_t new_size = old_size == 0 ? 4 : (2 * old_size);
spinLock_release(&g_spinLock);
StackLimit* new_arr = (StackLimit*)malloc(new_size * sizeof(StackLimit));
if (!new_arr)
return;
spinLock_acquire(&g_spinLock);
if (old_size != g_stackLimitsSize) {
/* We've been outraced. Instead of trying to deal in-line with
this extremely rare case, just start all over again by
tail-calling this routine. */
spinLock_release(&g_spinLock);
free(new_arr);
thread_register_for_profiling(stackTop);
return;
}
memcpy(new_arr, g_stackLimits, old_size * sizeof(StackLimit));
if (g_stackLimits)
free(g_stackLimits);
g_stackLimits = new_arr;
MOZ_ASSERT(g_stackLimitsSize < new_size);
g_stackLimitsSize = new_size;
}
MOZ_ASSERT(g_stackLimitsUsed < g_stackLimitsSize);
/* Finally, we have a safe place to put the new entry. */
// Round |stackTop| up to the end of the containing page. We may
// as well do this -- there's no danger of a fault, and we might
// get a few more base-of-the-stack frames as a result. This
// assumes that no target has a page size smaller than 4096.
uintptr_t stackTopR = (uintptr_t)stackTop;
stackTopR = (stackTopR & ~(uintptr_t)4095) + (uintptr_t)4095;
g_stackLimits[g_stackLimitsUsed].thrId = me;
g_stackLimits[g_stackLimitsUsed].stackTop = (void*)stackTopR;
g_stackLimits[g_stackLimitsUsed].nSamples = 0;
g_stackLimitsUsed++;
n_used = g_stackLimitsUsed;
spinLock_release(&g_spinLock);
LOGF("BPUnw: [%d total] thread_register_for_profiling"
"(me=%p, stacktop=%p)", n_used, (void*)me, stackTop);
}
// Deregisters a thread from profiling. Detects and ignores attempts
// to deregister a not-registered thread.
static void thread_unregister_for_profiling()
{
spinLock_acquire(&g_spinLock);
// tmp copy of g_stackLimitsUsed, to avoid racing in message printing
size_t n_used;
size_t i;
bool found = false;
pthread_t me = pthread_self();
for (i = 0; i < g_stackLimitsUsed; i++) {
if (g_stackLimits[i].thrId == me)
break;
}
if (i < g_stackLimitsUsed) {
// found this entry. Slide the remaining ones down one place.
for (; i+1 < g_stackLimitsUsed; i++) {
g_stackLimits[i] = g_stackLimits[i+1];
}
g_stackLimitsUsed--;
found = true;
}
n_used = g_stackLimitsUsed;
spinLock_release(&g_spinLock);
LOGF("BPUnw: [%d total] thread_unregister_for_profiling(me=%p) %s",
(int)n_used, (void*)me, found ? "" : " (NOT REGISTERED) ");
}
__attribute__((unused))
static void show_registered_threads()
{
size_t i;
spinLock_acquire(&g_spinLock);
for (i = 0; i < g_stackLimitsUsed; i++) {
LOGF("[%d] pthread_t=%p nSamples=%lld",
(int)i, (void*)g_stackLimits[i].thrId,
(unsigned long long int)g_stackLimits[i].nSamples);
}
spinLock_release(&g_spinLock);
}
// RUNS IN SIGHANDLER CONTEXT
static UnwinderThreadBuffer* acquire_empty_buffer()
{
/* acq lock
if buffers == NULL { rel lock; exit }
scan to find a free buff; if none { rel lock; exit }
set buff state to S_FILLING
fillseqno++; and remember it
rel lock
*/
size_t i;
atomic_INC( &g_stats_totalSamples );
/* This code is critical. We are in a signal handler and possibly
with the malloc lock held. So we can't allocate any heap, and
can't safely call any C library functions, not even the pthread_
functions. And we certainly can't do any syscalls. In short,
this function needs to be self contained, not do any allocation,
and not hold on to the spinlock for any significant length of
time. */
spinLock_acquire(&g_spinLock);
/* First of all, look for this thread's entry in g_stackLimits[].
We need to find it in order to figure out how much stack we can
safely copy into the sample. This assumes that pthread_self()
is safe to call in a signal handler, which strikes me as highly
likely. */
pthread_t me = pthread_self();
MOZ_ASSERT(g_stackLimitsUsed <= g_stackLimitsSize);
for (i = 0; i < g_stackLimitsUsed; i++) {
if (g_stackLimits[i].thrId == me)
break;
}
/* If the thread isn't registered for profiling, just ignore the call
and return NULL. */
if (i == g_stackLimitsUsed) {
spinLock_release(&g_spinLock);
atomic_INC( &g_stats_thrUnregd );
return NULL;
}
/* "this thread is registered for profiling" */
MOZ_ASSERT(i < g_stackLimitsUsed);
/* The furthest point that we can safely scan back up the stack. */
void* myStackTop = g_stackLimits[i].stackTop;
g_stackLimits[i].nSamples++;
/* Try to find a free buffer to use. */
if (g_buffers == NULL) {
/* The unwinder thread hasn't allocated any buffers yet.
Nothing we can do. */
spinLock_release(&g_spinLock);
atomic_INC( &g_stats_noBuffAvail );
return NULL;
}
for (i = 0; i < N_UNW_THR_BUFFERS; i++) {
if (g_buffers[i]->state == S_EMPTY)
break;
}
MOZ_ASSERT(i <= N_UNW_THR_BUFFERS);
if (i == N_UNW_THR_BUFFERS) {
/* Again, no free buffers .. give up. */
spinLock_release(&g_spinLock);
atomic_INC( &g_stats_noBuffAvail );
if (LOGLEVEL >= 3)
LOG("BPUnw: handler: no free buffers");
return NULL;
}
/* So we can use this one safely. Whilst still holding the lock,
mark the buffer as belonging to us, and increment the sequence
number. */
UnwinderThreadBuffer* buff = g_buffers[i];
MOZ_ASSERT(buff->state == S_EMPTY);
buff->state = S_FILLING;
buff->seqNo = g_seqNo;
g_seqNo++;
/* And drop the lock. We own the buffer, so go on and fill it. */
spinLock_release(&g_spinLock);
/* Now we own the buffer, initialise it. */
buff->aProfile = NULL;
buff->entsUsed = 0;
buff->haveNativeInfo = false;
buff->stackImgUsed = 0;
buff->stackImgAddr = 0;
buff->stackMaxSafe = myStackTop; /* We will need this in
release_full_buffer() */
for (i = 0; i < N_PROF_ENT_PAGES; i++)
buff->entsPages[i] = ProfEntsPage_INVALID;
return buff;
}
// RUNS IN SIGHANDLER CONTEXT
/* The calling thread owns the buffer, as denoted by its state being
S_FILLING. So we can mess with it without further locking. */
static void release_full_buffer(ThreadProfile* aProfile,
UnwinderThreadBuffer* buff,
void* /* ucontext_t*, really */ ucV )
{
MOZ_ASSERT(buff->state == S_FILLING);
////////////////////////////////////////////////////
// BEGIN fill
/* The buffer already will have some of its ProfileEntries filled
in, but everything else needs to be filled in at this point. */
//LOGF("Release full buffer: %lu ents", buff->entsUsed);
/* Where the resulting info is to be dumped */
buff->aProfile = aProfile;
/* And, if we have register state, that and the stack top */
buff->haveNativeInfo = ucV != NULL;
if (buff->haveNativeInfo) {
# if defined(SPS_PLAT_amd64_linux)
ucontext_t* uc = (ucontext_t*)ucV;
mcontext_t* mc = &(uc->uc_mcontext);
buff->regs.rip = mc->gregs[REG_RIP];
buff->regs.rsp = mc->gregs[REG_RSP];
buff->regs.rbp = mc->gregs[REG_RBP];
# elif defined(SPS_PLAT_amd64_darwin)
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext64* mc = uc->uc_mcontext;
struct __darwin_x86_thread_state64* ss = &mc->__ss;
buff->regs.rip = ss->__rip;
buff->regs.rsp = ss->__rsp;
buff->regs.rbp = ss->__rbp;
# elif defined(SPS_PLAT_arm_android)
ucontext_t* uc = (ucontext_t*)ucV;
mcontext_t* mc = &(uc->uc_mcontext);
buff->regs.r15 = mc->arm_pc; //gregs[R15];
buff->regs.r14 = mc->arm_lr; //gregs[R14];
buff->regs.r13 = mc->arm_sp; //gregs[R13];
buff->regs.r12 = mc->arm_ip; //gregs[R12];
buff->regs.r11 = mc->arm_fp; //gregs[R11];
buff->regs.r7 = mc->arm_r7; //gregs[R7];
# elif defined(SPS_PLAT_x86_linux)
ucontext_t* uc = (ucontext_t*)ucV;
mcontext_t* mc = &(uc->uc_mcontext);
buff->regs.eip = mc->gregs[REG_EIP];
buff->regs.esp = mc->gregs[REG_ESP];
buff->regs.ebp = mc->gregs[REG_EBP];
# elif defined(SPS_PLAT_x86_darwin)
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext32* mc = uc->uc_mcontext;
struct __darwin_i386_thread_state* ss = &mc->__ss;
buff->regs.eip = ss->__eip;
buff->regs.esp = ss->__esp;
buff->regs.ebp = ss->__ebp;
# elif defined(SPS_PLAT_x86_android)
ucontext_t* uc = (ucontext_t*)ucV;
mcontext_t* mc = &(uc->uc_mcontext);
buff->regs.eip = mc->eip;
buff->regs.esp = mc->esp;
buff->regs.ebp = mc->ebp;
# else
# error "Unknown plat"
# endif
/* Copy up to N_STACK_BYTES from rsp-REDZONE upwards, but not
going past the stack's registered top point. Do some basic
sanity checks too. */
{
# if defined(SPS_PLAT_amd64_linux) || defined(SPS_PLAT_amd64_darwin)
uintptr_t rEDZONE_SIZE = 128;
uintptr_t start = buff->regs.rsp - rEDZONE_SIZE;
# elif defined(SPS_PLAT_arm_android)
uintptr_t rEDZONE_SIZE = 0;
uintptr_t start = buff->regs.r13 - rEDZONE_SIZE;
# elif defined(SPS_PLAT_x86_linux) || defined(SPS_PLAT_x86_darwin) \
|| defined(SPS_PLAT_x86_android)
uintptr_t rEDZONE_SIZE = 0;
uintptr_t start = buff->regs.esp - rEDZONE_SIZE;
# else
# error "Unknown plat"
# endif
uintptr_t end = (uintptr_t)buff->stackMaxSafe;
uintptr_t ws = sizeof(void*);
start &= ~(ws-1);
end &= ~(ws-1);
uintptr_t nToCopy = 0;
if (start < end) {
nToCopy = end - start;
if (nToCopy > N_STACK_BYTES)
nToCopy = N_STACK_BYTES;
}
MOZ_ASSERT(nToCopy <= N_STACK_BYTES);
buff->stackImgUsed = nToCopy;
buff->stackImgAddr = (void*)start;
if (nToCopy > 0) {
memcpy(&buff->stackImg[0], (void*)start, nToCopy);
(void)VALGRIND_MAKE_MEM_DEFINED(&buff->stackImg[0], nToCopy);
}
}
} /* if (buff->haveNativeInfo) */
// END fill
////////////////////////////////////////////////////
/* And now relinquish ownership of the buff, so that an unwinder
thread can pick it up. */
spinLock_acquire(&g_spinLock);
buff->state = S_FULL;
spinLock_release(&g_spinLock);
}
// RUNS IN SIGHANDLER CONTEXT
// Allocate a ProfEntsPage, without using malloc, or return
// ProfEntsPage_INVALID if we can't for some reason.
static ProfEntsPage* mmap_anon_ProfEntsPage()
{
# if defined(SPS_OS_darwin)
void* v = ::mmap(NULL, sizeof(ProfEntsPage), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANON, -1, 0);
# else
void* v = ::mmap(NULL, sizeof(ProfEntsPage), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
# endif
if (v == MAP_FAILED) {
return ProfEntsPage_INVALID;
} else {
return (ProfEntsPage*)v;
}
}
// Runs in the unwinder thread
// Free a ProfEntsPage as allocated by mmap_anon_ProfEntsPage
static void munmap_ProfEntsPage(ProfEntsPage* pep)
{
MOZ_ALWAYS_TRUE(is_page_aligned(pep));
::munmap(pep, sizeof(ProfEntsPage));
}
// RUNS IN SIGHANDLER CONTEXT
void
utb_add_prof_ent(/*MODIFIED*/UnwinderThreadBuffer* utb, ProfileEntry ent)
{
uintptr_t limit
= N_FIXED_PROF_ENTS + (N_PROF_ENTS_PER_PAGE * N_PROF_ENT_PAGES);
if (utb->entsUsed == limit) {
/* We're full. Now what? */
LOG("BPUnw: utb__addEntry: NO SPACE for ProfileEntry; ignoring.");
return;
}
MOZ_ASSERT(utb->entsUsed < limit);
/* Will it fit in the fixed array? */
if (utb->entsUsed < N_FIXED_PROF_ENTS) {
utb->entsFixed[utb->entsUsed] = ent;
utb->entsUsed++;
return;
}
/* No. Put it in the extras. */
uintptr_t i = utb->entsUsed;
uintptr_t j = i - N_FIXED_PROF_ENTS;
uintptr_t j_div = j / N_PROF_ENTS_PER_PAGE; /* page number */
uintptr_t j_mod = j % N_PROF_ENTS_PER_PAGE; /* page offset */
ProfEntsPage* pep = utb->entsPages[j_div];
if (pep == ProfEntsPage_INVALID) {
pep = mmap_anon_ProfEntsPage();
if (pep == ProfEntsPage_INVALID) {
/* Urr, we ran out of memory. Now what? */
LOG("BPUnw: utb__addEntry: MMAP FAILED for ProfileEntry; ignoring.");
return;
}
utb->entsPages[j_div] = pep;
}
pep->ents[j_mod] = ent;
utb->entsUsed++;
}
// misc helper
static ProfileEntry utb_get_profent(UnwinderThreadBuffer* buff, uintptr_t i)
{
MOZ_ASSERT(i < buff->entsUsed);
if (i < N_FIXED_PROF_ENTS) {
return buff->entsFixed[i];
} else {
uintptr_t j = i - N_FIXED_PROF_ENTS;
uintptr_t j_div = j / N_PROF_ENTS_PER_PAGE; /* page number */
uintptr_t j_mod = j % N_PROF_ENTS_PER_PAGE; /* page offset */
MOZ_ASSERT(buff->entsPages[j_div] != ProfEntsPage_INVALID);
return buff->entsPages[j_div]->ents[j_mod];
}
}
// Runs in the unwinder thread -- well, this _is_ the unwinder thread.
static void* unwind_thr_fn(void* exit_nowV)
{
/* If we're the first thread in, we'll need to allocate the buffer
array g_buffers plus the Buffer structs that it points at. */
spinLock_acquire(&g_spinLock);
if (g_buffers == NULL) {
/* Drop the lock, make a complete copy in memory, reacquire the
lock, and try to install it -- which might fail, if someone
else beat us to it. */
spinLock_release(&g_spinLock);
UnwinderThreadBuffer** buffers
= (UnwinderThreadBuffer**)malloc(N_UNW_THR_BUFFERS
* sizeof(UnwinderThreadBuffer*));
MOZ_ASSERT(buffers);
int i;
for (i = 0; i < N_UNW_THR_BUFFERS; i++) {
/* These calloc-ations are shared between the sampler and the unwinder.
* They must be free after both threads have terminated.
*/
buffers[i] = (UnwinderThreadBuffer*)
calloc(sizeof(UnwinderThreadBuffer), 1);
MOZ_ASSERT(buffers[i]);
buffers[i]->state = S_EMPTY;
}
/* Try to install it */
spinLock_acquire(&g_spinLock);
if (g_buffers == NULL) {
g_buffers = buffers;
spinLock_release(&g_spinLock);
} else {
/* Someone else beat us to it. Release what we just allocated
so as to avoid a leak. */
spinLock_release(&g_spinLock);
for (i = 0; i < N_UNW_THR_BUFFERS; i++) {
free(buffers[i]);
}
free(buffers);
}
} else {
/* They are already allocated, so just drop the lock and continue. */
spinLock_release(&g_spinLock);
}
/*
while (1) {
acq lock
scan to find oldest full
if none { rel lock; sleep; continue }
set buff state to emptying
rel lock
acq MLock // implicitly
process buffer
rel MLock // implicitly
acq lock
set buff state to S_EMPTY
rel lock
}
*/
int* exit_now = (int*)exit_nowV;
int ms_to_sleep_if_empty = 1;
const int longest_sleep_ms = 1000;
bool show_sleep_message = true;
while (1) {
if (*exit_now != 0) {
*exit_now = 0;
break;
}
spinLock_acquire(&g_spinLock);
/* Find the oldest filled buffer, if any. */
uint64_t oldest_seqNo = ~0ULL; /* infinity */
int oldest_ix = -1;
int i;
for (i = 0; i < N_UNW_THR_BUFFERS; i++) {
UnwinderThreadBuffer* buff = g_buffers[i];
if (buff->state != S_FULL) continue;
if (buff->seqNo < oldest_seqNo) {
oldest_seqNo = buff->seqNo;
oldest_ix = i;
}
}
if (oldest_ix == -1) {
/* We didn't find a full buffer. Snooze and try again later. */
MOZ_ASSERT(oldest_seqNo == ~0ULL);
spinLock_release(&g_spinLock);
if (ms_to_sleep_if_empty > 100 && LOGLEVEL >= 2) {
if (show_sleep_message)
LOGF("BPUnw: unwinder: sleep for %d ms", ms_to_sleep_if_empty);
/* If we've already shown the message for the longest sleep,
don't show it again, until the next round of sleeping
starts. */
if (ms_to_sleep_if_empty == longest_sleep_ms)
show_sleep_message = false;
}
sleep_ms(ms_to_sleep_if_empty);
if (ms_to_sleep_if_empty < 20) {
ms_to_sleep_if_empty += 2;
} else {
ms_to_sleep_if_empty = (15 * ms_to_sleep_if_empty) / 10;
if (ms_to_sleep_if_empty > longest_sleep_ms)
ms_to_sleep_if_empty = longest_sleep_ms;
}
continue;
}
/* We found a full a buffer. Mark it as 'ours' and drop the
lock; then we can safely throw breakpad at it. */
UnwinderThreadBuffer* buff = g_buffers[oldest_ix];
MOZ_ASSERT(buff->state == S_FULL);
buff->state = S_EMPTYING;
spinLock_release(&g_spinLock);
/* unwind .. in which we can do anything we like, since any
resource stalls that we may encounter (eg malloc locks) in
competition with signal handler instances, will be short
lived since the signal handler is guaranteed nonblocking. */
if (0) LOGF("BPUnw: unwinder: seqNo %llu: emptying buf %d\n",
(unsigned long long int)oldest_seqNo, oldest_ix);
/* Copy ProfileEntries presented to us by the sampling thread.
Most of them are copied verbatim into |buff->aProfile|,
except for 'hint' tags, which direct us to do something
different. */
/* Need to lock |aProfile| so nobody tries to copy out entries
whilst we are putting them in. */
buff->aProfile->GetMutex()->Lock();
/* The buff is a sequence of ProfileEntries (ents). It has
this grammar:
| --pre-tags-- | (h 'P' .. h 'Q')* | --post-tags-- |
^ ^
ix_first_hP ix_last_hQ
Each (h 'P' .. h 'Q') subsequence represents one pseudostack
entry. These, if present, are in the order
outermost-frame-first, and that is the order that they should
be copied into aProfile. The --pre-tags-- and --post-tags--
are to be copied into the aProfile verbatim, except that they
may contain the hints "h 'F'" for a flush and "h 'N'" to
indicate that a native unwind is also required, and must be
interleaved with the pseudostack entries.
The hint tags that bound each pseudostack entry, "h 'P'" and "h
'Q'", are not to be copied into the aProfile -- they are
present only to make parsing easy here. Also, the pseudostack
entries may contain an "'S' (void*)" entry, which is the stack
pointer value for that entry, and these are also not to be
copied.
*/
/* The first thing to do is therefore to find the pseudostack
entries, if any, and to find out also whether a native unwind
has been requested. */
const uintptr_t infUW = ~(uintptr_t)0; // infinity
bool need_native_unw = false;
uintptr_t ix_first_hP = infUW; // "not found"
uintptr_t ix_last_hQ = infUW; // "not found"
uintptr_t k;
for (k = 0; k < buff->entsUsed; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
if (ent.is_ent_hint('N')) {
need_native_unw = true;
}
else if (ent.is_ent_hint('P') && ix_first_hP == ~(uintptr_t)0) {
ix_first_hP = k;
}
else if (ent.is_ent_hint('Q')) {
ix_last_hQ = k;
}
}
if (0) LOGF("BPUnw: ix_first_hP %llu ix_last_hQ %llu need_native_unw %llu",
(unsigned long long int)ix_first_hP,
(unsigned long long int)ix_last_hQ,
(unsigned long long int)need_native_unw);
/* There are four possibilities: native-only, pseudostack-only,
combined (both), and neither. We handle all four cases. */
MOZ_ASSERT( (ix_first_hP == infUW && ix_last_hQ == infUW) ||
(ix_first_hP != infUW && ix_last_hQ != infUW) );
bool have_P = ix_first_hP != infUW;
if (have_P) {
MOZ_ASSERT(ix_first_hP < ix_last_hQ);
MOZ_ASSERT(ix_last_hQ <= buff->entsUsed);
}
/* Neither N nor P. This is very unusual but has been observed to happen.
Just copy to the output. */
if (!need_native_unw && !have_P) {
for (k = 0; k < buff->entsUsed; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
// action flush-hints
if (ent.is_ent_hint('F')) { buff->aProfile->flush(); continue; }
// skip ones we can't copy
if (ent.is_ent_hint() || ent.is_ent('S')) { continue; }
// and copy everything else
buff->aProfile->addTag( ent );
}
}
else /* Native only-case. */
if (need_native_unw && !have_P) {
for (k = 0; k < buff->entsUsed; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
// action a native-unwind-now hint
if (ent.is_ent_hint('N')) {
MOZ_ASSERT(buff->haveNativeInfo);
PCandSP* pairs = NULL;
unsigned int nPairs = 0;
do_breakpad_unwind_Buffer(&pairs, &nPairs, buff, oldest_ix);
buff->aProfile->addTag( ProfileEntry('s', "(root)") );
for (unsigned int i = 0; i < nPairs; i++) {
/* Skip any outermost frames that
do_breakpad_unwind_Buffer didn't give us. See comments
on that function for details. */
if (pairs[i].pc == 0 && pairs[i].sp == 0)
continue;
buff->aProfile
->addTag( ProfileEntry('l', reinterpret_cast<void*>(pairs[i].pc)) );
}
if (pairs)
free(pairs);
continue;
}
// action flush-hints
if (ent.is_ent_hint('F')) { buff->aProfile->flush(); continue; }
// skip ones we can't copy
if (ent.is_ent_hint() || ent.is_ent('S')) { continue; }
// and copy everything else
buff->aProfile->addTag( ent );
}
}
else /* Pseudostack-only case */
if (!need_native_unw && have_P) {
/* If there's no request for a native stack, it's easy: just
copy the tags verbatim into aProfile, skipping the ones that
can't be copied -- 'h' (hint) tags, and "'S' (void*)"
stack-pointer tags. Except, insert a sample-start tag when
we see the start of the first pseudostack frame. */
for (k = 0; k < buff->entsUsed; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
// We need to insert a sample-start tag before the first frame
if (k == ix_first_hP) {
buff->aProfile->addTag( ProfileEntry('s', "(root)") );
}
// action flush-hints
if (ent.is_ent_hint('F')) { buff->aProfile->flush(); continue; }
// skip ones we can't copy
if (ent.is_ent_hint() || ent.is_ent('S')) { continue; }
// and copy everything else
buff->aProfile->addTag( ent );
}
}
else /* Combined case */
if (need_native_unw && have_P)
{
/* We need to get a native stacktrace and merge it with the
pseudostack entries. This isn't too simple. First, copy all
the tags up to the start of the pseudostack tags. Then
generate a combined set of tags by native unwind and
pseudostack. Then, copy all the stuff after the pseudostack
tags. */
MOZ_ASSERT(buff->haveNativeInfo);
// Get native unwind info
PCandSP* pairs = NULL;
unsigned int n_pairs = 0;
do_breakpad_unwind_Buffer(&pairs, &n_pairs, buff, oldest_ix);
// Entries before the pseudostack frames
for (k = 0; k < ix_first_hP; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
// action flush-hints
if (ent.is_ent_hint('F')) { buff->aProfile->flush(); continue; }
// skip ones we can't copy
if (ent.is_ent_hint() || ent.is_ent('S')) { continue; }
// and copy everything else
buff->aProfile->addTag( ent );
}
// BEGIN merge
buff->aProfile->addTag( ProfileEntry('s', "(root)") );
unsigned int next_N = 0; // index in pairs[]
unsigned int next_P = ix_first_hP; // index in buff profent array
bool last_was_P = false;
if (0) LOGF("at mergeloop: n_pairs %llu ix_last_hQ %llu",
(unsigned long long int)n_pairs,
(unsigned long long int)ix_last_hQ);
/* Skip any outermost frames that do_breakpad_unwind_Buffer
didn't give us. See comments on that function for
details. */
while (next_N < n_pairs && pairs[next_N].pc == 0 && pairs[next_N].sp == 0)
next_N++;
while (true) {
if (next_P <= ix_last_hQ) {
// Assert that next_P points at the start of an P entry
MOZ_ASSERT(utb_get_profent(buff, next_P).is_ent_hint('P'));
}
if (next_N >= n_pairs && next_P > ix_last_hQ) {
// both stacks empty
break;
}
/* Decide which entry to use next:
If N is empty, must use P, and vice versa
else
If the last was P and current P has zero SP, use P
else
we assume that both P and N have valid SP, in which case
use the one with the larger value
*/
bool use_P = true;
if (next_N >= n_pairs) {
// N empty, use P
use_P = true;
if (0) LOG(" P <= no remaining N entries");
}
else if (next_P > ix_last_hQ) {
// P empty, use N
use_P = false;
if (0) LOG(" N <= no remaining P entries");
}
else {
// We have at least one N and one P entry available.
// Scan forwards to find the SP of the current P entry
u_int64_t sp_cur_P = 0;
unsigned int m = next_P + 1;
while (1) {
/* This assertion should hold because in a well formed
input, we must eventually find the hint-Q that marks
the end of this frame's entries. */
MOZ_ASSERT(m < buff->entsUsed);
ProfileEntry ent = utb_get_profent(buff, m);
if (ent.is_ent_hint('Q'))
break;
if (ent.is_ent('S')) {
sp_cur_P = reinterpret_cast<u_int64_t>(ent.get_tagPtr());
break;
}
m++;
}
if (last_was_P && sp_cur_P == 0) {
if (0) LOG(" P <= last_was_P && sp_cur_P == 0");
use_P = true;
} else {
u_int64_t sp_cur_N = pairs[next_N].sp;
use_P = (sp_cur_P > sp_cur_N);
if (0) LOGF(" %s <= sps P %p N %p",
use_P ? "P" : "N", (void*)(intptr_t)sp_cur_P,
(void*)(intptr_t)sp_cur_N);
}
}
/* So, we know which we are going to use. */
if (use_P) {
unsigned int m = next_P + 1;
while (true) {
MOZ_ASSERT(m < buff->entsUsed);
ProfileEntry ent = utb_get_profent(buff, m);
if (ent.is_ent_hint('Q')) {
next_P = m + 1;
break;
}
// we don't expect a flush-hint here
MOZ_ASSERT(!ent.is_ent_hint('F'));
// skip ones we can't copy
if (ent.is_ent_hint() || ent.is_ent('S')) { m++; continue; }
// and copy everything else
buff->aProfile->addTag( ent );
m++;
}
} else {
buff->aProfile
->addTag( ProfileEntry('l', reinterpret_cast<void*>(pairs[next_N].pc)) );
next_N++;
}
/* Remember what we chose, for next time. */
last_was_P = use_P;
}
MOZ_ASSERT(next_P == ix_last_hQ + 1);
MOZ_ASSERT(next_N == n_pairs);
// END merge
// Entries after the pseudostack frames
for (k = ix_last_hQ+1; k < buff->entsUsed; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
// action flush-hints
if (ent.is_ent_hint('F')) { buff->aProfile->flush(); continue; }
// skip ones we can't copy
if (ent.is_ent_hint() || ent.is_ent('S')) { continue; }
// and copy everything else
buff->aProfile->addTag( ent );
}
// free native unwind info
if (pairs)
free(pairs);
}
#if 0
bool show = true;
if (show) LOG("----------------");
for (k = 0; k < buff->entsUsed; k++) {
ProfileEntry ent = utb_get_profent(buff, k);
if (show) ent.log();
if (ent.is_ent_hint('F')) {
/* This is a flush-hint */
buff->aProfile->flush();
}
else if (ent.is_ent_hint('N')) {
/* This is a do-a-native-unwind-right-now hint */
MOZ_ASSERT(buff->haveNativeInfo);
PCandSP* pairs = NULL;
unsigned int nPairs = 0;
do_breakpad_unwind_Buffer(&pairs, &nPairs, buff, oldest_ix);
buff->aProfile->addTag( ProfileEntry('s', "(root)") );
for (unsigned int i = 0; i < nPairs; i++) {
buff->aProfile
->addTag( ProfileEntry('l', reinterpret_cast<void*>(pairs[i].pc)) );
}
if (pairs)
free(pairs);
} else {
/* Copy in verbatim */
buff->aProfile->addTag( ent );
}
}
#endif
buff->aProfile->GetMutex()->Unlock();
/* And .. we're done. Mark the buffer as empty so it can be
reused. First though, unmap any of the entsPages that got
mapped during filling. */
for (i = 0; i < N_PROF_ENT_PAGES; i++) {
if (buff->entsPages[i] == ProfEntsPage_INVALID)
continue;
munmap_ProfEntsPage(buff->entsPages[i]);
buff->entsPages[i] = ProfEntsPage_INVALID;
}
(void)VALGRIND_MAKE_MEM_UNDEFINED(&buff->stackImg[0], N_STACK_BYTES);
spinLock_acquire(&g_spinLock);
MOZ_ASSERT(buff->state == S_EMPTYING);
buff->state = S_EMPTY;
spinLock_release(&g_spinLock);
ms_to_sleep_if_empty = 1;
show_sleep_message = true;
}
return NULL;
}
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
/* After this point, we have some classes that interface with
breakpad, that allow us to pass in a Buffer and get an unwind of
it. */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include <fstream>
#include <sstream>
#include "google_breakpad/common/minidump_format.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/stack_frame_cpu.h"
#include "local_debug_info_symbolizer.h"
#include "processor/stackwalker_amd64.h"
#include "processor/stackwalker_arm.h"
#include "processor/stackwalker_x86.h"
#include "common/linux/dump_symbols.h"
#include "google_breakpad/processor/memory_region.h"
#include "google_breakpad/processor/code_modules.h"
google_breakpad::MemoryRegion* foo = NULL;
using std::string;
///////////////////////////////////////////////////////////////////
/* Implement MemoryRegion, so that it hauls stack image data out of
the stack top snapshots that the signal handler has so carefully
snarfed. */
// BEGIN: DERIVED FROM src/processor/stackwalker_selftest.cc
//
class BufferMemoryRegion : public google_breakpad::MemoryRegion {
public:
// We just keep hold of the Buffer* we're given, but make no attempt
// to take allocation-ownership of it.
BufferMemoryRegion(UnwinderThreadBuffer* buff) : buff_(buff) { }
~BufferMemoryRegion() { }
u_int64_t GetBase() const { return (uintptr_t)buff_->stackImgAddr; }
u_int32_t GetSize() const { return (uintptr_t)buff_->stackImgUsed; }
bool GetMemoryAtAddress(u_int64_t address, u_int8_t* value) const {
return GetMemoryAtAddressInternal(address, value); }
bool GetMemoryAtAddress(u_int64_t address, u_int16_t* value) const {
return GetMemoryAtAddressInternal(address, value); }
bool GetMemoryAtAddress(u_int64_t address, u_int32_t* value) const {
return GetMemoryAtAddressInternal(address, value); }
bool GetMemoryAtAddress(u_int64_t address, u_int64_t* value) const {
return GetMemoryAtAddressInternal(address, value); }
private:
template<typename T> bool GetMemoryAtAddressInternal (
u_int64_t address, T* value) const {
/* Range check .. */
if ( buff_->stackImgUsed >= sizeof(T)
&& ((uintptr_t)address) >= ((uintptr_t)buff_->stackImgAddr)
&& ((uintptr_t)address) <= ((uintptr_t)buff_->stackImgAddr)
+ buff_->stackImgUsed
- sizeof(T) ) {
uintptr_t offset = (uintptr_t)address - (uintptr_t)buff_->stackImgAddr;
if (0) LOGF("GMAA %llx ok", (unsigned long long int)address);
*value = *reinterpret_cast<const T*>(&buff_->stackImg[offset]);
return true;
} else {
if (0) LOGF("GMAA %llx failed", (unsigned long long int)address);
return false;
}
}
// where this all comes from
UnwinderThreadBuffer* buff_;
};
//
// END: DERIVED FROM src/processor/stackwalker_selftest.cc
///////////////////////////////////////////////////////////////////
/* Implement MyCodeModule and MyCodeModules, so they pull the relevant
information about which modules are loaded where out of
/proc/self/maps. */
class MyCodeModule : public google_breakpad::CodeModule {
public:
MyCodeModule(u_int64_t x_start, u_int64_t x_len, string filename)
: x_start_(x_start), x_len_(x_len), filename_(filename) {
MOZ_ASSERT(x_len > 0);
}
~MyCodeModule() {}
// The base address of this code module as it was loaded by the process.
// (u_int64_t)-1 on error.
u_int64_t base_address() const { return x_start_; }
// The size of the code module. 0 on error.
u_int64_t size() const { return x_len_; }
// The path or file name that the code module was loaded from. Empty on
// error.
string code_file() const { return filename_; }
// An identifying string used to discriminate between multiple versions and
// builds of the same code module. This may contain a uuid, timestamp,
// version number, or any combination of this or other information, in an
// implementation-defined format. Empty on error.
string code_identifier() const { MOZ_CRASH(); return ""; }
// The filename containing debugging information associated with the code
// module. If debugging information is stored in a file separate from the
// code module itself (as is the case when .pdb or .dSYM files are used),
// this will be different from code_file. If debugging information is
// stored in the code module itself (possibly prior to stripping), this
// will be the same as code_file. Empty on error.
string debug_file() const { MOZ_CRASH(); return ""; }
// An identifying string similar to code_identifier, but identifies a
// specific version and build of the associated debug file. This may be
// the same as code_identifier when the debug_file and code_file are
// identical or when the same identifier is used to identify distinct
// debug and code files.
string debug_identifier() const { MOZ_CRASH(); return ""; }
// A human-readable representation of the code module's version. Empty on
// error.
string version() const { MOZ_CRASH(); return ""; }
// Creates a new copy of this CodeModule object, which the caller takes
// ownership of. The new CodeModule may be of a different concrete class
// than the CodeModule being copied, but will behave identically to the
// copied CodeModule as far as the CodeModule interface is concerned.
const CodeModule* Copy() const { MOZ_CRASH(); return NULL; }
friend void read_procmaps(std::vector<MyCodeModule*>& mods_);
private:
// record info for a file backed executable mapping
u_int64_t x_start_;
u_int64_t x_len_; // may not be zero
string filename_; // of the mapped file
};
// Simple predicates on MyCodeModule, used by read_procmaps
static bool mcm_has_zero_length(MyCodeModule* cm) {
return cm->size() == 0;
}
static bool mcm_is_lessthan_by_start(MyCodeModule* cm1, MyCodeModule* cm2) {
return cm1->base_address() < cm2->base_address();
}
/* Find out, in a platform-dependent way, where the code modules got
mapped in the process' virtual address space, and add them to
|mods_|. */
void read_procmaps(std::vector<MyCodeModule*>& mods_)
{
MOZ_ASSERT(mods_.size() == 0);
#if defined(SPS_OS_linux) || defined(SPS_OS_android) || defined(SPS_OS_darwin)
SharedLibraryInfo info = SharedLibraryInfo::GetInfoForSelf();
for (size_t i = 0; i < info.GetSize(); i++) {
const SharedLibrary& lib = info.GetEntry(i);
// On Linux, this pulls out two mappings with no names: the VDSO
// (understandable but harmless), and the main executable (bad).
MyCodeModule* cm
= new MyCodeModule( lib.GetStart(), lib.GetEnd()-lib.GetStart(),
lib.GetName() );
mods_.push_back(cm);
}
#else
# error "Unknown platform"
#endif
if (0) LOGF("got %d mappings\n", (int)mods_.size());
// Now tidy up |_mods| to ensure that it is possible to do
// binary search for addresses in it, without risk of infinite loops:
// * segments must be ordered by x_start_ values
// * segments must not have zero size (x_len_)
// * segments must be non-overlapping
std::sort(mods_.begin(), mods_.end(), mcm_is_lessthan_by_start);
if (mods_.size() >= 2) {
// trim range ends, to guarantee no overlaps
for (std::vector<MyCodeModule*>::size_type i = 1; i < mods_.size(); i++) {
uint64_t prev_start = mods_[i-1]->x_start_;
uint64_t prev_len = mods_[i-1]->x_len_;
uint64_t here_start = mods_[i]->x_start_;
MOZ_ASSERT(prev_start <= here_start);
if (prev_start + prev_len > here_start) {
// overlap; trim the end of the previous one
mods_[i-1]->x_len_ = here_start - prev_start;
}
}
}
// remove any zero-sized ranges
std::remove_if(mods_.begin(), mods_.end(), mcm_has_zero_length);
// Final sanity check: ascending, non-overlapping
if (mods_.size() >= 2) {
for (std::vector<MyCodeModule*>::size_type i = 1; i < mods_.size(); i++) {
uint64_t prev_start = mods_[i-1]->x_start_;
uint64_t prev_len = mods_[i-1]->x_len_;
uint64_t here_start = mods_[i]->x_start_;
uint64_t here_len = mods_[i]->x_len_;
MOZ_ASSERT(prev_len > 0 && here_len > 0);
MOZ_ASSERT(prev_start + prev_len <= here_start);
(void)prev_start;
(void)prev_len;
(void)here_start;
(void)here_len;
}
}
}
class MyCodeModules : public google_breakpad::CodeModules
{
public:
MyCodeModules() {
max_addr_ = 0;
min_addr_ = ~0;
read_procmaps(mods_);
if (mods_.size() > 0) {
MyCodeModule *first = mods_[0], *last = mods_[mods_.size()-1];
min_addr_ = first->base_address();
max_addr_ = last->base_address() + last->size() - 1;
}
}
~MyCodeModules() {
std::vector<MyCodeModule*>::const_iterator it;
for (it = mods_.begin(); it < mods_.end(); it++) {
MyCodeModule* cm = *it;
delete cm;
}
}
private:
// A vector of loaded modules, in ascending order of base_address(),
// non-zero size()d, and non-overlapping, suitable for binary
// search. These guarantees are ensured by read_procmaps() as
// called from the constructor, hence they will need to be
// re-ensured if there is ever a use case in which modules are added
// to |mods_| after the initial construction. Likewise, |min_addr_|
// and |max_addr_| would need to be updates. At the moment that
// never happens, so the code is safe as it stands.
mutable std::vector<MyCodeModule*> mods_;
// Additional optimisation: cache the minimum and maximum code address
// for any of the entries in |mods_|, so that GetModuleForAddress can
// reject obviously out-of-range values without having to do any binary
// search.
uint64_t min_addr_, max_addr_;
unsigned int module_count() const { MOZ_CRASH(); return 1; }
const google_breakpad::CodeModule*
GetModuleForAddress(u_int64_t address) const
{
if (0) printf("GMFA %llx\n", (unsigned long long int)address);
std::vector<MyCodeModule*>::size_type nMods = mods_.size();
// Reject obviously-nonsensical requests. Note that the
// comparisons against {min_,max_}addr_ are only valid in the case
// where nMods > 0, hence the ordering of tests.
if (nMods == 0 || address < min_addr_ || address > max_addr_) {
return NULL;
}
// Binary search in |mods_|. lo and hi need to be signed, else
// the loop termination tests don't work properly.
long int lo = 0;
long int hi = nMods-1;
while (true) {
// current unsearched space is from lo to hi, inclusive.
if (lo > hi) {
// not found
return NULL;
}
long int mid = (lo + hi) / 2;
MyCodeModule* mid_mod = mods_[mid];
uint64_t mid_minAddr = mid_mod->base_address();
uint64_t mid_maxAddr = mid_minAddr + mid_mod->size() - 1;
if (address < mid_minAddr) { hi = mid-1; continue; }
if (address > mid_maxAddr) { lo = mid+1; continue; }
MOZ_ASSERT(mid_minAddr <= address && address <= mid_maxAddr);
return mid_mod;
}
}
const google_breakpad::CodeModule* GetMainModule() const {
MOZ_CRASH(); return NULL; return NULL;
}
const google_breakpad::CodeModule* GetModuleAtSequence(
unsigned int sequence) const {
MOZ_CRASH(); return NULL;
}
const google_breakpad::CodeModule* GetModuleAtIndex(unsigned int index) const {
MOZ_CRASH(); return NULL;
}
const CodeModules* Copy() const {
MOZ_CRASH(); return NULL;
}
};
///////////////////////////////////////////////////////////////////
/* Top level interface to breakpad. Given a Buffer* as carefully
acquired by the signal handler and later handed to this thread,
unwind it.
The first time in, read /proc/self/maps. TODO: what about if it
changes as we go along?
Dump the result (PC, SP) pairs in a malloc-allocated array of
PCandSPs, and return that and its length to the caller. Caller is
responsible for deallocating it.
The first pair is for the outermost frame, the last for the
innermost frame. There may be some leading section of the array
containing (zero, zero) values, in the case where the stack got
truncated because breakpad started stack-scanning, or for whatever
reason. Users of this function need to be aware of that.
*/
MyCodeModules* sModules = NULL;
google_breakpad::LocalDebugInfoSymbolizer* sSymbolizer = NULL;
// Free up the above two singletons when the unwinder thread is shut
// down.
static
void do_breakpad_unwind_Buffer_free_singletons()
{
if (sSymbolizer) {
delete sSymbolizer;
sSymbolizer = NULL;
}
if (sModules) {
delete sModules;
sModules = NULL;
}
g_stackLimitsUsed = 0;
g_seqNo = 0;
free(g_buffers);
g_buffers = NULL;
}
static void stats_notify_frame(google_breakpad::StackFrame::FrameTrust tr)
{
// Gather stats in intervals.
static int nf_NONE = 0;
static int nf_SCAN = 0;
static int nf_CFI_SCAN = 0;
static int nf_FP = 0;
static int nf_CFI = 0;
static int nf_CONTEXT = 0;
static int nf_total = 0; // total frames since last printout
nf_total++;
switch (tr) {
case google_breakpad::StackFrame::FRAME_TRUST_NONE: nf_NONE++; break;
case google_breakpad::StackFrame::FRAME_TRUST_SCAN: nf_SCAN++; break;
case google_breakpad::StackFrame::FRAME_TRUST_CFI_SCAN:
nf_CFI_SCAN++; break;
case google_breakpad::StackFrame::FRAME_TRUST_FP: nf_FP++; break;
case google_breakpad::StackFrame::FRAME_TRUST_CFI: nf_CFI++; break;
case google_breakpad::StackFrame::FRAME_TRUST_CONTEXT: nf_CONTEXT++; break;
default: break;
}
if (nf_total >= 5000) {
LOGF("BPUnw frame stats: TOTAL %5u"
" CTX %4u CFI %4u FP %4u SCAN %4u NONE %4u",
nf_total, nf_CONTEXT, nf_CFI, nf_FP, nf_CFI_SCAN+nf_SCAN, nf_NONE);
nf_NONE = 0;
nf_SCAN = 0;
nf_CFI_SCAN = 0;
nf_FP = 0;
nf_CFI = 0;
nf_CONTEXT = 0;
nf_total = 0;
}
}
static
void do_breakpad_unwind_Buffer(/*OUT*/PCandSP** pairs,
/*OUT*/unsigned int* nPairs,
UnwinderThreadBuffer* buff,
int buffNo /* for debug printing only */)
{
# if defined(SPS_ARCH_amd64)
MDRawContextAMD64* context = new MDRawContextAMD64();
memset(context, 0, sizeof(*context));
context->rip = buff->regs.rip;
context->rbp = buff->regs.rbp;
context->rsp = buff->regs.rsp;
if (0) {
LOGF("Initial RIP = 0x%llx", (unsigned long long int)context->rip);
LOGF("Initial RSP = 0x%llx", (unsigned long long int)context->rsp);
LOGF("Initial RBP = 0x%llx", (unsigned long long int)context->rbp);
}
# elif defined(SPS_ARCH_arm)
MDRawContextARM* context = new MDRawContextARM();
memset(context, 0, sizeof(*context));
context->iregs[7] = buff->regs.r7;
context->iregs[12] = buff->regs.r12;
context->iregs[MD_CONTEXT_ARM_REG_PC] = buff->regs.r15;
context->iregs[MD_CONTEXT_ARM_REG_LR] = buff->regs.r14;
context->iregs[MD_CONTEXT_ARM_REG_SP] = buff->regs.r13;
context->iregs[MD_CONTEXT_ARM_REG_FP] = buff->regs.r11;
if (0) {
LOGF("Initial R15 = 0x%x",
context->iregs[MD_CONTEXT_ARM_REG_PC]);
LOGF("Initial R13 = 0x%x",
context->iregs[MD_CONTEXT_ARM_REG_SP]);
}
# elif defined(SPS_ARCH_x86)
MDRawContextX86* context = new MDRawContextX86();
memset(context, 0, sizeof(*context));
context->eip = buff->regs.eip;
context->ebp = buff->regs.ebp;
context->esp = buff->regs.esp;
if (0) {
LOGF("Initial EIP = 0x%x", context->eip);
LOGF("Initial ESP = 0x%x", context->esp);
LOGF("Initial EBP = 0x%x", context->ebp);
}
# else
# error "Unknown plat"
# endif
BufferMemoryRegion* memory = new BufferMemoryRegion(buff);
if (!sModules) {
sModules = new MyCodeModules();
}
if (!sSymbolizer) {
/* Make up a list of places where the debug objects might be. */
std::vector<std::string> debug_dirs;
# if defined(SPS_OS_linux)
debug_dirs.push_back("/usr/lib/debug/lib");
debug_dirs.push_back("/usr/lib/debug/usr/lib");
debug_dirs.push_back("/usr/lib/debug/lib/x86_64-linux-gnu");
debug_dirs.push_back("/usr/lib/debug/usr/lib/x86_64-linux-gnu");
# elif defined(SPS_OS_android)
debug_dirs.push_back("/sdcard/symbols/system/lib");
debug_dirs.push_back("/sdcard/symbols/system/bin");
# elif defined(SPS_OS_darwin)
/* Nothing */
# else
# error "Unknown plat"
# endif
sSymbolizer = new google_breakpad::LocalDebugInfoSymbolizer(debug_dirs);
}
# if defined(SPS_ARCH_amd64)
google_breakpad::StackwalkerAMD64* sw
= new google_breakpad::StackwalkerAMD64(NULL, context,
memory, sModules,
sSymbolizer);
# elif defined(SPS_ARCH_arm)
google_breakpad::StackwalkerARM* sw
= new google_breakpad::StackwalkerARM(NULL, context,
-1/*FP reg*/,
memory, sModules,
sSymbolizer);
# elif defined(SPS_ARCH_x86)
google_breakpad::StackwalkerX86* sw
= new google_breakpad::StackwalkerX86(NULL, context,
memory, sModules,
sSymbolizer);
# else
# error "Unknown plat"
# endif
google_breakpad::CallStack* stack = new google_breakpad::CallStack();
std::vector<const google_breakpad::CodeModule*>* modules_without_symbols
= new std::vector<const google_breakpad::CodeModule*>();
// Set the max number of frames to a reasonably low level. By
// default Breakpad's limit is 1024, which means it can wind up
// spending a lot of time looping on corrupted stacks.
sw->set_max_frames(256);
bool b = sw->Walk(stack, modules_without_symbols);
(void)b;
delete modules_without_symbols;
unsigned int n_frames = stack->frames()->size();
unsigned int n_frames_good = 0;
unsigned int n_frames_dubious = 0;
*pairs = (PCandSP*)calloc(n_frames, sizeof(PCandSP));
*nPairs = n_frames;
if (*pairs == NULL) {
*nPairs = 0;
return;
}
if (n_frames > 0) {
for (unsigned int frame_index = 0;
frame_index < n_frames; ++frame_index) {
google_breakpad::StackFrame *frame = stack->frames()->at(frame_index);
bool dubious
= frame->trust == google_breakpad::StackFrame::FRAME_TRUST_SCAN
|| frame->trust == google_breakpad::StackFrame::FRAME_TRUST_CFI_SCAN
|| frame->trust == google_breakpad::StackFrame::FRAME_TRUST_NONE;
if (dubious) {
n_frames_dubious++;
} else {
n_frames_good++;
}
/* Once we've seen more than some threshhold number of dubious
frames, give up. Doing that gives better results than
polluting the profiling results with junk frames. Because
the entries are put into the pairs array starting at the end,
this will leave some initial section of pairs containing
(0,0) values, which correspond to the skipped frames. */
if (n_frames_dubious > (unsigned int)sUnwindStackScan)
break;
if (LOGLEVEL >= 2)
stats_notify_frame(frame->trust);
# if defined(SPS_ARCH_amd64)
google_breakpad::StackFrameAMD64* frame_amd64
= reinterpret_cast<google_breakpad::StackFrameAMD64*>(frame);
if (LOGLEVEL >= 4) {
LOGF("frame %d rip=0x%016llx rsp=0x%016llx %s",
frame_index,
(unsigned long long int)frame_amd64->context.rip,
(unsigned long long int)frame_amd64->context.rsp,
frame_amd64->trust_description().c_str());
}
(*pairs)[n_frames-1-frame_index].pc = frame_amd64->context.rip;
(*pairs)[n_frames-1-frame_index].sp = frame_amd64->context.rsp;
# elif defined(SPS_ARCH_arm)
google_breakpad::StackFrameARM* frame_arm
= reinterpret_cast<google_breakpad::StackFrameARM*>(frame);
if (LOGLEVEL >= 4) {
LOGF("frame %d 0x%08x %s",
frame_index,
frame_arm->context.iregs[MD_CONTEXT_ARM_REG_PC],
frame_arm->trust_description().c_str());
}
(*pairs)[n_frames-1-frame_index].pc
= frame_arm->context.iregs[MD_CONTEXT_ARM_REG_PC];
(*pairs)[n_frames-1-frame_index].sp
= frame_arm->context.iregs[MD_CONTEXT_ARM_REG_SP];
# elif defined(SPS_ARCH_x86)
google_breakpad::StackFrameX86* frame_x86
= reinterpret_cast<google_breakpad::StackFrameX86*>(frame);
if (LOGLEVEL >= 4) {
LOGF("frame %d eip=0x%08x rsp=0x%08x %s",
frame_index,
frame_x86->context.eip, frame_x86->context.esp,
frame_x86->trust_description().c_str());
}
(*pairs)[n_frames-1-frame_index].pc = frame_x86->context.eip;
(*pairs)[n_frames-1-frame_index].sp = frame_x86->context.esp;
# else
# error "Unknown plat"
# endif
}
}
if (LOGLEVEL >= 3) {
LOGF("BPUnw: unwinder: seqNo %llu, buf %d: got %u frames "
"(%u trustworthy)",
(unsigned long long int)buff->seqNo, buffNo, n_frames, n_frames_good);
}
if (LOGLEVEL >= 2) {
if (0 == (g_stats_totalSamples % 1000))
LOGF("BPUnw: %llu total samples, %llu failed (buffer unavail), "
"%llu failed (thread unreg'd), ",
(unsigned long long int)g_stats_totalSamples,
(unsigned long long int)g_stats_noBuffAvail,
(unsigned long long int)g_stats_thrUnregd);
}
delete stack;
delete sw;
delete memory;
delete context;
}
#endif /* defined(SPS_OS_windows) */