mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
727 lines
22 KiB
C++
727 lines
22 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla code.
|
|
*
|
|
* The Initial Developer of the Original Code is the Mozilla Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2010
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Chris Double <chris.double@double.co.nz>
|
|
* Chris Pearce <chris@pearce.org.nz>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
#include "nsDebug.h"
|
|
#include "nsOggCodecState.h"
|
|
#include "nsOggDecoder.h"
|
|
#include <string.h>
|
|
#include "nsTraceRefcnt.h"
|
|
#include "VideoUtils.h"
|
|
|
|
#ifdef PR_LOGGING
|
|
extern PRLogModuleInfo* gBuiltinDecoderLog;
|
|
#define LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
|
|
#else
|
|
#define LOG(type, msg)
|
|
#endif
|
|
|
|
/*
|
|
The maximum height and width of the video. Used for
|
|
sanitizing the memory allocation of the RGB buffer.
|
|
The maximum resolution we anticipate encountering in the
|
|
wild is 2160p - 3840x2160 pixels.
|
|
*/
|
|
#define MAX_VIDEO_WIDTH 4000
|
|
#define MAX_VIDEO_HEIGHT 3000
|
|
|
|
nsOggCodecState*
|
|
nsOggCodecState::Create(ogg_page* aPage)
|
|
{
|
|
nsAutoPtr<nsOggCodecState> codecState;
|
|
if (aPage->body_len > 6 && memcmp(aPage->body+1, "theora", 6) == 0) {
|
|
codecState = new nsTheoraState(aPage);
|
|
} else if (aPage->body_len > 6 && memcmp(aPage->body+1, "vorbis", 6) == 0) {
|
|
codecState = new nsVorbisState(aPage);
|
|
} else if (aPage->body_len > 8 && memcmp(aPage->body, "fishead\0", 8) == 0) {
|
|
codecState = new nsSkeletonState(aPage);
|
|
} else {
|
|
codecState = new nsOggCodecState(aPage);
|
|
}
|
|
return codecState->nsOggCodecState::Init() ? codecState.forget() : nsnull;
|
|
}
|
|
|
|
nsOggCodecState::nsOggCodecState(ogg_page* aBosPage) :
|
|
mPacketCount(0),
|
|
mSerial(ogg_page_serialno(aBosPage)),
|
|
mActive(PR_FALSE),
|
|
mDoneReadingHeaders(PR_FALSE)
|
|
{
|
|
MOZ_COUNT_CTOR(nsOggCodecState);
|
|
memset(&mState, 0, sizeof(ogg_stream_state));
|
|
}
|
|
|
|
nsOggCodecState::~nsOggCodecState() {
|
|
MOZ_COUNT_DTOR(nsOggCodecState);
|
|
int ret = ogg_stream_clear(&mState);
|
|
NS_ASSERTION(ret == 0, "ogg_stream_clear failed");
|
|
}
|
|
|
|
nsresult nsOggCodecState::Reset() {
|
|
if (ogg_stream_reset(&mState) != 0) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
mBuffer.Erase();
|
|
return NS_OK;
|
|
}
|
|
|
|
PRBool nsOggCodecState::Init() {
|
|
int ret = ogg_stream_init(&mState, mSerial);
|
|
return ret == 0;
|
|
}
|
|
|
|
void nsPageQueue::Append(ogg_page* aPage) {
|
|
ogg_page* p = new ogg_page();
|
|
p->header_len = aPage->header_len;
|
|
p->body_len = aPage->body_len;
|
|
p->header = new unsigned char[p->header_len + p->body_len];
|
|
p->body = p->header + p->header_len;
|
|
memcpy(p->header, aPage->header, p->header_len);
|
|
memcpy(p->body, aPage->body, p->body_len);
|
|
nsDeque::Push(p);
|
|
}
|
|
|
|
PRBool nsOggCodecState::PageInFromBuffer() {
|
|
if (mBuffer.IsEmpty())
|
|
return PR_FALSE;
|
|
ogg_page *p = mBuffer.PeekFront();
|
|
int ret = ogg_stream_pagein(&mState, p);
|
|
NS_ENSURE_TRUE(ret == 0, PR_FALSE);
|
|
mBuffer.PopFront();
|
|
delete p->header;
|
|
delete p;
|
|
return PR_TRUE;
|
|
}
|
|
|
|
nsTheoraState::nsTheoraState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage),
|
|
mSetup(0),
|
|
mCtx(0),
|
|
mFrameDuration(0),
|
|
mPixelAspectRatio(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsTheoraState);
|
|
th_info_init(&mInfo);
|
|
th_comment_init(&mComment);
|
|
}
|
|
|
|
nsTheoraState::~nsTheoraState() {
|
|
MOZ_COUNT_DTOR(nsTheoraState);
|
|
th_setup_free(mSetup);
|
|
th_decode_free(mCtx);
|
|
th_comment_clear(&mComment);
|
|
th_info_clear(&mInfo);
|
|
}
|
|
|
|
PRBool nsTheoraState::Init() {
|
|
if (!mActive)
|
|
return PR_FALSE;
|
|
|
|
PRInt64 n = mInfo.fps_numerator;
|
|
PRInt64 d = mInfo.fps_denominator;
|
|
|
|
PRInt64 f;
|
|
if (!MulOverflow(1000, d, f)) {
|
|
return mActive = PR_FALSE;
|
|
}
|
|
f /= n;
|
|
if (f > PR_UINT32_MAX) {
|
|
return mActive = PR_FALSE;
|
|
}
|
|
mFrameDuration = static_cast<PRUint32>(f);
|
|
|
|
n = mInfo.aspect_numerator;
|
|
|
|
d = mInfo.aspect_denominator;
|
|
mPixelAspectRatio = (n == 0 || d == 0) ?
|
|
1.0f : static_cast<float>(n) / static_cast<float>(d);
|
|
|
|
// Ensure the frame region isn't larger than our prescribed maximum.
|
|
PRUint32 pixels;
|
|
if (!MulOverflow32(mInfo.frame_width, mInfo.frame_height, pixels) ||
|
|
pixels > MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT ||
|
|
pixels == 0)
|
|
{
|
|
return mActive = PR_FALSE;
|
|
}
|
|
|
|
// Ensure the picture region isn't larger than our prescribed maximum.
|
|
if (!MulOverflow32(mInfo.pic_width, mInfo.pic_height, pixels) ||
|
|
pixels > MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT ||
|
|
pixels == 0)
|
|
{
|
|
return mActive = PR_FALSE;
|
|
}
|
|
|
|
mCtx = th_decode_alloc(&mInfo, mSetup);
|
|
if (mCtx == NULL) {
|
|
return mActive = PR_FALSE;
|
|
}
|
|
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PRBool
|
|
nsTheoraState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
mPacketCount++;
|
|
int ret = th_decode_headerin(&mInfo,
|
|
&mComment,
|
|
&mSetup,
|
|
aPacket);
|
|
|
|
// We must determine when we've read the last header packet.
|
|
// th_decode_headerin() does not tell us when it's read the last header, so
|
|
// we must keep track of the headers externally.
|
|
//
|
|
// There are 3 header packets, the Identification, Comment, and Setup
|
|
// headers, which must be in that order. If they're out of order, the file
|
|
// is invalid. If we've successfully read a header, and it's the setup
|
|
// header, then we're done reading headers. The first byte of each packet
|
|
// determines it's type as follows:
|
|
// 0x80 -> Identification header
|
|
// 0x81 -> Comment header
|
|
// 0x82 -> Setup header
|
|
// See http://www.theora.org/doc/Theora.pdf Chapter 6, "Bitstream Headers",
|
|
// for more details of the Ogg/Theora containment scheme.
|
|
PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x82;
|
|
if (ret < 0 || mPacketCount > 3) {
|
|
// We've received an error, or the first three packets weren't valid
|
|
// header packets, assume bad input, and don't activate the bitstream.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
} else if (ret > 0 && isSetupHeader && mPacketCount == 3) {
|
|
// Successfully read the three header packets.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
mActive = PR_TRUE;
|
|
}
|
|
return mDoneReadingHeaders;
|
|
}
|
|
|
|
PRInt64
|
|
nsTheoraState::Time(PRInt64 granulepos) {
|
|
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
|
|
return -1;
|
|
}
|
|
PRInt64 t = 0;
|
|
PRInt64 frameno = th_granule_frame(mCtx, granulepos);
|
|
if (!AddOverflow(frameno, 1, t))
|
|
return -1;
|
|
if (!MulOverflow(t, 1000, t))
|
|
return -1;
|
|
if (!MulOverflow(t, mInfo.fps_denominator, t))
|
|
return -1;
|
|
return t / mInfo.fps_numerator;
|
|
}
|
|
|
|
PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
|
|
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
|
|
return -1;
|
|
}
|
|
PRInt64 t = 0;
|
|
PRInt64 frameno = th_granule_frame(mCtx, granulepos);
|
|
if (!MulOverflow(frameno, 1000, t))
|
|
return -1;
|
|
if (!MulOverflow(t, mInfo.fps_denominator, t))
|
|
return -1;
|
|
return t / mInfo.fps_numerator;
|
|
}
|
|
|
|
PRInt64
|
|
nsTheoraState::MaxKeyframeOffset()
|
|
{
|
|
// Determine the maximum time in milliseconds by which a key frame could
|
|
// offset for the theora bitstream. Theora granulepos encode time as:
|
|
// ((key_frame_number << granule_shift) + frame_offset).
|
|
// Therefore the maximum possible time by which any frame could be offset
|
|
// from a keyframe is the duration of (1 << granule_shift) - 1) frames.
|
|
PRInt64 frameDuration;
|
|
PRInt64 keyframeDiff;
|
|
|
|
PRInt64 shift = mInfo.keyframe_granule_shift;
|
|
|
|
// Max number of frames keyframe could possibly be offset.
|
|
keyframeDiff = (1 << shift) - 1;
|
|
|
|
// Length of frame in ms.
|
|
PRInt64 d = 0; // d will be 0 if multiplication overflows.
|
|
MulOverflow(1000, mInfo.fps_denominator, d);
|
|
frameDuration = d / mInfo.fps_numerator;
|
|
|
|
// Total time in ms keyframe can be offset from any given frame.
|
|
return frameDuration * keyframeDiff;
|
|
}
|
|
|
|
nsresult nsVorbisState::Reset()
|
|
{
|
|
nsresult res = NS_OK;
|
|
if (mActive && vorbis_synthesis_restart(&mDsp) != 0) {
|
|
res = NS_ERROR_FAILURE;
|
|
}
|
|
if (NS_FAILED(nsOggCodecState::Reset())) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
nsVorbisState::nsVorbisState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage)
|
|
{
|
|
MOZ_COUNT_CTOR(nsVorbisState);
|
|
vorbis_info_init(&mInfo);
|
|
vorbis_comment_init(&mComment);
|
|
memset(&mDsp, 0, sizeof(vorbis_dsp_state));
|
|
memset(&mBlock, 0, sizeof(vorbis_block));
|
|
}
|
|
|
|
nsVorbisState::~nsVorbisState() {
|
|
MOZ_COUNT_DTOR(nsVorbisState);
|
|
vorbis_block_clear(&mBlock);
|
|
vorbis_dsp_clear(&mDsp);
|
|
vorbis_info_clear(&mInfo);
|
|
vorbis_comment_clear(&mComment);
|
|
}
|
|
|
|
PRBool nsVorbisState::DecodeHeader(ogg_packet* aPacket) {
|
|
mPacketCount++;
|
|
int ret = vorbis_synthesis_headerin(&mInfo,
|
|
&mComment,
|
|
aPacket);
|
|
// We must determine when we've read the last header packet.
|
|
// vorbis_synthesis_headerin() does not tell us when it's read the last
|
|
// header, so we must keep track of the headers externally.
|
|
//
|
|
// There are 3 header packets, the Identification, Comment, and Setup
|
|
// headers, which must be in that order. If they're out of order, the file
|
|
// is invalid. If we've successfully read a header, and it's the setup
|
|
// header, then we're done reading headers. The first byte of each packet
|
|
// determines it's type as follows:
|
|
// 0x1 -> Identification header
|
|
// 0x3 -> Comment header
|
|
// 0x5 -> Setup header
|
|
// For more details of the Vorbis/Ogg containment scheme, see the Vorbis I
|
|
// Specification, Chapter 4, Codec Setup and Packet Decode:
|
|
// http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-580004
|
|
|
|
PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x5;
|
|
|
|
if (ret < 0 || mPacketCount > 3) {
|
|
// We've received an error, or the first three packets weren't valid
|
|
// header packets, assume bad input, and don't activate the bitstream.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
} else if (ret == 0 && isSetupHeader && mPacketCount == 3) {
|
|
// Successfully read the three header packets, activate the bitstream.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
mActive = PR_TRUE;
|
|
}
|
|
return mDoneReadingHeaders;
|
|
}
|
|
|
|
PRBool nsVorbisState::Init()
|
|
{
|
|
if (!mActive)
|
|
return PR_FALSE;
|
|
|
|
int ret = vorbis_synthesis_init(&mDsp, &mInfo);
|
|
if (ret != 0) {
|
|
NS_WARNING("vorbis_synthesis_init() failed initializing vorbis bitstream");
|
|
return mActive = PR_FALSE;
|
|
}
|
|
ret = vorbis_block_init(&mDsp, &mBlock);
|
|
if (ret != 0) {
|
|
NS_WARNING("vorbis_block_init() failed initializing vorbis bitstream");
|
|
if (mActive) {
|
|
vorbis_dsp_clear(&mDsp);
|
|
}
|
|
return mActive = PR_FALSE;
|
|
}
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PRInt64 nsVorbisState::Time(PRInt64 granulepos)
|
|
{
|
|
if (granulepos == -1 || !mActive || mDsp.vi->rate == 0) {
|
|
return -1;
|
|
}
|
|
PRInt64 t = 0;
|
|
MulOverflow(1000, granulepos, t);
|
|
return t / mDsp.vi->rate;
|
|
}
|
|
|
|
nsSkeletonState::nsSkeletonState(ogg_page* aBosPage)
|
|
: nsOggCodecState(aBosPage),
|
|
mVersion(0),
|
|
mLength(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsSkeletonState);
|
|
}
|
|
|
|
nsSkeletonState::~nsSkeletonState()
|
|
{
|
|
MOZ_COUNT_DTOR(nsSkeletonState);
|
|
}
|
|
|
|
// Support for Ogg Skeleton 4.0, as per specification at:
|
|
// http://wiki.xiph.org/Ogg_Skeleton_4
|
|
|
|
// Minimum length in bytes of a Skeleton 4.0 header packet.
|
|
#define SKELETON_4_0_MIN_HEADER_LEN 80
|
|
|
|
// Minimum length in bytes of a Skeleton 4.0 index packet.
|
|
#define SKELETON_4_0_MIN_INDEX_LEN 42
|
|
|
|
// Minimum possible size of a compressed index keypoint.
|
|
#define MIN_KEY_POINT_SIZE 2
|
|
|
|
// Byte offset of the major and minor version numbers in the
|
|
// Ogg Skeleton 4.0 header packet.
|
|
#define SKELETON_VERSION_MAJOR_OFFSET 8
|
|
#define SKELETON_VERSION_MINOR_OFFSET 10
|
|
|
|
// Byte-offsets of the length of file field in the Skeleton 4.0 header packet.
|
|
#define SKELETON_FILE_LENGTH_OFFSET 64
|
|
|
|
// Byte-offsets of the fields in the Skeleton index packet.
|
|
#define INDEX_SERIALNO_OFFSET 6
|
|
#define INDEX_NUM_KEYPOINTS_OFFSET 10
|
|
#define INDEX_TIME_DENOM_OFFSET 18
|
|
#define INDEX_FIRST_NUMER_OFFSET 26
|
|
#define INDEX_LAST_NUMER_OFFSET 34
|
|
#define INDEX_KEYPOINT_OFFSET 42
|
|
|
|
static PRBool IsSkeletonBOS(ogg_packet* aPacket)
|
|
{
|
|
return aPacket->bytes >= SKELETON_4_0_MIN_HEADER_LEN &&
|
|
memcmp(reinterpret_cast<char*>(aPacket->packet), "fishead", 8) == 0;
|
|
}
|
|
|
|
static PRBool IsSkeletonIndex(ogg_packet* aPacket)
|
|
{
|
|
return aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN &&
|
|
memcmp(reinterpret_cast<char*>(aPacket->packet), "index", 5) == 0;
|
|
}
|
|
|
|
// Reads a little-endian encoded unsigned 32bit integer at p.
|
|
static PRUint32 LEUint32(const unsigned char* p)
|
|
{
|
|
return p[0] +
|
|
(p[1] << 8) +
|
|
(p[2] << 16) +
|
|
(p[3] << 24);
|
|
}
|
|
|
|
// Reads a little-endian encoded 64bit integer at p.
|
|
static PRInt64 LEInt64(const unsigned char* p)
|
|
{
|
|
PRUint32 lo = LEUint32(p);
|
|
PRUint32 hi = LEUint32(p + 4);
|
|
return static_cast<PRInt64>(lo) | (static_cast<PRInt64>(hi) << 32);
|
|
}
|
|
|
|
// Reads a little-endian encoded unsigned 16bit integer at p.
|
|
static PRUint16 LEUint16(const unsigned char* p)
|
|
{
|
|
return p[0] + (p[1] << 8);
|
|
}
|
|
|
|
// Reads a variable length encoded integer at p. Will not read
|
|
// past aLimit. Returns pointer to character after end of integer.
|
|
static const unsigned char* ReadVariableLengthInt(const unsigned char* p,
|
|
const unsigned char* aLimit,
|
|
PRInt64& n)
|
|
{
|
|
int shift = 0;
|
|
PRInt64 byte = 0;
|
|
n = 0;
|
|
while (p < aLimit &&
|
|
(byte & 0x80) != 0x80 &&
|
|
shift < 57)
|
|
{
|
|
byte = static_cast<PRInt64>(*p);
|
|
n |= ((byte & 0x7f) << shift);
|
|
shift += 7;
|
|
p++;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
PRBool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
|
|
{
|
|
NS_ASSERTION(aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN,
|
|
"Index must be at least minimum size");
|
|
if (!mActive) {
|
|
return PR_FALSE;
|
|
}
|
|
|
|
PRUint32 serialno = LEUint32(aPacket->packet + INDEX_SERIALNO_OFFSET);
|
|
PRInt64 numKeyPoints = LEInt64(aPacket->packet + INDEX_NUM_KEYPOINTS_OFFSET);
|
|
|
|
PRInt64 n = 0;
|
|
PRInt64 endTime = 0, startTime = 0;
|
|
const unsigned char* p = aPacket->packet;
|
|
|
|
PRInt64 timeDenom = LEInt64(aPacket->packet + INDEX_TIME_DENOM_OFFSET);
|
|
if (timeDenom == 0) {
|
|
LOG(PR_LOG_DEBUG, ("Ogg Skeleton Index packet for stream %u has 0 "
|
|
"timestamp denominator.", serialno));
|
|
return (mActive = PR_FALSE);
|
|
}
|
|
|
|
// Extract the start time.
|
|
n = LEInt64(p + INDEX_FIRST_NUMER_OFFSET);
|
|
PRInt64 t;
|
|
if (!MulOverflow(n, 1000, t)) {
|
|
return (mActive = PR_FALSE);
|
|
} else {
|
|
startTime = t / timeDenom;
|
|
}
|
|
|
|
// Extract the end time.
|
|
n = LEInt64(p + INDEX_LAST_NUMER_OFFSET);
|
|
if (!MulOverflow(n, 1000, t)) {
|
|
return (mActive = PR_FALSE);
|
|
} else {
|
|
endTime = t / timeDenom;
|
|
}
|
|
|
|
// Check the numKeyPoints value read, ensure we're not going to run out of
|
|
// memory while trying to decode the index packet.
|
|
PRInt64 minPacketSize;
|
|
if (!MulOverflow(numKeyPoints, MIN_KEY_POINT_SIZE, minPacketSize) ||
|
|
!AddOverflow(INDEX_KEYPOINT_OFFSET, minPacketSize, minPacketSize))
|
|
{
|
|
return (mActive = PR_FALSE);
|
|
}
|
|
|
|
PRInt64 sizeofIndex = aPacket->bytes - INDEX_KEYPOINT_OFFSET;
|
|
PRInt64 maxNumKeyPoints = sizeofIndex / MIN_KEY_POINT_SIZE;
|
|
if (aPacket->bytes < minPacketSize ||
|
|
numKeyPoints > maxNumKeyPoints ||
|
|
numKeyPoints < 0)
|
|
{
|
|
// Packet size is less than the theoretical minimum size, or the packet is
|
|
// claiming to store more keypoints than it's capable of storing. This means
|
|
// that the numKeyPoints field is too large or small for the packet to
|
|
// possibly contain as many packets as it claims to, so the numKeyPoints
|
|
// field is possibly malicious. Don't try decoding this index, we may run
|
|
// out of memory.
|
|
LOG(PR_LOG_DEBUG, ("Possibly malicious number of key points reported "
|
|
"(%lld) in index packet for stream %u.",
|
|
numKeyPoints,
|
|
serialno));
|
|
return (mActive = PR_FALSE);
|
|
}
|
|
|
|
nsAutoPtr<nsKeyFrameIndex> keyPoints(new nsKeyFrameIndex(startTime, endTime));
|
|
|
|
p = aPacket->packet + INDEX_KEYPOINT_OFFSET;
|
|
const unsigned char* limit = aPacket->packet + aPacket->bytes;
|
|
PRInt64 numKeyPointsRead = 0;
|
|
PRInt64 offset = 0;
|
|
PRInt64 time = 0;
|
|
while (p < limit &&
|
|
numKeyPointsRead < numKeyPoints)
|
|
{
|
|
PRInt64 delta = 0;
|
|
p = ReadVariableLengthInt(p, limit, delta);
|
|
if (p == limit ||
|
|
!AddOverflow(offset, delta, offset) ||
|
|
offset > mLength ||
|
|
offset < 0)
|
|
{
|
|
return (mActive = PR_FALSE);
|
|
}
|
|
p = ReadVariableLengthInt(p, limit, delta);
|
|
if (!AddOverflow(time, delta, time) ||
|
|
time > endTime ||
|
|
time < startTime)
|
|
{
|
|
return (mActive = PR_FALSE);
|
|
}
|
|
PRInt64 timeMs = 0;
|
|
if (!MulOverflow(time, 1000, timeMs))
|
|
return mActive = PR_FALSE;
|
|
timeMs /= timeDenom;
|
|
keyPoints->Add(offset, timeMs);
|
|
numKeyPointsRead++;
|
|
}
|
|
|
|
PRInt32 keyPointsRead = keyPoints->Length();
|
|
if (keyPointsRead > 0) {
|
|
mIndex.Put(serialno, keyPoints.forget());
|
|
}
|
|
|
|
LOG(PR_LOG_DEBUG, ("Loaded %d keypoints for Skeleton on stream %u",
|
|
keyPointsRead, serialno));
|
|
return PR_TRUE;
|
|
}
|
|
|
|
nsresult nsSkeletonState::IndexedSeekTargetForTrack(PRUint32 aSerialno,
|
|
PRInt64 aTarget,
|
|
nsKeyPoint& aResult)
|
|
{
|
|
nsKeyFrameIndex* index = nsnull;
|
|
mIndex.Get(aSerialno, &index);
|
|
|
|
if (!index ||
|
|
index->Length() == 0 ||
|
|
aTarget < index->mStartTime ||
|
|
aTarget > index->mEndTime)
|
|
{
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// Binary search to find the last key point with time less than target.
|
|
int start = 0;
|
|
int end = index->Length() - 1;
|
|
while (end > start) {
|
|
int mid = start + ((end - start + 1) >> 1);
|
|
if (index->Get(mid).mTime == aTarget) {
|
|
start = mid;
|
|
break;
|
|
} else if (index->Get(mid).mTime < aTarget) {
|
|
start = mid;
|
|
} else {
|
|
end = mid - 1;
|
|
}
|
|
}
|
|
|
|
aResult = index->Get(start);
|
|
NS_ASSERTION(aResult.mTime <= aTarget, "Result should have time <= target");
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsSkeletonState::IndexedSeekTarget(PRInt64 aTarget,
|
|
nsTArray<PRUint32>& aTracks,
|
|
nsSeekTarget& aResult)
|
|
{
|
|
if (!mActive || mVersion < SKELETON_VERSION(4,0)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
// Loop over all requested tracks' indexes, and get the keypoint for that
|
|
// seek target. Record the keypoint with the lowest offset, this will be
|
|
// our seek result. User must seek to the one with lowest offset to ensure we
|
|
// pass "keyframes" on all tracks when we decode forwards to the seek target.
|
|
nsSeekTarget r;
|
|
for (PRUint32 i=0; i<aTracks.Length(); i++) {
|
|
nsKeyPoint k;
|
|
if (NS_SUCCEEDED(IndexedSeekTargetForTrack(aTracks[i], aTarget, k)) &&
|
|
k.mOffset < r.mKeyPoint.mOffset)
|
|
{
|
|
r.mKeyPoint = k;
|
|
r.mSerial = aTracks[i];
|
|
}
|
|
}
|
|
if (r.IsNull()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
LOG(PR_LOG_DEBUG, ("Indexed seek target for time %lld is offset %lld",
|
|
aTarget, r.mKeyPoint.mOffset));
|
|
aResult = r;
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsSkeletonState::GetDuration(const nsTArray<PRUint32>& aTracks,
|
|
PRInt64& aDuration)
|
|
{
|
|
if (!mActive ||
|
|
mVersion < SKELETON_VERSION(4,0) ||
|
|
!HasIndex() ||
|
|
aTracks.Length() == 0)
|
|
{
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
PRInt64 endTime = PR_INT64_MIN;
|
|
PRInt64 startTime = PR_INT64_MAX;
|
|
for (PRUint32 i=0; i<aTracks.Length(); i++) {
|
|
nsKeyFrameIndex* index = nsnull;
|
|
mIndex.Get(aTracks[i], &index);
|
|
if (!index) {
|
|
// Can't get the timestamps for one of the required tracks, fail.
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
if (index->mEndTime > endTime) {
|
|
endTime = index->mEndTime;
|
|
}
|
|
if (index->mStartTime < startTime) {
|
|
startTime = index->mStartTime;
|
|
}
|
|
}
|
|
NS_ASSERTION(endTime > startTime, "Duration must be positive");
|
|
return AddOverflow(endTime, -startTime, aDuration) ? NS_OK : NS_ERROR_FAILURE;
|
|
}
|
|
|
|
PRBool nsSkeletonState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
if (IsSkeletonBOS(aPacket)) {
|
|
PRUint16 verMajor = LEUint16(aPacket->packet + SKELETON_VERSION_MAJOR_OFFSET);
|
|
PRUint16 verMinor = LEUint16(aPacket->packet + SKELETON_VERSION_MINOR_OFFSET);
|
|
mVersion = SKELETON_VERSION(verMajor, verMinor);
|
|
if (mVersion < SKELETON_VERSION(4,0) ||
|
|
mVersion >= SKELETON_VERSION(5,0) ||
|
|
aPacket->bytes < SKELETON_4_0_MIN_HEADER_LEN)
|
|
{
|
|
// We can only care to parse Skeleton version 4.0+.
|
|
mActive = PR_FALSE;
|
|
return mDoneReadingHeaders = PR_TRUE;
|
|
}
|
|
|
|
// Extract the segment length.
|
|
mLength = LEInt64(aPacket->packet + SKELETON_FILE_LENGTH_OFFSET);
|
|
|
|
LOG(PR_LOG_DEBUG, ("Skeleton segment length: %lld", mLength));
|
|
|
|
// Initialize the serianlno-to-index map.
|
|
PRBool init = mIndex.Init();
|
|
if (!init) {
|
|
NS_WARNING("Failed to initialize Ogg skeleton serialno-to-index map");
|
|
mActive = PR_FALSE;
|
|
return mDoneReadingHeaders = PR_TRUE;
|
|
}
|
|
mActive = PR_TRUE;
|
|
} else if (IsSkeletonIndex(aPacket) && mVersion >= SKELETON_VERSION(4,0)) {
|
|
if (!DecodeIndex(aPacket)) {
|
|
// Failed to parse index, or invalid/hostile index. DecodeIndex() will
|
|
// have deactivated the track.
|
|
return mDoneReadingHeaders = PR_TRUE;
|
|
}
|
|
|
|
} else if (aPacket->e_o_s) {
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
}
|
|
return mDoneReadingHeaders;
|
|
}
|